Sdf-1结合性核酸的制作方法

文档序号:438860阅读:375来源:国知局

专利名称::Sdf-1结合性核酸的制作方法
技术领域
:本发明涉及结合CXC趋化因子基质细胞衍生因子1(SDF-1)的核酸,及其在药物制备中的用途及其在诊断剂制备中的用途。
背景技术
:趋化因子是一个8-14kDa的结构相关、结合肝素的碱性小蛋白质的家族。可将其功能分为促炎功能、内环境稳定功能或双重功能(Moser,Wolfetal.2004)。炎性趋化因子受病原体、细胞因子或生长因子诱导,并将效应白细胞募集到感染、炎症、组织损伤和肿瘤部位。所述趋化因子调控白血球细胞(白细胞)的募集、活化和增生(SchallandBacon1994;Springer1995;Baggiolini1998)。趋化因子选择性诱导嗜中性粒细胞、嗜酸细胞、嗜碱细胞、单核细胞、巨噬细胞、肥大细胞、T细胞和B细胞的趋化性。除趋化效应之外,其还可在应答细胞中选择性发挥其他作用,如改变细胞形状,瞬时升高胞内游离钙离子浓度,去粒,上调整联蛋白,形成生物活性脂质(白三烯、前列腺素、血栓烷),或呼吸爆发(通过释放活性氧而破坏致病微生物或肿瘤细胞)。因此,趋化因子通过激发其他促炎介质的释放及白细胞向感染或炎症灶的趋化和外渗来引发炎性应答的逐步升级。而另一方面,内环境稳定趋化因子(homeostaticchemokine)主要在骨髓和淋巴样组织组织中表达,且参与血细胞生成、免疫监督和适应性免疫应答(Godessart2005)。根据四个保守半胱氨酸残基中前两个的排列方式将趋化因子分成四类CC或p-趋化因子(例如其中所述半胱氨酸串联),CXC或a-趋化因子(其中所述半胱氨酸被一个额外的氨基酸残基隔开),XC或Y趋化因子(只具有一个二硫桥)(是迄今为止淋巴细胞趋化因子/XCL1的唯一代表)及CX3C-趋化因子(以在所述半胱氨酸间有3个氨基酸残基为特征)(仅一个成员,膜结合的CXXXC趋化因子(fractalkin))(Bazan,Baconetal.1997)。CXC趋化因子(尤其是在其氨基末端带有氨基酸序列ELR的CXC趋化因子)主要作用于嗜中性粒细胞。对嗜中性粒细胞具有活性的CXC趋化因子的实例是IL-8/CXCL8、GROa/CXCLl、GROp/CXCL2和GROy/CXCL3、NAP-2/CXCL7、ENA-78/CXCL5、SDF-1/CXCL12和GCP-2/CXCL6。CC趋化因子作用于更多种类的白细胞,如单核细胞、巨逸细胞、嗜酸细胞、嗜碱细胞及T和B淋巴细胞(Oppenheim,Zachariaeetal.1991;MillerandKrangel1992;Baggiolini,Dewaldetal.1994;Jose,Griffiths-Johnsonetal.1994;Ponath,Qinetal.1996)。所述趋化因子的实例是I-309/CCLl、MCP-1/CCL2、MCP画2/CCL8、MCP画3/CCL7、MCP-4/CCL13、MIP-la/CCL3和MIP誦1(3/CCL4、RANTES/CCL5和嗜酸细胞活化趋化因子/CCL11。趋化因子通过属于七跨膜G蛋白偶联受体(GPCRs;(Murphy,Baggiolinietal.2000)超家族的受体起作用。一般而言,趋化因子和趋化因子受体的相互作用是趋于混杂的,因为一个趋化因子可结合许多趋化因子受体,而反过来,单个趋化因子受体也可与几种趋化因子相互作用。一些已知的CXC趋化因子的受体包括CXCRl(结合GROa、GCP-2和IL-8)、CXCR2(结合包括GROa、GRO卩、GROy、ENA-78和IL-8在内的趋化因子)、CXCR3(结合包括PF4、MIG、IP-10和I-TAC在内的趋化因子)、CXCR4(迄今为止发现的唯一响应SDF-1而产生信号的CC趋化因子受体)和CXCR5(已发现响应BCA-1而产生信号)(Godessart2005)。