一种工业CO2在农作物生长中的应用方法与流程

文档序号:13429867阅读:928来源:国知局
一种工业CO2在农作物生长中的应用方法一、技术领域:工业CO2减排在农业上的利用;循环经济。二、

背景技术:
:CO2气肥早在1888年就开始在德国、英国、美国等国应用,但直到本世纪60年代前,并没有得到大规模的实际应用。60年代以后,由于对温室作物需求的增加,简易大棚的出现,使温室种植面积迅速增长,同时由于各种有效的CO2气体发生装置以及实用价廉的监测计量设备仪器的研制成功,使CO2施肥技术得到进一步的发展,并取得显著的经济效益。目前,CO2施肥在欧洲、中美、北美及一些亚洲国家温室大棚都得到了推广应用。美国约有50~75%温室作物采用CO2施肥;荷兰90%以上的番茄、黄瓜、甜椒、草莓种植中采用CO2施肥;施用CO2气肥可使作物光合作用增速40~50%,产量增加20~45%。我国在70年代初期,就开始了二氧化碳施肥技术的实验研究,并取得了良好效果,但至今这项技术仍未得到广泛应用,其中最主要的问题,是缺乏廉价、方便的,又安全的二氧化碳来源。我国现在二氧化碳的施肥技术是在大棚中的:1.高压液体二氧化碳气肥:即是将CO2压缩在高压钢瓶里控制使用,缺点是运输不便。2.固体干冰:将二氧化碳低温高压加工成干冰,干冰成本高不宜普遍推广。3.固体颗粒气肥:是一种颗粒型或圆柱型颗粒,使用时按要求将颗粒均匀埋于作物行间,表面覆土2厘米,缺点是二氧化碳比重大于空气,不利于植物的光合作用。4.燃烧法:在温室大棚内点燃木炭燃烧,产生二氧化碳的同时还产生大量的一氧化碳,所以须安装气体净化装置。5.化学反应法:即用碳酸氢铵与硫酸发生反应产生二氧化碳,使用时操作繁琐,要十分注意避免硫酸烧伤使用者或烧坏衣服物品等。6.气肥棒:一种混合物加工成可燃棒式的一种产品,每天在温室棚中点燃释放出二氧化碳,缺点是大棚中湿度较大不易点燃烧尽。7.二氧化碳气肥机:在大棚中安装二氧化碳气体发生器,发生器靠电解方式制备二氧化碳气体,使用中必须用电和水,并随时添加化工原料,使用繁琐不便。为了解决增施二氧化碳气肥问题,国内外都采取了许多措施,但这些措施大都因设备昂贵或气体来源复杂或使用烦琐不方便或使用效果不明显等原因制约了这一增施技术的发展,它对我国广大的农民种植户来说不是成本太高就是受各种条件的限制,不符合当前我国农业的实际国情,根据我国温室农业的特点及近年来对众多的二氧化碳气源的反复对比和分析,以上这些增施方式均不同程度地存在不足,不适应我国目前农村现状,所以至今难以推广应用。三、

技术实现要素:
:“一种工业CO2在农作物生长中的应用方法”(一)、一种工业CO2在农作物生长中的应用方法可以解决的问题:1.为工业CO2提纯提供了一种低成本的方法、并有效利用;2.使农作物在有效的生长期内得到充分的、安全的、廉价的CO2来源,使其在光合作用下茁壮成长,进一步改善了农作物的品质,进一步增加产量;3.用工业CO2替代现有施肥技术中的二氧化碳,使农作物在有效生长期内、因充分提高光合作用效率、CO2得到有效利用,从而减少了向空气中的排放量;并由此降低大棚内的增量碳排放,降低了成本、减少了开支;4.去除了工业废气中的SO2强酸性气体使农作物获得充足的、安全的CO2或富含CO2的气体;5.因农作物获得充足的CO2来源辅以合理的光照,由此缩短多季农作物的生长成熟期。(二)、实现本技术的方法:1.