利用天线控制的无线网络管理的制作方法

文档序号:439981阅读:331来源:国知局
专利名称:利用天线控制的无线网络管理的制作方法
技术领域
本系统一般地针对无线通信领域。本系统尤其适用于用在无线局域网(WLAN)中并且采用用于交换无线信号的天线系统的类型的无线接入点(AP)或无线网桥(BR)。
背景技术
如图1所示,被管理的无线局域网(WLAN)10包括网络骨干12(优选地,以太网)和至少一个无线接入点(AP)14(例如所示AP1、Ap2...APN)。每个接入点14基于射频与多个无线客户端16进行无线通信。无线局域网10的操作和性能通常由网络管理器或网络管理实体(NME)18处理。网络管理器或网络管理实体18被用于计算和确定接入点能提供的合适覆盖区域,如随后将示出和描述的。
在以独立配置或模式使用接入点并且接入点仍旧需要满足规定强加的辐射功率限制的情况下,对接入点的管理也是有用的。本发明的使用允许接入点在遵循规定的同时利用一个特定天线使输出功率最大化。
还参考图2,无线局域网10的典型布局基于工作区(例如办公室或其他工作区)的建筑平面图20。每个接入点14具有一个范围,以便建立与每个接入点14相关联的各自的覆盖区域22。覆盖区域22可基于无线客户端在区域22中的期望位置被选为覆盖一个给定区域中的预期无线吞吐量需求。覆盖区域22的大小基于发射功率、天线增益以及各种障碍物,例如可能干扰无线信号的金属建筑组件。在无线局域网10的典型管理中,接入点14被配置为以最高可能功率发射,即被加电到高功率,并且交换信号。网络管理器或网络管理实体18观察接收的信号的强度并使用该信息来生成“路径损耗向量”,该向量指示信号在接入点14之间的衰减量。网络管理器或网络管理实体18使用该信息来计算每个接入点14的实际范围,以便确定在不干扰其他接入点的情况下,每个接入点14服务于无线客户端16的实际覆盖区域22。路径损耗PL可由以下公式确定PL=PRAD-RSSI其中,PRAD等于辐射功率(以dBm为单位测得);并且RSSI等于接收信号强度指示符(以dBm为单位测得)。
辐射功率PRAD本身等于发射功率PTx加上天线增益GANT,因此路径损耗可被表示为PL=PTx+GANT-RSSI但是,实践中可能难以分离出这些变量,从而难以适当地建立覆盖区域22。例如,各个接入点具有不同的功率输出能力,并且不同的外部天线具有不同的天线增益。此外,天线可能使用长同轴线缆被连接到各个接入点。因此,可能存在与线缆长度相关的功率损耗,这使路径损耗计算更加复杂。鉴于这些不定因素,网络管理器(例如网络管理实体18)只能从测量出的数量来假设天线增益。这些因素还可能依不同的无线信道和/或频带而变化,从而使得难以确定无线局域网中一组接入点的合适的覆盖区域。
在已有系统中,天线增益是手工输入的,并且天线被认为是全向天线。例如,偶极子是一种全向天线,其天线增益为2.2dBi。其它类型的全向天线可以提供附加天线增益,但是当观看建筑平面图或地图(例如图2所示地面20)时,所有天线共享一种圆形辐射图样。对天线增益和/或类型的错误假设或错误认知将导致网络管理实体18得出关于网络覆盖的无效结果。
其它类型的天线提供附加增益,但是具有不同类型的辐射图样。例如,“Yagi”天线具有更高增益并且提供窄而长的辐射图样。这些通常被用于桥接应用,但在这里也作为示例使用。如果接入点打算安装Yagi天线,已有系统可能无法识别天线是这样的,并且可能假设Yagi天线是具有较低天线增益的全向天线。
此外,在已有系统中,信号强度被简单地测量并报告给网络管理器,并且只能对天线增益进行推论。这种天线增益的不确定性导致客户端在无线局域网中的定位出现问题。在典型系统中,客户端的位置是基于客户端在不同接入点处的相对信号强度而得知的。但是,如果实际天线增益与假设的不同,在计算中使用的值则将不同于实际值,并且因此路径损耗计算将不准确,从而导致错误的距离确定。这导致定位客户端时的不确定性,因为客户端的位置只能在可能位置的区域内进行估计。而且,由于信号强度的变化可能由其他环境因素引起,例如来自建筑物中金属构件的内部反射,因此这进一步导致不确定性。