SDF-1(基质细胞衍生因子-l;别名为CXCL12;PBSF[前B细胞生长刺激因子j;TPAR-TPA抑制基因1;SCYB12;TLSF[胸腺淋巴细胞刺激因子;hIRH[肝细胞瘤中减少的人内泌素(intercrine))是不包含IL-8样趋化因子特有的ELR基序(Salcedo,Wasserman等人1999;Salcedo和Oppenheim2003)的、结合并激活G蛋白偶联受体CXCR4的血管生长CXC趋化因子。三个研究小组,通过基于当所述趋化因子被基质细胞系PA6表达时刺激早期祖B细胞的能力(Nagas醒,Kikutani等人1994)克隆带有N末端信号序列的cDNA(Tashiro,Tada等人1993),或通过从cDNA文库(从用蛋白质激酶C激活物四十二烷酰巴豆醇乙酸酯(TPA)处理的小鼠胚胎成纤维细胞构建的cDNA文库)分离所述趋化因子(Jiang,Zhou等人1994),各自独立地发现了所述趋化因子。作为可变剪接的结果,存在两种形式的在C末端带有4个额外残基的SDF-l,SDF-la(68个氨基酸)和SDF-ip(Shirozu,Nakano等人1995)。尚不完全清楚这两种剪接变体的生物学意义。来自不同物种的SDF-1之间的序列保守性是显著的人SDF-la(SEQ.ID.1)和鼠SDF-la(SEQ.ID.2)实际上相同。仅存在第18位氨基酸由V到I的单个保守改变(Shirozu,Nakanoetal.1995)。区分SDF-1与大多数其他趋化因子的另一个罕见特征是其选择性。事实上,SDF-1与其受体CXCR4似乎包含单配受体-配体对。存在SDF-1[8-681的NMR结构模型(PDBaccess,1SDF)。发现SDF-1是具有无序N末端区域的单体。与其他趋化因子的差异主要见于疏水核心的包衷和表面电荷分布(Crump,Gongetal.1997)。SDF-1的生理活性因为SDF-1受体CXCR4在白细胞、成熟内皮细胞、内皮细胞、脑细胞和巨核细胞中广泛表达,所以SDF-1的活性是多效的。所述趋化因子相比迄今已鉴定的任何其他趋化因子,尤其在免疫系统外,表现出最广泛的生物学功能。SDF-1的最重要的功能效应是将上皮细胞复位(homing)并附着于视网膜的脉络膜部分的新生血管位点已显示SDF-1在眼组织的新生血管形成过程中参与将上皮细胞复位到脉络膜。对所述细胞的确切作用尚处于研究阶段,但有假说认为上皮细胞参与迷行血管形成(Seng叩ta,Caballeroetal.2005)。造血作用12成人骨髓中需要有SDF-1来维持造血祖细胞(CD34+)。可将AMD3100(—种选择性CXCR4拮抗剂)用于造血干细胞移植中的CD34+细胞动员。CD34+细胞在体外和体内沿着由基质细胞产生的SDF画1梯度迁寿多(Aiuti,Webbetal.1997)。B细胞发育和趋化SDF-1支持前B细胞增生,且促进骨髓祖B细胞生长(Nagasawa,Kikutanietal.1994);其在不作为成熟B细胞的有效趋化剂的情况下诱导前B细胞和祖B细胞(pro-Bcell)的特定迁移,(D'Apuzzo,Rolinketal.1997;Bleul,Schultzeetal.1998)。推测SDF-1在将B细胞定位于次生淋巴组织的过程中发挥重要作用。T细胞趋化SDF-1是最有效的T细胞趋化剂之一;CXCR4存在于多种T细胞亚群上(Bleul,Farzanetal.1996)。胚胎发育SDF-1及其受体CXCR4在胚胎发育过程中必不可少。敲除SDF-1和CXCR4基因的小鼠将死于围产期;除发生B细胞和骨髓组细胞数减少外,还表现出心脏室间隔缺损或异常小脑发育(Nagasawa,Hirotaetal.1996^Ma,Jonesetal.1998^Zou,Kottmaimetal.1998)。胚胎发生期间的血液发育的正常个体发生过程中也需要SDF-1(JuarezandBendall2004)。