首先对普通工业燃烧进行改造,使其进行过氧燃烧确保CO的含量降低以便安全应用;并对因过氧燃烧产生的工业CO2进行提纯,使其不含有SO2强酸性气体;其方法一是:①首先对普通工业燃烧进行改造,使其进行过氧燃烧确保CO的含量降低以便安全应用;②对因过氧燃烧产生的工业CO2进行提纯,使其不含有SO2强酸性气体;将含CO2的工业废气经过降温,在用旋风除尘器、布袋除尘器除尘后,在25℃以下充入活性CaMg(OH)4饱和乳中将发生如下主要反应:SO2+0.5O2+2CO2+CaMg(OH)4+H2O=====CaSO4·2H2O↓+Mg(HCO3)2③经过液气分离这时得到的气体是不含SO2、富含CO2的气体,分离后气体A1含CO2的浓度一般在20~23%之间(石灰、水泥立窑提纯处理后的废气含CO2的浓度最高可达44%);将此气体A1导出采取加压管道输送至农田;反应后的饱和液用于制取轻质碳酸镁和高纯度的二氧化碳;多余的二氧化碳将会发生下面的反应:3CO2+CaMg(OH)4=======CaCO3↓+Mg(HCO3)2+H2O;将其沉淀压滤、干燥、粉碎、分装应用;沉淀过滤后在98~102℃时热解Mg(HCO3)2饱和溶液就会得到轻质碳酸镁和高纯度的二氧化碳B,其反应如下:5Mg(HCO3)2===4MgCO3·Mg(OH)2·4H2O↓+6CO2↑将得到的CO2根据需要采取管道输送或加压灌装或制成干冰在农田中应用。其方法二是①将秸秆等生物质燃料用过氧燃烧的方式燃烧,燃烧后的气体水洗除尘后经过液气分离,液体循环使用;沉淀干燥、粉碎、分装作钾肥;分离后气体A含CO2的浓度一般在21~25%之间,气体A加压管道输送至农田中应用;②非农作物生长季节是将秸秆等生物质燃料用过氧燃烧的方式燃烧,燃烧后将含CO2的工业废气经过降温,③在用旋风除尘器、布袋除尘器除尘后,在25℃以下充入活性CaMg(OH)4饱和乳中将发生如下主要反应:SO2+0.5O2+2CO2+CaMg(OH)4+H2O=====CaSO4·2H2O↓+Mg(HCO3)2④多余的二氧化碳将会发生下面的反应:3CO2+CaMg(OH)4=======CaCO3↓+Mg(HCO3)2+H2O;将其沉淀压滤、干燥、粉碎、分装应用;沉淀过滤后在98~102℃时热解Mg(HCO3)2饱和溶液就会得到轻质碳酸镁和高纯度的二氧化碳B,经过液气分离这时得到高纯度的二氧化碳B,其反应如下:5Mg(HCO3)2===4MgCO3·Mg(OH)2·4H2O↓+6CO2↑将得到的CO2根据需要采取管道输至农作物大棚或制成干冰准备在农田中应用。2.CO2在农作物及绿色植物的光合作用上的反应机理,是毋庸置疑的,二氧化碳是绿色植物光合作用的重要原料,植物干物质中45%是碳元素,空气中的二氧化碳是植物碳元素的唯一来源,光合作用又是碳元素摄取的唯一方式;植物光合作用中,叶片中的叶绿素吸收光能,将二氧化碳和水合成糖、淀粉、蛋白质。脂肪、纤维素等有机物质,再输送给幼叶、花、果、根、茎等器官,使这些植物器官得以生长发育。高于空气中的二氧化碳的浓度对农作物产量提高的幅度有直接的资料予以证明的是:CO2施肥在欧洲、中美、北美及一些亚洲国家温室大棚都得到了推广应用。美国约有50~75%温室作物采用CO2施肥;荷兰90%以上的番茄、黄瓜、甜椒、草莓种植中采用CO2施肥;施用CO2气肥可使作物光合作用增速40~50%,产量增加20~45%。可见提高CO2的浓度对农作物的增产,生长成熟期的影响是肯定的。3.CO2的应用方法:在其它增产措施不变的情况下,相应增加20~30%因提高了农作物产量而缺失的N、P、K及有机肥的基础上,方法如下:①以水为输送CO2的载体:在使用的水中混入;例如:在水稻插秧后的入水口处,白天用气泵(有压力输送的用阀门控制)混入1中制得的廉价、安全、方便含CO2的气体,使水中的CO2含量在1.5g/kg左右;并在水稻苗成长期白天有阳光时通入,使其局部空气中CO2浓度保持在1000PPm左右;直至水稻成熟(其它增产措施不变),从而增加了水稻的产量、缩短了成熟期。