另外,当前无线局域网的能力从制订规定的角度看存在问题。联邦通信委员会(FCC)和其他世界范围的国家规定制订机构对发射无线电天线施加了各种限制,例如建立最大辐射功率的限制。对于无线局域网设备,发射功率在不支持发射功率控制(TPC)的情况下被限制在27dBm或大约500毫瓦(mW),所述TPC是欧盟(EU)欧洲电信标准学会(ETSI)宽带无线电接入网络(BRAN)规定的一部分。一般而言,发射功率控制要求接入点以最低可能功率执行发射。这些功率限制是避免与其他源(例如军事雷达)的干扰所必须的,根据电子与电气工程师(IEEE)802.11(a)协议,其他源与无线局域网信道共享5GHz频带。但是,这种要求容易绕过,因为可能获得“现成的”外部天线,其具有允许特定接入点使用的更高天线增益。例如,以17dBm接入点操作20dBm天线以用于37dBm非法输出是可能的。
已知已有类型的解决方案存在将不兼容的天线连接到接入点的问题。例如,已知使用“反向TNC连接器”。这种类型的连接器最初是为无线局域网使用而开发的,作为不容易获得的特有连接器,从而防止不兼容的天线被用于无线局域网产品。但是,现在可获得允许不兼容的天线被使用的售后适配器。

发明内容
本发明的用于管理无线局域网的装置和方法克服了已有类型系统的困难和缺陷。根据本发明一个方面,公开了一种被管理的无线局域网,其包括至少一个无线接入点,所述无线接入点包括具有可变功率输出的射频装置和用于发射和接收无线信号的天线装置。该被管理的无线局域网还包括微控制器,用于发送与所述天线装置相关联的发射特性信号。
根据本发明另一方面,公开了一种无线接入点,其包括具有可变功率输出的射频装置,用于与无线客户端交换信号;天线装置,其与所述射频装置协作用于发射和接收将与所述无线客户端交换的无线信号;以及微控制器,用于向网络发送发射特性信号。
根据本发明又一方面,公开了一种用于无线接入点的天线装置,其包括天线微控制器,用于发送发射特性信号。
根据本发明又一方面,公开了一种网络管理方法,包括轮询无线接入点;以及响应于所述轮询来确定所述无线接入点的发射特性。
根据本发明又一方面,公开了一种用于管理网络的指令的计算机可读介质,包括用于轮询无线接入点的装置;以及用于响应于所述轮询来确定所述无线接入点的发射特性的装置。
将会认识到,本发明的其他和不同实施例及其若干细节能够在各个方面被修改,而不会脱离本发明。据此,附图和描述被视为示例性的,而非限制性的。


图1是代表常见无线局域网结构的示意图,该无线局域网也可以根据本系统来实现。
图2是示出无线局域网的布局的平面图,该无线局域网也可根据本系统来实现。
图3是代表根据本实施例的无线网络的结构的示意图。
图4是根据本系统的天线的示意图。
图5是根据本系统的收发器的示意图。
具体实施例方式
本管理无线局域网包括连接多个无线接入点的网络骨干,用于与处于电磁谱中射频(RF)频带的无线客户端交换无线电信信号。无线接入点各自包括用于以射频发射和接收信号的天线装置。在优选实施例中,本系统将根据电子与电气工程师学会(IEEE)802.11协议在2.4和5G赫兹(GHz)无线频带中的一种或两种上通信。当然,应该意识到,本实施例可以用于工作在任意无线频带上的任意无线通信设备,包括大的通信台站和小的手持单元,所有这些都不脱离本发明的范围。
如图3所示,本系统包括被管理的无线局域网50,其包括一个或多个无线接入点51、52。根据本发明一个方面,无线接入点51包括用于与无线客户端交换信号的802.11射频(RF)电路(或者更一般而言,具有可变功率输出的射频装置53)、与射频装置53协作用于发射和接收将与无线客户端交换的无线信号的天线装置54,以及用于向网络50发送发射特性信号的接入点微控制器或802.11媒体访问控制器(MAC)55。接入点51还有利地包括用于存储数据(例如发射特性)的存储器56和用于接口网络骨干60(可以是以太网)的以太网接口57。应该意识到,射频装置53优选地包括物理层(PHY)控制器,用于处理无线到网络信号转换。此外,接入点微控制器或802.11媒体访问控制器(MAC)55建立合适的协议变换。