HIV感染SDF-1能抑制T细胞嗜性HIV-1进入具有CXCR4的细胞系,且SDF-1的表达可在辅助AIDS发病中发挥重要作用,因为人SDF-1基因的多态性影响AIDS的发病(Bleul,Farzanetal.1996)。SDF-1或其受体CXCR4的表达水平变化或对所述分子的应答变化与许多人类疾病相关,所述人类疾病例如视网膜病(Brooks,Caballeroetal.2004;Butler,Guthrieetal.2005;Meleth,Agronetal.2005);乳腺癌(Muller,Homeyetal.2001;Cabioglu,Sahinetal.2005)、卵巢癌(Scotton,Wilsonetal.2002)、胰腺癌(Koshiba,Hosotanietal.2000)、甲状腺癌(Hwang,Chungetal.2003)、鼻咽癌(Wang,Wuetal.2005);神经胶质瘤(Zhou,Larsenetal.2002);成神经细胞瘤(Geminder,Sagi-Assifetal.2001);B细胞慢性淋巴细胞白血病(Burger,Tsukadaetal.2000);WHIM综合征(疣、低丙种球蛋白血症、感染、先天性骨髓粒细胞缺乏症)(Gulino,Morattoetal.2004Balabanian,Laganeetal.2005Kawai,Choietal.2005);免疫缺陷综合征(Arya,Ginsbergetal.1999;Marechal,Arenzana-Seisdedosetal.1999;Soriano,Martinezetal.2002);病理性新生血管形成(Salvucci,Yaoetal.2002;Yamaguchi,Kusanoetal.2003;Grunewald,Avrahametal.2006);炎症(Murdoch2000;Fedyk,Jonesetal.200"Wang,G,etal.2001);多发性硬化症(Kr體bholzTheiletal.2006);类风湿性关节炎/骨关节炎(Buckley,Amftetal.2000;Kanbe,Takagishietal.2002;Grassi,Cristinoetal.2004)。已在实验动物中证明,SDF-1或其受体的拮抗剂可有效阻断不同来源的人癌细胞的生长和/或转移扩散,所述不同来源的人癌细胞例如来源于胰腺(Guleng,Tateishietal.2005;Saur,Seidleretal.2005)、结肠(Zeelenberg,Ruuls-VanStalleetal.2003;Guleng,Tateishietal.2005)、乳腺(Muller,Homeyetal.2001;Lapteva,Yangetal.2005)、肺(Phillips,Burdicketal.2003)、成胶质细胞瘤/成髓细胞瘤(Rubin,Kungetal.2003)、前列腺(Sun,Schneideretal.2005)、骨肉瘤(Perissinotto,Cavallonietal.2005)、黑素瘤(Takenaga,Tamamuraetal.2004)、胃(Yasumoto,Koizumietal.2006)、多发性骨髓瘤(Menu,Asosinghetal.2006)的人癌细胞。此夕卜,抗SDF-1疗法在动物模型中的视网膜新生血管形成(Butler,Guthrieetal.2005)、肾炎(Balabanian,Coudercetal.2003)和关节炎(Matthys,Hatseetal.2001;Tamamura,Fujisawaetal.2004;DeKlerck,Geboesetal.2005)的预防中发挥有益作用。SDF-1参与眼后部疾病(back-of-the-eyedisease)(例如糖尿病性-f见网膜病(DR)(Fong,Aielloetal.2004)和老年黄斑变性(AMD)(Ambati,Anandetal.2003))的病理过程。