②秧苗的成长期在其根系附近通入1中制得的含CO2的气体;使其局部CO2浓度增加,例如:在大豆农田里预埋管网,管网的分布以旱田行距三倍排列且位于行距中间,管上的孔为1mm对穿且与地面平行,孔的间距以1000mm左右为宜;秧苗有3片叶时在白天通入含有CO2的气体,使CO2在土气相中的浓度保持在700PPm左右,1周后使CO2在白天土气相中的浓度保持在1000PPm左右;早晚有阳光时取低值,中午有阳光时取高值,傍晚无阳光时停止通入含CO2的气体。在农作物叶有1/3泛黄时,停止通入含有CO2的气体。从而增加了农作物的产量、因农作物快速生长而缩短了农作物的生长成熟期。③在秧苗的成长、成熟期加大其局部空气中的CO2含量至1000PPm浓度左右。例如:在白天有阳光时通入1中制得的含CO2气体或在高温天气均匀分散放置适量固体CO2。④在封闭的大棚内白天通风后通入1中制得的含CO2的气体,提高大棚内空气中CO2的浓度至1000PPm左右(其它增产措施不变);高温天气通风后分散放置适量的固体二氧化碳,既增加了气肥的浓度、又将气温降至农作物适宜的生长温度。4.用工业CO2替代现有施肥技术中的二氧化碳,去除了工业废气中的SO2强酸性气体,使农作物得到充分的、安全的、廉价的CO2或富含CO2的气体来源;在农作物的有效生长期内、因增加CO2浓度、充分提高光合作用效率,CO2得到有效利用,使农作物在光合作用下茁壮成长,进一步改善了农作物的品质,缩短多季农作物的生长成熟期、进一步增加了产量;从而减少了CO2向空气中的排放量;并由此降低大棚内的增量碳排放,降低了成本、减少了开支。(三)、本技术的优点:①工业CO2作为气肥使用,减少了向空气中的排放量;②使农作物在现有技术下能大幅度的增加产量,提高当代农民的收入;③使农作物在现有技术下因增加二氧化碳浓度使光合作用高效而缩短了成熟期;④使农作物在现有技术下因增加二氧化碳浓度使光合作用高效而生长良好,提高了农作物防病毒、抗病虫害的能力;⑤使工业CO2变废为宝,在循环经济中得以充分利用,服务了农业。⑥可使生物质发电厂的废气得以充分利用,为提高秸秆的收购价提供了可能,又可为农民增加一份收入、降低野外焚烧秸秆的冲动;⑦因工业CO2在循环经济中的利用可有效降低现大棚因需要碳肥而形成的能耗。(四)、本技术的主要用途:①进一步增加农作物的产量、改善农作物的品质、减少了农作物的病虫害;②进一步增加大棚农作物的产量、降低碳气肥的成本、提高农民的收入;③降低大棚内的增量碳排放,降低成本、减少开支;④进一步缩短农作物的生长成熟期;⑤可为生物质电厂全方位综合循环利用提供了可能;⑥减少工业CO2在空气中的排放量、使工业CO2在循环经济中变废为宝。四、具体实施方式具体实施方式一:其方法是将含CO2的工业废气在用旋风除尘器、布袋除尘器除尘后,在25℃以下充入活性CaMg(OH)4饱和乳中将发生如下主要反应:SO2+0.5O2+2CO2+CaMg(OH)4+4H2O=====CaSO4·5H2O↓+Mg(HCO3)2此过程去除了工业废气中的SO2,生成CaSO4·5H2O沉淀,并得到高浓度的Mg(HCO3)溶液,循环用于制取轻质碳酸镁和高纯度的二氧化碳。多余的二氧化碳将会发生下面的反应:3CO2+CaMg(OH)4=======CaCO3↓+Mg(HCO3)2+H2OCaMg(OH)4在饱和乳中的补充投入量由燃烧后所含二氧化硫的含量来确定;经过液气分离这时得到的气体是不含SO2、含有CO2的气体A1,分离后气体含CO2的浓度一般在20~23%之间(石灰、水泥立窑提纯处理后的废气含CO2的浓度最高可达44%);将此A1气体导出采取加压管道输送至农田;沉淀压滤、干燥、粉碎、分装应用;将其沉淀过滤后在98~102℃时,热解Mg(HCO3)2饱和溶液就会得到轻质碳酸镁和高纯度的二氧化碳B,其反应如下:5Mg