根据本发明另一方面,与无线接入点52一起使用的天线装置58包括天线微控制器59,用于发送发射特性信号。天线装置58还包括射频信号复用器61,用于耦合接入点52和一个或多个天线元件63。更具体而言,同轴线缆64可被用来将天线装置58耦合到接入点52。
因此,接入点微控制器55或天线装置微控制器59都被用来向无线局域网50发送“发射特性”信号。网络管理器62被用来命令微控制器55、59发送它们的信息。网络管理器62接收发射特性信号,并响应于此有选择地将接入点51、52(更具体而言,射频装置53)的可变功率输出控制到预定功率水平。例如,如果希望辐射功率水平为27dBm,并且使用天线增益为17dBm的天线装置54、58,接入点51、52则将响应于此来自动调整它们的功率输出到10dBm。这样一来,接入点51、52发射合适的功率量,以便建立所需覆盖区域22和遵循辐射功率规定。
因此,在一个实施例中,接入点51包括微控制器55和天线装置54,而在另一实施例中,微控制器59作为天线装置58的一部分被包括进来。但是,微控制器也可以是单独的网络组件,这不脱离本发明的范围。
无论微控制器55、59是接入点51还是天线装置58的一部分,接入点51、52都在它们被网络管理器62轮询时报告发射特性。接入点52按需轮询和控制天线装置58。因此,网络管理器62不需要知道与包括微控制器59的远程天线装置58连接在一起的接入点52和包括天线装置54的接入点51之间的差异。
而且,从网络管理的角度看,接入点位置52在天线装置58为了范围计算以及接入点覆盖区域22之处。例如,天线装置58可以远离接入点52300英尺,例如同轴线缆64长300英尺。此外,天线装置58可以在屋外,而接入点52的其余部分、网络管理器等在屋内。其他接入点51、52可以同样地在屋内或屋外。
例如,在优选实施例中,微芯片PIC12F629被用作微控制器59。PIC12F629是容易获得的现成的微控制器,其具有6个通用输入/输出(GPIO)端口、一个通用异步接收器/发射器(UART)、128字节的电可擦除的可编程只读存储器(EEPROM)、程序存储器和随机访问存储器(RAM)。因此,PIC12F629提供了标识(例如发射特性)和通信功能所需硬件。在其他实施例中,可能需要附加功能,因此可能需要附加资源和/或另一部件。
在操作中,微控制器55、59发送代表各个天线装置54、58所需属性或参数的“发射特性”信号,以便允许网络管理器62响应于此改变各个接入点51、52的功率输出电平。这些属性和参数包括(但不限于)预定天线增益或各自的天线装置的标识特性,例如产品模型号。例如,属性和参数可以包括诸如天线类型(例如偶极子、全向、贴片等等)、增益、序列号、部件号、制造日期等天线信息。在这方面,微控制器55、59可以包括电子存储器元件,用于将预先编程的天线特性读出到网络管理器62。
此外,检错协议可被实现。在检错协议中,每一端点(即微控制器55、59、接入点51、52和/或网络管理器62)将从发射器向发送者回送所有接收的字节。如果回送接收的字节不同于发送的字节,则发送差错代码(例如0xff),然后再重传字符。
可替换地,当与双频带天线一起使用时,微控制器55、59可被用来选择天线频带,例如2.4或5G赫兹(GHz),而不是使用多个天线或调谐。此外,当选择频带时,发射特性可被据此更新。微控制器55、59还可以包括功率传感器,用于在天线处或在其上游执行输出功率测量。例如,这样一来,微控制器59可以测量沿连接天线装置58的同轴线缆64可能出现的功率损耗。微控制器58还可以分别地、单独地或组合地包括传感器或存储器元件,用于测量或报告天线装置54、58的工作频带,这是因为辐射功率可能作为频率的函数变化。微控制器55、59还可被用来操纵天线阵列或用于图样控制。微控制器55、59还可以包括用于检测天线装置54、58的方向的罗盘和倾角计。例如,在具有增益的天线的情况下,这可被用来指示辐射图样。类似地,微控制器55、59可以包括环境传感器,例如湿度和温度传感器。