这两种疾病均损伤眼睛,并导致视力逐渐衰退至失明。所述损伤由眼后部的不当血管生长(此过程被称为脉络膜新生血管形成(CNV))所致。在CNV过程中,源于脉络膜的新血管通过布鲁赫膜(Bruchmembrane)中的断裂处迁移进入视网膜下色素上皮(sub-RPE)或视网膜下间隙。所述异常血管可在视网膜下出血(视网膜内出血)或渗漏液体。这可留下伤疤,并可使斑增多,从而扭曲视觉。SDF-1被认为在CNV中通过将内皮前体细胞(EPC)募集至眼而发挥作用。然后这些前体细胞会在迷行血管中成为关键的结构组分。糖尿病性视网膜病是糖尿病的主要后遗症,经常在患有1型和2型糖尿病的患者中发病。美国有约1千6百万糖尿病患者,其中的近8百万患有一些形式的糖尿病性视网膜病。如果不治疗增生型糖尿病性视网膜病(PDR),则约60°/。的患者会在5年内单眼或双眼失明。随着糖尿病在北美、欧洲和许多新兴国家令人担忧地日益普遍,患者群体也快速增长。例如,糖尿病患者中失明的发生率比普通人群高25倍。此外,糖尿病性视网膜病(DR)是中年受试者中最常见的失明病因,每年占美国所有新病例的至少12%。可通过配制筛选程序来监测糖尿病患者的视力,从而可及时提供如可获得的治疗。对糖尿病性视网膜病的直接原因尚知之甚少,但该病#皮人由下列多个成因的组合所致视网膜血流自调节受损;视网膜细胞内山梨醇蓄积和细胞外液中高级糖基化终产物蓄积。所有这些因素直接或间接与高血糖症、血流中的糖丰度相关。DR症状与AMD症状相似。患者损失视网膜细胞,在^L网膜基底膜中发生微动脉瘤(血流)。此外,VEGF、IGF-1及其他血液因子(可能包括SDF-1)吸引新血管细胞,并促进损坏血管的形成。老年黄斑变性(AMD)破坏人的中央视觉。疾病的早期症状不明显,因为症状随患者而异。有时患者仅单眼受到影响。或双眼视力均减退,但不显著。疾病导致色觉失真或出错。在^L野中央常有黑斑。对所述疾病的发病机理(发病过程)尚知之甚少。通常认为AMD15是视网膜最外层的老化。在视网膜中央发生生理变化(也被称为斑)其为最敏锐视觉所依赖的视网膜部分。湿性AMD始于所述疾病的干性形式的后遗症。约90%的患者患干性AMD,其导致斑组织变薄和色素沉积紊乱。其余患有所述湿性形式,包括上述出血。所述湿性AMD代表着新型治疗剂的理想市场已为55岁以上的人失明的最常见原因,AMD使据估计4%-5%的65-74岁的美国人群和近10%的75岁或更老人群遭受痛苦。仅在美国就已有5百万患有所述疾病的80岁以上的人,且还有另外5百万人预期在2020年前受其影响。肿瘤不仅仅是癌细胞聚集块肿瘤被免疫细胞浸润是癌症的特征。许多人类癌症具有影响所述浸润的程度和表型及肿瘤生长、存活和迁移及血管发生的复杂的趋化因子网络。大多数实体瘤包含许多非恶性基质细胞。事实上,有时基质细胞比癌细胞多。癌症中发现的占优势的基质细胞是巨噬细胞、淋巴细胞、内皮细胞和成纤维细胞。来自不同癌症类型的恶性细胞具有不同的趋化因子受体表达傳,但所述SDF-1受体CXCR4最常见于小鼠和人来自至少23个不同类型的人上皮、间充质细胞和造血来源的癌症的肿瘤细胞表达CXCR4(Balkwill2004)。SDF-1是CXCR4的唯一已知配体。SDF-1除在骨髓和次生淋巴组织中组成型表达外,其还可见于淋巴瘤的原发性肺瘤(Corcione,Ottonelloetal.2000)及神经元和星形细胞系的脑肿瘤中。此外,其以高水平存在于卵巢(Scotton,Wilsonetal.2002)和胰腺癌(Koshiba,Hosotanietal.2000)中及存在于乳腺癌(Muller,Homeyetal.2001)和曱状腺癌(Hwang,Chungetal.2003)、成神经细胞瘤和血液学恶性肿瘤(Geminder,Sagi画Assifetal.2001)的转移灶中。