(HCO3)2===4MgCO3·Mg(OH)2·4H2O↓+6CO2↑在生产高浓度二氧化碳时轻质碳酸镁的循环利用可降低成本,在25℃以下通入含二氧化碳的气体A1时:4MgCO3·Mg(OH)2·4H2O+6CO2========5Mg(HCO3)2在98~102℃时热解Mg(HCO3)2饱和溶液就会得到轻质碳酸镁和高纯度的二氧化碳B,其反应如下:5Mg(HCO3)2===4MgCO3·Mg(OH)2·4H2O↓+6CO2↑将得到的高纯度二氧化碳B根据需要采取管道输送或加压灌装或制成干冰,以备在农作物生产中应用。具体实施方式二:1.生物质电厂将桔秆等生物质燃料用过氧燃烧的方式燃烧,燃烧后的气体水洗除尘后经过液气分离,液体循环使用;沉淀干燥、粉碎、分装作钾肥;分离后气体A含CO2的浓度一般在21~25%之间;气体A加压管道输送至农田中应用;非农作物生长季节具体实施方式是:①将秸秆等生物质燃料用过氧燃烧的方式燃烧,②燃烧后将含CO2的工业废气经过降温,③在用旋风除尘器、布袋除尘器除尘后,在25℃以下充入活性CaMg(OH)4饱和乳中将发生如下主要反应:SO2+0.5O2+2CO2+CaMg(OH)4+H2O=====CaSO4·2H2O↓+Mg(HCO3)2④多余的二氧化碳将会发生下面的反应:3CO2+CaMg(OH)4=======CaCO3↓+Mg(HCO3)2+H2O将其沉淀压滤、干燥、粉碎、分装应用;沉淀过滤后在98~102℃时热解Mg(HCO3)2饱和溶液就会得到轻质碳酸镁和高纯度的二氧化碳B,经过液气分离这时得到高纯度的二氧化碳B,其反应如下:5Mg(HCO3)2===4MgCO3·Mg(OH)2·4H2O↓+6CO2↑将得到的CO2根据需要采取管道输至农作物大棚或制成干冰准备在农田中应用;2.给气体加压后,①用管道输送至水稻育秧处,使育秧用水中CO2的浓度在水中保持500PPm左右;②用管道输送至稻田,在其它增产措施不变的情况下,相应增加20~30%因提高了农作物产量而缺失的N、P、K、S、Mg、Ca及有机肥的基础上,插秧后在稻田的入水口处用阀门调节气体的流量,使其CO2的浓度在混入时水中保持1500~2000PPm左右,因白天气温升高和水稻生长需水而施放CO2;3.三叶期白天早晚取低值的1/2,阳光充足时取低值,无阳光时停止混入;成长的分孽期、拔节期、稻穗分化期、孕穗抽穗期及抽穗后期白天早晚取低值,阳光充足时取高值,无阳光时停止混入;在抽穗期应改善群体下部叶片的光照条件,延长叶片功能期,以防止水稻生长过茂或封行过早过严造成根系早衰,在气温达到37℃时,分置适量的干冰用以降温增肥;结实期控制气温在28~32℃范围内,在气温超过33℃时,分置适量的干冰用以降温增肥;4.混气管口扁平且与水平面呈30°在水下,混气管的投影线与水稻田埂平行且距田埂20cm,气体流量以不吹浑水质为宜;以便稻田水中CO2浓度的均衡,从而增加其空气中的CO2浓度;无水期接通管网直接通入富含CO2的气体,增加其空气中的CO2浓度;5.CO2的通入直至水稻到完熟停止生长为止;由此进一步增加水稻的产量、缩短其成熟期。具体实施方式三:1..生物质电厂将秸秆等生物质燃料用过氧燃烧的方式燃烧,燃烧后的气体水洗除尘后经过液气分离,液体循环使用;沉淀干燥、粉碎、分装作钾肥;此气体A含CO2的浓度一般在21~25%之间;气体A加压管道输送至农田中应用;非农作物生长季节具体实施方式是:①将秸秆等生物质燃料用过氧燃烧的方式燃烧,②燃烧后将含CO2的工业废气经过降温,③在用旋风除尘器、布袋除尘器除尘后,在25℃以下充入活性CaMg(OH)4饱和乳中将发生如下主要反应:SO2+0.5O2+2CO2+CaMg(OH)4+H2O=====CaSO4·2H2O↓+Mg(HCO3)2④多余的二氧化碳将会发生下面的反应:3CO2+CaMg(OH)4=======CaCO3↓+Mg(HCO3)2+H2O将其沉淀压滤、干燥、粉碎、分装应用;沉淀过滤后在98~102℃时热解Mg(HCO3)2饱和溶液就会得到轻质碳酸镁和高纯度的二氧化碳B,经过液气分离这时得到高纯度的二氧化碳B,其反应如下:5Mg(HCO3)2===4MgCO3·Mg(OH)2·4H2O↓+6CO2↑将得到的CO2根据需要采取管道输至农作物大棚或制成干冰准备在农田中应用;2.