本实施例包括一种网络管理方法,该方法可以通过硬件或通过软件计算机程序产品来实现。网络管理器62轮询无线接入点51、52来确定它们的发射特性。每个无线接入点51、52回复报告其发射特性,例如其指定的天线增益。网络管理器62将报告的天线增益值用在用于计算路径损耗的算法中,并从而计算覆盖区域。网络管理器62然后能够基于发射特性控制每个接入点51、52的工作参数,以便建立每个接入点51、52的预定覆盖区域并由此建立整个无线局域网50。在外部天线与长同轴线缆(例如150英尺)相连并伴有功率损耗的情况下,发射特性可以包括例如来自功率传感器的被测功率输出。该值将被用于算法以计算辐射功率,并且接入点52的输出功率将据此被增大。
本网络管理器62还可能读出发射特性,例如各个接入点51、52的信道频带。例如,某些天线装置可能工作在遵循电气与电子工程师学会802.11(b)和(g)协议建立的2.4G赫兹频带的信道上和工作在根据802.11(a)协议的5G赫兹频带的信道上。取决于所用频率,这些接入点的覆盖区域可能不一定相同,因此覆盖区域的尺寸可能需要据此调整。因此,本系统还可以被用于多频带天线装置,其中网络管理器62可以通过调整一个频带内或多个频带间的功率输出来控制接入点操作。
如上所述,本发射特性还可以包括与天线装置54、58相关联的标识特性。例如标识特性可以包括产品型号。该信息可以被网络管理器62应用来查找针对该型号的相关天线增益和频带。还有另一好处,该信息允许网络管理器62控制接入点52使用的天线的类型。如果使用了不兼容的天线,网络管理器62可以指导微控制器59关闭或切断接入点52。这使得可以对接入点52使用的外部天线装置58进行专门控制。例如,一个给定制造商可以规定,只有他们的天线产品可被用于他们的接入点,从而排除对竞争对手的天线的使用。此外,如果网络管理器62无法读取天线增益,它可以自动切断或切换到最小功率模式(例如0dBm),以便确保符合规定并与产品相一致。微控制器59还可以包括加密代码或其他防篡改特征来保护“投入市场后”的产品或对抗其他试图避开网络管理器62的天线控制的尝试。
本系统允许不同形式的外部天线装置58被用于各种类型的无线接入点52。更具体而言,本实施例允许使用具有多特性(包括增益、辐射图样等)的天线装置58,并且利用可从中获得的属性和参数,网络管理器62可以建立整个无线局域网50的合适的覆盖模型。这样的覆盖模型将允许计算多个接入点52的功率设置,以确保网络50中的所有区域都接收覆盖。本系统还允许每个接入点51、52以提供足够覆盖所需的最小功率工作,从而使对大量安装的干扰最小化,其中在大量安装中,数百个接入点可被服务。本实施例还可用于具有不可移走的集成天线的接入点,这是因为这种天线的编码发射特性对经由网络可获得的总体信息有贡献。
利用每个天线装置54、58的发射特性,网络管理器62可以确定各个覆盖区域。网络管理器62可以计算相关路径损耗(PL),同时仍旧接收信号的合适数据速率。例如,802.11(a)或(g)系统提供大约15-25兆字节每秒的吞吐量,而老式系统提供大约5或6兆字节每秒。越来越需要更高吞吐量速率。例如,54兆字节(MB)无线链路需要接收信号强度指示(RSSI)-64dBm。使用以下路径损耗表达式PL=PTX+GANT-RSSI
如果网络管理器62知道发射功率PTX和天线增益GANT,并且如果接入点52需要大于等于-64dBm的接收信号强度指示(RSSI),路径损耗PL则可以确定。该信息在网络安装时很有用,因为它允许安装者基于所需数据速率或吞吐量来确定一个区域所需接入点的数目。
通过提供天线增益的知识以及其他发射特性,本网络管理器62还允许更精确地定位客户端位置,因为精确的系统变量知识降低了网络内客户端位置的不确定性。在优选实施例中,网络管理器62可被并入现有网络管理系统中,例如加州San Jose,170 West Tasman Drive的Cisco Systems出售的无线LAN Solution Engine(WLSE)。可替换地,网络管理器62的各种功能可被并入一个或多个接入点、服务器或其他网络组件,或者可被分发到多个网络组件中。