相反,CXCR4在正常乳腺(Muller,Homeyetal.2001)、印巢(Scotton,Wilsonetal.2002)和前歹'j腺上皮(Sun,Schneideretal.2005)中的表达水平;f艮低或无。因此,CXCR4的表达似乎是恶性上皮细胞而非其正常相应细胞的一般特征。抑制肿瘤细胞上的趋化因子-受体信号转导具有在体内诱导生长停滞或凋亡及预防侵入和转移的潜能通过siRNA产生的CXCR4减弱(knockdown)中止了乳腺肿瘤的生长(Lapteva,Yangetal.2005);给小鼠静脉注射用阻止CXCR4表面表达的构建体转染的T杂交瘤细胞,可使其不再迁移至远处的器官(Zeelenberg,Ruuls-VanStalleetal.2001);在使用结肠直肠癌细胞的相似实验中,大大减少了肺和肝转移(Zeelenberg,Ruuls-VanStalleetal.2003);抗CXCR4抗体抑制乳腺癌异种移植物扩散到淋巴节(Muller,Homeyetal,2001);使用抗CXCR4或抗SDF-l抗体处理淋巴样干细胞延迟了(NOD)/SCID小鼠中的肿瘤生长(Bertolini,Dell,Agnolaetal.2002);抗SDF-l抗体抑制非小细胞肺癌(NSCLC)细胞器官转移的发生(Phi川ps,Burdicketal.2003);CXCR4拮抗剂AMD3100(AnorMED)的全身施用在24小时内抑制了颅内成胶质细胞瘤和成髓细胞瘤异种移植物的生长,并增加了肿瘤细胞凋亡(Rubin,Kungetal.2003);抗SDF-l抗体抑制了与癌相关成纤维细胞混合的MCF-7乳腺癌细胞的生长(Orimo,Guptaetal.2005);使用抗体中和CXCR4阻断了前列腺癌转移和骨灶生长(growthinosseoussites)(Sun,Schneideretal.2005);通过施用狀CXCR4括抗剂T134阻止了在注射骨肉瘤细胞后肺转移的发生(Perissinotto,Cavallonietal.2005)。不同文献作者均提出,粑向SDF-1/CXCR4轴可给癌症患者提供新的治疗选择人卵巢肿瘤强烈表达SDF-1,并以较低水平表达VEGF。两种蛋白受肿瘤中的低氧触发。病理浓度的其中任一蛋白质均不足以单独诱导体内血管发生,但如果组合在一起,病理浓度的SDF-l和VEGF可有效且协同诱导新生血管形成。因此,阻断所述协同轴,而非仅针对VEGF,可为治疗癌症的有效的抗血管生成新策略(Kryczek,Langeetal.2005);当具有自分泌SDF-1/CXCR4信号转导通路时,乳腺癌细胞系便表现出攻击行为。这包括伴随加快生长的侵袭和迁移。因此,可从所述SDF-1/CXCR4轴获取预测所述攻击性的重要信息,也可将其用作治疗人乳腺癌的重要靼标(Kang,Watkinsetal.2005);表达高水平的CXCR4的小细胞肺癌(SCLC)细胞的迁移和转移受SDF-1调控。CXCR4的激活促进对肺瘤微环境中的辅助细胞(例如基质细胞)和胞外基质分子的附着。这些粘着相互作用导致SCLC细胞对化学疗法的抗性增加。这样,所述SDF-1/CXCR4轴的抑制剂可增加SCLC细胞的化学敏感性,并给患SCLC的患者提供新治疗途径(Hartmann,Burgeretal.2004);所述SDF-1/CXCR4轴已被认为是在体内运输不同类型干细胞的关键调节通路。因为大多数(若非所有)恶性胖瘤源于干细胞/祖细胞区域,癌干细胞也在其表面表达CXCR4,从而所述SDF-1/CXCR4轴参与将它们指导运输/转移至表达SDF-l的器官(例如淋巴结、肺、肝、骨)。因此,针对调控SDF-1/CXCR4轴的策略可在将正常干细胞递送至组织的再生药物中和抑制癌干细胞的转移的临床肿瘤学中具有重要的临床应用(Kucia,Recaetal.2005)。