气液分离、净化、加压后,用管道输送至农作物的大棚,连接预埋在大棚中的管网,连接处有阀门管控气体的流量,用气体B,管网为直径10mm,每1000mm有1mm的孔,在大棚中按需要均匀分布;用气体A,管网为直径15mm,每1000mm有1mm的孔对穿,在大棚中按需要均匀分布;3.在其它增产措施不变的情况下,相应增加20~30%因提高了农作物产量而缺失的N、P、K及有机肥的基础上,秧苗有4片叶时在白天通入含有CO2的气体,使CO2在空气中的浓度保持在700PPm左右,1周后使CO2在白天空气中的浓度保持在1000PPm左右;当气温超过28℃的时间超过3小时,在气温达到28℃时,大棚中分散放置3小时可以气化的固体CO2;此时,既增加了气肥,又降低了气温,有利于农作物的生长;早晚有阳光时取低值,中午有阳光时取高值,傍晚无阳光前1小时停止通入CO2气体。4.在农作物的叶有1/2泛黄时,停止通入含有CO2的气体;由此进一步增加农作物的产量、缩短其成熟期。具体实施方式四:1.生物质电厂将秸秆等生物质燃料用过氧燃烧的方式燃烧,燃烧后的气体水洗除尘后经过液气分离,液体循环使用;沉淀干燥、粉碎、分装作钾肥;分离后气体A含CO2的浓度一般在21~25%之间;气体A加压管道输送至农田中应用;非农作物生长季节具体实施方式是:①将秸秆等生物质燃料用过氧燃烧的方式燃烧,②燃烧后将含CO2的工业废气经过降温,③在用旋风除尘器、布袋除尘器除尘后,在25℃以下充入活性CaMg(OH)4饱和乳中将发生如下主要反应:SO2+0.5O2+2CO2+CaMg(OH)4+H2O=====CaSO4·2H2O↓+Mg(HCO3)2④多余的二氧化碳将会发生下面的反应:3CO2+CaMg(OH)4=======CaCO3↓+Mg(HCO3)2+H2O将其沉淀压滤、干燥、粉碎、分装应用;沉淀过滤后在98~102℃时热解Mg(HCO3)2饱和溶液就会得到轻质碳酸镁和高纯度的二氧化碳B,经过液气分离这时得到高纯度的二氧化碳B,其反应如下:5Mg(HCO3)2===4MgCO3·Mg(OH)2·4H2O↓+6CO2↑将得到的高纯度CO2根据需要采取管道输至农作物大棚或制成干冰准备在农田中应用:2.将得到的CO2气液分离、净化、加压后,用管道输送至农作物的旱田(如大豆),在相应增加20~30%因提高了农作物产量而缺失的N、P、S、Ca及有机肥的基础上;保持每100g土壤中含水解氮不低于7mg、有效磷不低于8mg、钾(K2O)不低于8mg,偏酸性土壤如缺钼补钼肥,偏碱性土壤补铁和锰;其常规施肥措施不变;防止植株密度过密、造成植株下部叶片的光合作用强度降低,而降低大豆植株对光合作用产物的储藏功能导致减产;连接预埋在旱田30cm下的管网,连接处有阀门管控气体的流量;3.管网的分布以旱田行距三倍排列且位于行距中间,用气体B,管网为直径10mm,每1000mm有1mm的孔,在大棚中按需要均匀分布;用气体A,管网为直径15mm,每1000mm有1mm的孔对穿,在大棚中按需要均匀分布;4.