在优选实施例中,本网络管理器62被用来调整射频装置53的输出功率,从而改变以与各个接入点51相关的全向天线装置54为中心的圆形覆盖区域的半径。但是,可以设想其他替换实施例,其中各个接入点51并入了方向性天线。众所周知,诸如“Yagi”天线之类的相控天线阵列可被用来建立在所选方向上具有高增益而在其他方向上具有极低增益的天线覆盖区域,以便在特定方向上与无线客户端通信并隔离所有其他信号。并入了天线阵列的方向性天线装置54由多个天线元件构成。信号以预定相位差被馈送到每个天线元件,以使得在预定发射方向上产生相长干扰,并在所有其它方向上产生相消干扰。相位还可以变化,以便改变方向信号向量,从而导致可以有选择地“指向”不同客户端的“可操纵”天线。本微控制器55、59和网络管理器62可以提供精确的系统变量知识,例如天线增益和方向,从而使得可以精确地控制方向性天线控制所需的相位差,这样一来,提高了方向性天线系统的性能。当然可以意识到,可以类似地使用其它类型的方向性天线,例如抛物线碟形天线、角形反射器和螺旋天线,所有这些不脱离本发明。因此,天线方向可以是天线装置58的另一发射特性,该发射特性可被网络管理器62查询并被用来描绘无线局域网50中的覆盖区域。
参考图4,根据本系统的天线装置的示意图被示出。天线装置70包括输入连接器72、天线元件74、扼流圈、线圈或电感器76、瞬变电压抑制器78、二极管80、电感器82、电阻器84和86、晶体管88和微控制器92。微控制器92优选地是上述PIC12F629。电阻器86和晶体管88包括复位电路90,并且与电阻器84一道提供复位微控制器92的能力。二极管80和电容器82提供对微控制器92的功率馈送,而电感器76提供对微控制器92的高频隔离。瞬变电压抑制器78防止微控制器92对天线元件74进行任何能量冲击。输入连接器72有助于将同轴线缆连接到天线装置70。在其他实施例中,电压和复位控制可被提供到天线装置70外部。
在操作中,美国信息交换标准代码(ASCII)代码被用来查询通过耦合到输入连接器72的同轴线缆例如以4800波特速率来自天线装置70的数据,例如代表所需属性或参数的发射特性信号。一般而言,天线装置70利用长度达150英尺的低损耗同轴线缆工作。但是,取决于比特率,可以使用更长的线缆。这样的查询是基于“先听后说”在耦合到输入连接器72上的同轴线缆上执行的。因此,所有信号(即功率、数据和射频信号)被发到同轴线缆上。虽然这些通信是单向的,即以来自微控制器92的查询数据的形式执行,但是这样的通信也可以是双向的,从而也允许数据被写入微控制器92。
例如,即插即用命令集包括控制需求和状态需求。控制需求包括设置/清除通用输入/输出,例如位设置和清除以及设置/清除端口,例如字节设置和清除。状态需求包括读取通用输入/输出,例如位和字节读取。命令可以包括(但不限于)读取来自倾角计的倾角、电压驻波比(VSWR)、功率、模拟电压、来自罗盘的方向以及设置模拟电压。即插即用命令集还可以包括可擦除可编程只读存储器访问,包括用于写入、读取、擦除等的命令。可擦除可编程只读存储器还可以包括在无法利用这些命令访问的部分处写入的受保护范围。从存储器可获得的即插即用信息可以包括天线类型、天线增益、天线分集和分区天线。例如,对于天线类型,偶极子、全向、贴片、阵列、Yagi和抛物线碟形天线可分别用0、1、2、3、4、5代表。此外,天线增益可以例如从0到63dBm。针对天线部件号、版本号、序列号和制造日期的命令还可以被适当地包括进来。
参考图5,根据本系统的收发器的示意图被示出。收发器100包括802.11媒体访问控制器(MAC)或中央处理单元(CPU)102、电阻器104、106和108、晶体管110、无线电切换发射/接收开关112、电容器116、扼流圈、线圈或电感器118、瞬变电压抑制器120和同轴连接器122。电阻器106和晶体管110包括复位电路110,并且与电阻器104、108一道提供复位与天线装置相关联的微控制器的能力。天线装置被耦合到同轴连接器122并使用通过电容器116耦合的发射/接收开关112被选择。电感器118提供对802.11媒体访问控制器或中央处理单元102的高频隔离,而瞬变电压抑制器120防止802.11媒体访问控制器或中央处理单元102对耦合到同轴连接器122的相关装置产生任何能量冲击。
在操作中,收发器100提供天线装置外部的复位控制。此外,双向通信被提供给天线装置。这样的通信允许802.11媒体访问控制器或中央处理单元102复位与如上所述的天线装置相关联的微处理器或向其写入数据和从其读取数据。