发明内容本发明旨在提供针对SDF-1的特异性结抗剂。本发明另一方面旨在提供用于治疗分别牵涉SDF-1和CXCR4受体的疾病和病症的化合物。本发明另一方面旨在提供用于特异性检测SDF-1的方法。通过独立权利要求的主题解决了本发明所涉及问题。优选实施方案可取自从属权利要求。第一方面,本发明通过核酸分子解决了本发明所涉及问题,所述核酸分子优选结合SDF-1,选自A型核酸分子、B型核酸分子、C型核酸分子,且核酸分子具有SEQ.ID.No.142、SEQ.ID.No.143和SEQ.ID.No.144所示任一核酸序列。在一个实施方案中,所述A型核酸分子包含下列核心核苷酸序列185"AAAGYRACAHGUMAAXaUGAAAGGUARC3"(SEQ.ID.19)其中xa缺失或为A。在一个优选实施方案中,所述A型核酸分子包含选自下列的核心核苷酸序列5"AAAGYRACAHG画AAUGAAAGGUARC3"(SEQ.ID.No.20)、5'AAAGYRACAHG画AAAUGAAAGGUARC3'(SEQJD.No.21)和5'AAAGYAACAHGUCAAUGAAAGGUARC3'(SE(J.ID.No.22),所述核心核苷酸序列优选包含5,AAAGYAACAHGUCAAUGAAAGGUARC3"(SEQ.ID.No.22)。在一个实施方案中,所述核酸分子以5,->3,方向包含第一片核苷酸段、所述核心核普酸序列和第二核苷酸片段。在一个实施方案中,所述核酸分子以5,->3,方向包含第二核苷酸片段、所述核酸核普酸序列和第一核苷酸片段。在一个优选实施方案中,所述核酸分子包含所述第一和第二核普酸片段,且所述第一和第二核苷酸片段任选相互杂交,其中在杂交后形成双链结构。在一个再优选的实施方案中,所述双链结构由4-6个碱基对,优选5个碱基对构成。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,X!X2NNBV3,(SEQ.ID.No.44),且所述第二核普酸片段包含核苷酸序列5,BNBNX3X43,(SEQ.ID.No.45),其中Xi缺失或为R,X2为S,乂3为S及X4缺失或为Y;或Xi缺失,X2缺失或为S,x3缺失或为S及X4缺失。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,RSHRYR3,(SEQ.ID.No.23),且所述第二核苷酸片段包含核苷酸19序列5,YRYDSY3,(SEQ.ID.No.24),所述第一核苷酸片段优选包含核苷酸序列5,GCUGUG3,,且所述第二核苷酸片段优选包含核苷酸序列5'CGCAGC3'。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,X2BBBS3,(SEQ.ID.No.42),且所述第二核苷酸片段包含核苷酸序列5,SBBVX33,(SEQ.ID.No.43),其中X2缺失或为S,且X3缺失或为S;所述第一核普酸片段优选包含核普酸序列5'CUGUG3',且所述第二核苷酸片段优选包含核苷酸序列5,CGCAG3,;或所述第一核苷酸片段优选包含核苷酸序列5,GCGUG3,,且所述第二核苷酸片段优选包含核苷酸序列5,CGCGC3,。在一个实施方案中,所述核酸分子具有SEQ.ID.No.5-18、25-41、133、137、139-141所示任一核酸序列。在一个实施方案中,所述B型核酸分子包含下列核心核普酸序列5"GUGUGAUCUAGAUGUA而GGCUGWUCCUAGUYAGG3,(SEQ.ID.No.57)。在一个优选实施方案中,所述B型核酸分子包含核心核苷酸序列GUGUGAUCUAGAUGUADUGGCUGAUCCUAGUCAGG(SEQ.ID.No.58):在一个实施方案中,所述核酸分子以5,->3,方向包含第一核普酸片段、所述核心核苷酸序列和第二核苷酸片段。在一个实施方案中,所述核酸分子以5,->3,方向包含第二核苷酸片段、所述核心核苷酸序列和第一核苷酸片段。