秧苗有4~5片复叶时在白天通入含有CO2的气体,使CO2在土气相中的浓度保持在700PPm左右,始花期矮化壮杆增强大豆叶片功能后使CO2在白天土气相中的浓度保持在1000PPm左右;早晚有阳光时取低值,中午有阳光时取高值,傍晚无阳光时停止通入CO2气体;始花期开始用100ppm亚硫酸氢纳处理大豆叶子,用以提高光合作用的强度、抑制光呼吸、提高希尔反应活性、增加干物质产量,从而使大豆因增加总粒重而增产;5.在大豆叶有1/3泛黄时,停止通入含有CO2的气体;由此进一步增加农作物的产量、缩短其成熟期。具体实施方式五:1.生物质电厂将秸秆等生物质燃料用过氧燃烧的方式燃烧,燃烧后的气体水洗除尘后经过液气分离,液体循环使用;沉淀干燥、粉碎、分装作钾肥;分离后气体A含CO2的浓度一般在21~25%之间;气体A加压管道输送至农田中应用;非农作物生长季节具体实施方式是:①将秸秆等生物质燃料用过氧燃烧的方式燃烧,②燃烧后将含CO2的工业废气经过降温,③在用旋风除尘器、布袋除尘器除尘后,在25℃以下充入活性CaMg(OH)4饱和乳中将发生如下主要反应:SO2+0.5O2+2CO2+CaMg(OH)4+H2O=====CaSO4·2H2O↓+Mg(HCO3)2④多余的二氧化碳将会发生下面的反应:3CO2+CaMg(OH)4=======CaCO3↓+Mg(HCO3)2+H2O将其沉淀压滤、干燥、粉碎、分装应用;沉淀过滤后在98~102℃时热解Mg(HCO3)2饱和溶液就会得到轻质碳酸镁和高纯度的二氧化碳B,经过液气分离这时得到高纯度的二氧化碳B,其反应如下:5Mg(HCO3)2===4MgCO3·Mg(OH)2·4H2O↓+6CO2↑将得到的高纯度CO2根据需要采取管道输至农作物大棚或制成干冰准备在农田中应用;2.气液分离、净化、加压后,用管道输送至农作物的旱田(如大豆),连接预埋在旱田中的管网,连接处有阀门管控气体的流量;3.管网的分布在旱田行中间且间隔3行排列,用气体B,管网为直径10mm,每1000mm有1mm的孔,在大棚中按需要均匀分布;用气体A,管网为直径15mm每1000mm有1mm的孔对穿,在大棚中按需要均匀分布;4.在其它增产措施不变的情况下,相应增加20~30%因提高了农作物产量而缺失的N、P、K及有机肥的基础上,秧苗有4片叶时在白天通入含有CO2的气体,使CO2在空气中的浓度保持在700PPm左右,1周后使CO2在白天空气中的浓度保持在1000PPm左右;早晚有阳光时取低值,中午有阳光时取高值,傍晚无阳光时停止通入CO2气体。5.在农作物的叶有1/3泛黄时,停止通入含有CO2的气体,由此进一步增加农作物的产量、缩短其成熟期。具体实施方式六:1.生物质电厂将秸秆等生物质燃料用过氧燃烧的方式燃烧,①燃烧后的气体水洗除尘后经过液气分离,液体循环使用;沉淀干燥、粉碎、分装作钾肥;分离后气体A含CO2的浓度一般在21~25%之间;气体A加压管道输送至农田中应用;②非农作物生长季节具体实施方式是:将秸秆等生物质燃料用过氧燃烧的方式燃烧,燃烧后将含CO2的工业废气经过降温,③在用旋风除尘器、布袋除尘器除尘后,在25℃以下充入活性CaMg(OH)4饱和乳中将发生如下主要反应:SO2+0.5O2+2CO2+CaMg(OH)4+H2O=====CaSO4·2H2O↓+Mg(HCO3)2④多余的二氧化碳将会发生下面的反应:3CO2+CaMg(OH)4=======CaCO3↓+Mg(HCO3)2+H2O将其沉淀压滤、干燥、粉碎、分装应用;沉淀过滤后在98~102℃时热解Mg(HCO3)2饱和溶液就会得到轻质碳酸镁和高纯度的二氧化碳B,经过液气分离这时得到高纯度的二氧化碳B,其反应如下:5Mg(HCO3)2===4MgCO3·Mg(OH)2·4H2O↓+6CO2↑将得到的高纯度CO2根据需要采取管道输至农作物大棚或制成干冰准备在农田中应用;2.气液分离、净化、加压后,用管道输送至农作物的旱田(如大豆),连接预埋在旱田中的管网,连接处有阀门管控气体的流量;3.