同样如上所述,本发明解决了与已有类型设备相关的很多问题。此外,虽然无线局域网工业整体上正在向被高级管理的无线网络发展,但是本发明允许无线网络的更高级自动配置。在无线局域网包括具有不同天线配置的接入点的情况下,这尤其重要。这里描述的自动报告天线信息通过消除已有系统常见的关键网络配置信息的手工输入而降低了网络安装负担。此外,本发明的使用降低了安装错误,并且有助于确保良好的网络安装。
但是,将意识到,本领域技术人员可以在本发明的原理和范围内对这里描述和示出的部件的细节、材料和布置作出各种改变,以便说明本发明的本质,本发明的原理和范围将在所附权利要求书中表示。
权利要求
1.一种被管理的无线局域网,包括至少一个无线接入点,包括具有可变功率输出的射频装置和用于发射和接收无线信号的天线装置;以及微控制器,用于发送与所述天线装置相关联的发射特性信号。
2.如权利要求1所述的被管理的无线局域网,还包括通信地耦合到所述微控制器的网络管理器,用于接收所述发射特性信号,并响应于此来有选择地将所述射频装置的可变功率输出控制到预定的功率水平。
3.如权利要求1所述的被管理的无线局域网,其中所述天线微控制器发送代表以下内容组中至少一个的发射特性信号预定天线增益、被测输出功率、工作频带和各自的天线装置的标识特性。
4.如权利要求3所述的被管理的无线局域网,其中所述标识特性是产品型号、部件号、版本号、序列号和制造日期中的至少一个。
5.如权利要求1所述的被管理的无线局域网,其中所述微控制器被并入到所述天线装置中。
6.如权利要求1所述的被管理的无线局域网,其中所述微控制器被并入到所述至少一个接入点中。
7.如权利要求1所述的被管理的无线局域网,其中所述微控制器包括以下部件中的至少一个功率传感器,用于进行输出功率测量;罗盘,用于确定天线方向;倾角计,用于确定天线朝向;传感器,用于感测天线环境;以及存储器元件,用于读出预先编程的天线特性。
8.如权利要求1所述的被管理的无线局域网,其中所述天线装置包括天线阵列中的多个天线元件。
9.如权利要求1所述的被管理的无线局域网,其中所述微控制器包括加密代码,用于防止避开管理。
10.一种无线接入点,包括具有可变功率输出的射频装置,用于与无线客户端交换信号;天线装置,其与所述射频装置协作用于发射和接收将与所述无线客户端交换的无线信号;以及微控制器,用于向网络发送发射特性信号。
11.如权利要求10所述的无线接入点,其中所述微控制器发送代表以下内容组中至少一个的发射特性信号预定天线增益、被测输出功率、工作频带和各自的天线装置的标识特性。
12.如权利要求11所述的无线接入点,其中所述标识特性是产品型号、部件号、版本号、序列号和制造日期中的至少一个。
13.如权利要求10所述的无线接入点,其中所述微控制器包括以下部件中的至少一个功率传感器,用于进行输出功率测量;罗盘,用于确定天线方向;倾角计,用于确定天线朝向;传感器,用于感测天线环境;以及存储器元件,用于读出预先编程的天线特性。
14.如权利要求10所述的无线接入点,其中所述天线装置包括天线阵列中的多个天线元件。
15.如权利要求10所述的无线接入点,其中所述微控制器包括加密代码,用于防止避开管理。
16.一种用于无线接入点的天线装置,包括天线微控制器,用于发送发射特性信号。
17.如权利要求16所述的天线装置,其中所述天线微控制器发送代表以下内容组中至少一个的发射特性信号预定天线增益、被测输出功率、工作频带和各自的天线装置的标识特性。
18.如权利要求17所述的天线装置,其中所述标识特性是产品型号、部件号、版本号、序列号和制造日期中的至少一个。
19.如权利要求16所述的天线装置,其中所述天线微控制器包括以下部件中的至少一个功率传感器,用于进行输出功率测量;罗盘,用于确定天线方向;倾角计,用于确定天线朝向;传感器,用于感测天线环境;以及存储器元件,用于读出预先编程的天线特性。
20.如权利要求16所述的天线装置,还包括天线阵列中的多个天线元件。
21.如权利要求16所述的天线装置,其中所述天线微控制器包括加密代码,用于防止避开管理。
22.一种网络管理方法,包括轮询无线接入点;以及响应于所述轮询来确定所述无线接入点的发射特性。