在一个优选实施方案中,所述核酸分子包含所述第一和第二核苷酸片段,所述第一和第二核苷酸片段任选相互杂交,其中在杂交后形成双链结构。在一个实施方案中,所述双链结构由4-6个碱基对,优选5个碱基对构成。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,X!XzSVNS3,(SEQ.ID.No.77),且所述第二核苷酸片段包含核苷酸序列5,BVBSX3X43,(SEQ.ID.No.78),其中Xj缺失或为A,X2是G,X3是C及X4缺失或为U;或Xi缺失,X2缺失或为G,X3缺失或为C及X4缺失。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,XjGCRWG3,(SEQ.ID.No.59),且所述第二核苷酸片段包含核苷酸序列5,KRYSCX43,(SEQ.ID.No.60),其中X!缺失或为A,且X4缺失或为U。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,X!GCGUG3,(SEQ.ID.No.75),且所述第二核苷酸片段包含核苷酸序列5,UACGCX43,(SEQ.ID.No.76),其中X!缺失或为A,且X4缺失或为U,所述第一核苷酸片段优选包含核苷酸序列5,AGCGUG3',且所述第二核苷酸片段优选包含核苷酸序列5,UACGCU3,。在一个优选实施方案中,所述第一核苷酸片段包含核苷酸序列5,X2SSBS3,(SEQ.ID.No.73),且所述第二核苷酸片段包含核苷酸序歹J5,BVSSX33,(SEQ.ID.No.74),其中X2缺失或为G,且X3缺失或为C,所述第一核苷酸片段优选包含核苷酸序列5'GCGUG3,,且所述第二核苷酸片段优选包含核苷酸序列5,UACGC3,。在一个实施方案中,所述核酸分子具有SEQ.ID.No.46-56、61-72和132所示任一核酸序列。在一个实施方案中,所述C型核酸分子包含核心核苷酸序列GGUYAGGGCUHRXAAGUCGG(SEQ.ID.No.90),其中XA缺失或为A。在一个优选实施方案中,所述C型核酸分子包含选自下列序列的核心核苷酸序列5,GGUYAGGGCUHRAAGUCGG3"(SEQ.ID.No.91)、215,GGUYAGGGCUHRAGUCGG3,(SEQ.ID.No.92)和5,GGUUAGGGCUHGAAGUCGG3,(SEQ.ID.No.93),所述核心核苷酸序列优选包含5,GGUUAGGGCUHGAAGUCGG3,(SEQ.ID.No.93)。在一个实施方案中,所述核酸分子以5,->3,方向包含第一核苷酸片段、所述核心核苷酸序列和第二核苷酸片段。在一个实施方案中,所述核酸分子以5,->3,方向包含第二核苷酸片段、所述核心核普酸序列和第一核苷酸片段。在一个优选实施方案中,所述核酸分子包含所述第一和第二核苷酸片段,其中所述第一核苷酸片段的至少一部分与所述第二核苷酸片段的至少一部分任选相互杂交,其中在杂交后形成双链结构。在一个实施方案中,所述第一核苷酸片段的长度和所述第二片段的长度各自分别为0-17个核苷酸,优选4-10个核苷酸,及更优选4-6个核苷酸。在一个实施方案中,所述双链结构包含4-10个碱基对,优选4-6个碱基对,更优选5个碱基对。在一个优选实施方案中,所述双链结构包含4-10个连续碱基对,优选4-6个连续碱基对,更优选5个连续碱基对。在一个优选实施方案中,所述第一核苷酸片段包含核苷酸序列5,RKSBUSNVGR3,(SEQ.ID.No.120),且所述第二核普酸片段包含核苷酸序列5,YYNRCASSMY3,(SEQ.ID.No.121),所述第一核苷酸片段优选包含核苷酸序列5,RKSBUGSVGR3,(SEQ.ID.No.122),且所述第二核苷酸片段优选包含核苷酸序列5,YCNRCASSMY3,(SEQ.ID.No.123)。