管网的分布在旱田行中间且间隔3行排列,用气体B,管网为直径10mm,每1000mm有1mm的孔,在大棚中按需要均匀分布;用气体A,管网为直径15mm每1000mm有1mm的孔对穿,在大棚中按需要均匀分布;4.在其它增产措施不变的情况下,相应增加20~30%因提高了农作物产量而缺失的N、P、K及有机肥的基础上,秧苗有4片叶时在白天通入含有CO2的气体,使CO2在空气中的浓度保持在700PPm左右,1周后使CO2在白天空气中的浓度保持在1000PPm左右;当气温超过30℃的时间超过3小时,在气温达到30℃时,田中分散放置3小时可以气化的固体CO2;此时,既增加了气肥,又降低了气温,有利于农作物的生长;早晚有阳光时取低值,中午有阳光时取高值,傍晚无阳光时停止通入CO2气体;5.在农作物生长后期叶有1/3泛黄时,停止通入含有CO2的气体;由此进一步增加农作物的产量、缩短其成熟期。具体实施方式七:1.生物质电厂将秸秆等生物质燃料用过氧燃烧的方式燃烧,①燃烧后的气体水洗除尘后经过液气分离,液体循环使用;沉淀干燥、粉碎、分装作钾肥;分离后气体A含CO2的浓度一般在21~25%之间;气体A加压管道输送至农田中应用;2.气液分离、净化、加压后,用管道输送至农作物的旱田(如小麦),连接预埋在旱田中的管网,连接处有阀门管控气体的流量;3.在农作物(如小麦)管网的分布在旱田行中间且间隔2行排列,用气体B,管网为直径10mm,每1000mm有1mm的孔,在大棚中按需要均匀分布;用气体A,管网为直径15mm,每1000mm有1mm的孔对穿,在大棚中按需要均匀分布;4.在其它增产措施不变的情况下,相应增加20~30%因提高了农作物产量而缺失的N、P、K及有机肥的基础上,秧苗有4片叶时在白天通入含有CO2的气体,使CO2在空气中的浓度保持在700PPm左右,1周后使CO2在白天空气中的浓度保持在1000PPm左右;当气温超过30℃的时间超过3小时,在气温达到30℃时,田中分散放置3小时可以气化的固体CO2;此时,既增加了气肥,又降低了气温,有利于农作物的生长;早晚有阳光时取低值,中午有阳光时取高值,傍晚无阳光时停止通入CO2气体;5.在农作物生长后期叶有1/3泛黄时,停止通入含有CO2的气体;由此进一步增加农作物的产量、缩短其成熟期。具体实施方式八:1.生物质电厂将秸秆等生物质燃料用过氧燃烧的方式燃烧,燃烧后的气体水洗除尘后,经过液气分离,净化,液体循环使用;沉淀干燥、粉碎、分装作钾肥;分离后气体A含CO2的浓度一般在21~25%之间;气体A加压管道输送至农田(如玉米)中应用;2.连接预埋在旱田中的管网,连接处有阀门管控气体的流量;3.在其它增产措施不变的情况下,相应增加20~30%因提高了农作物产量而缺失的N、P、K及有机肥的基础上,在玉米的拔节孕穗期、抽穗开花期、灌浆期“看天、看地、看苗情”进行灌溉或淋灌,灌溉或淋灌时用阀门管控气体的流量,使混入水中的CO2的气体,在水中的浓度保持在2000PPm左右,灌溉或淋灌后缓慢释放出CO2的气体,也可在玉米的三叶期的中耕后铺设管网(方法:管网的分布以旱田行距三倍排列且位于行距中间,用气体B,管网为直径10mm,每1000mm有1mm的孔,在大棚中按需要均匀分布;用气体A,管网为直径15mm,每1000mm有1mm的孔对穿,在大棚中按需要均匀分布),非灌溉或淋灌的玉米拔节孕穗期、抽穗开花期、灌浆期,直接供给含有CO2的气体使其局部空气中CO2浓度达到1000ppm;增加了玉米吸收CO2的总量,提高了光合作用效率,由此进一步提高玉米的产量、缩短其成熟期。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1