23.如权利要求22所述的网络管理方法,还包括基于所述发射特性调整所述无线接入点的输出功率,以建立预定覆盖区域。
24.如权利要求22所述的网络管理方法,还包括计算路径损耗。
25.如权利要求22所述的网络管理方法,其中所述发射特性包括以下内容组中的至少一个预定天线增益、被测输出功率、工作频带和各自的天线装置的标识特性。
26.如权利要求25所述的网络管理方法,其中所述标识特性是产品型号、部件号、版本号、序列号和制造日期中的至少一个。
27.如权利要求22所述的网络管理方法,还包括远程检测与所述接入点相关联的天线的发射功率。
28.如权利要求22所述的网络管理方法,还包括有选择地调整所述接入点的输出功率以实现所需功率水平。
29.如权利要求22所述的网络管理方法,还包括检测天线朝向。
30.如权利要求22所述的网络管理方法,其中所述发射特性包括天线类型,并且所述天线类型是以下天线类型组中的一种偶极子、全向、贴片、阵列、Yagi和抛物线碟形天线。
31.如权利要求22所述的网络管理方法,还包括选择通过读取与天线装置相关联的存储器确定的工作频带并根据所述选择来更新所述存储器。
32.如权利要求31所述的网络管理方法,其中所述工作频带是2.4G赫兹和5G赫兹之一。
33.如权利要求22所述的网络管理方法,还包括读取模拟电压和设置模拟电压中的一种。
34.如权利要求22所述的网络管理方法,还包括如果检测到不兼容的天线,则切断所述接入点。
35.一种用于管理网络的指令的计算机可读介质,包括用于轮询无线接入点的装置;以及用于响应于所述轮询来确定所述无线接入点的发射特性的装置。
36.如权利要求35所述的用于管理网络的指令的计算机可读介质,还包括用于基于所述发射特性调整所述无线接入点的输出功率,以建立预定覆盖区域的装置。
37.如权利要求35所述的用于管理网络的指令的计算机可读介质,还包括用于计算路径损耗的装置。
38.如权利要求35所述的用于管理网络的指令的计算机可读介质,其中所述发射特性包括以下内容组中的至少一个预定天线增益、被测输出功率、工作频带和各自的天线装置的标识特性。
39.如权利要求38所述的用于管理网络的指令的计算机可读介质,其中所述标识特性是产品型号、部件号、版本号、序列号和制造日期中的至少一个。
40.如权利要求35所述的用于管理网络的指令的计算机可读介质,还包括用于远程检测与所述接入点相关联的天线的发射功率的装置。
41.如权利要求35所述的用于管理网络的指令的计算机可读介质,还包括用于有选择地调整所述接入点的输出功率以实现所需功率水平的装置。
42.如权利要求35所述的用于管理网络的指令的计算机可读介质,还包括用于检测天线朝向的装置。
43.如权利要求35所述的用于管理网络的指令的计算机可读介质,其中所述发射特性包括天线类型,并且所述天线类型是以下天线类型组中的一种偶极子、全向、贴片、阵列、Yagi和抛物线碟形天线。
44.如权利要求35所述的用于管理网络的指令的计算机可读介质,还包括用于选择通过读取与天线装置相关联的存储器确定的工作频带的装置和用于根据所述选择来更新所述存储器的装置。
45.如权利要求44所述的用于管理网络的指令的计算机可读介质,其中所述工作频带是2.4G赫兹和5G赫兹之一。
46.如权利要求35所述的用于管理网络的指令的计算机可读介质,还包括用于执行以下步骤之一的装置读取模拟电压和设置模拟电压。
全文摘要
本发明公开了一种用于管理无线局域网的方法和装置。该网络包括一个或多个无线接入点(51),其中每个接入点包括具有可变功率输出的射频装置(53)和用于发射和接收无线信号的天线装置。微控制器(55)被包括以用于向无线局域网发送发射特性信号。网络管理器(62)被包括以用于接收发射特性信号和有选择地将射频装置(53)的可变功率输出控制到预定的功率水平。
文档编号H04B7/00GK1965500SQ200580018681
公开日2007年5月16日 申请日期2005年7月5日 优先权日2004年7月19日
发明者詹姆斯·A·阿莫斯 申请人:思科技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1