在一个实施方案中,所述第一核苷酸片段包含核普酸序列5,XSSSSV3,(SEQ.ID.No.124),且所述第二核苷酸片段包含核苷酸序列5,BSSSXs3,(SEQ.ID.No.125),其中Xs缺失或为S。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,SSSSR3,(SEQ.ID.No.130),且所述第二核苷酸片段包含核苷酸序列5,YSBSS3,(SEQ.ID.No.131),所述第一核苷酸片段优选包含核苷酸序列5,SGGSR3,(SEQ.ID.No.126),且所述第二核苷酸片段优选包含核苷酸序列5,YSCCS3,(SEQ.ID.No.127)。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,GCSGG3,(SEQ.ID.No.128),且所述第二核苷酸片段包含核苷酸序列5,CCKGC3,(SEQ.ID.No.129),所述第一核苷酸片段优选包含核苷酸序列5,GCCGG3',且所述第二核苷酸片段优选包含核苷酸序列5,CCGGC3,。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,CGUGCGCUUGAGAUAGG3,,且所述第二核苷酸片段包含核苷酸序歹'J5,CUGAUUCUCACG3,。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,UGAGAUAGG3,,且所述第二核苷酸片段包含核苷酸序列5,CUGAUUCUCA3'。在一个实施方案中,所述第一核苷酸片段包含核苷酸序列5,GAGAUAGG3,,且所述第二核苷酸片段包含核苷酸序列5,CUGAUUCUC3,。在一个实施方案中,所述核酸分子具有SEQ.ID.No.79-89、94-119和134-136所示4壬一核酸序列。在一个实施方案中,所述核酸分子具有SEQ.ID.No.142-144所示任一核酸序列。在一个实施方案中,所述核酸分子是针对SDF-1的拮抗剂。在一个实施方案中,所述核酸分子是SDF-1受体系统的拮抗剂,所述SDF-1受体系统的所述SDF-1受体优选是CXCR4受体。在一个实施方案中,所述SDF-1是人SDF-1和/或所述SDF-l受体是人SDF-1受体。在一个实施方案中,所述SDF-1包含SEQIDNo.1所示氨基酸序列。在一个实施方案中,所述核酸包含修饰物。在一个优选实施方案中,所述修饰物选自HES部分和PEG部分。在一个再优选的实施方案中,所述修饰物是由直链或支链PEG构成的PEG部分,其中所述PEG部分的分子量优选约2-180kD,更优选约60-140kD及最优选约40kD。在一个实施方案中,所述修饰物是HES部分,其中所述HES部分的分子量优选约10-130kD,更优选约30-130kD及最优选约100kD。在一个实施方案中,所述核酸的核苷酸是L-核苷酸,优选SEQ.ID.No.19、20、21、22、57、58、90、91、92和93所示任一序列的核苷酸。第二方面,本发明通过包含第一方面的核酸和任选其他组分的药物组合物解决了本发明所涉及问题,其中所述其他组分选自药学可接受的赋形剂和药物活性剂。第三方面,本发明通过第一方面的核酸在药物制备中的用途解决了本发明所涉及问题。在第三方面的一个实施方案中,所述药物被用于治疗和/或预防疾病或病症,其中所述疾病或病症受SDF-1介导,所述疾病或病症优选选自眼后部疾病,如糖尿病性视网膜病和老年黄斑变性;乳腺癌、卵巢癌、前列腺癌、胰腺癌、甲状腺癌、鼻咽癌、结肠癌、肺癌和胃癌;骨肉瘤;黑素瘤;神经胶质瘤;成髓细胞瘤和成神经细胞瘤;白血病;WHIM综合征;免疫缺陷综合征;病理性新生血管形成;炎症;多发性硬化症;类风湿性关节炎/骨关节炎和肾炎。在第三方面的一个实施方案中,所述药物被用于抑制血管发生、新生血管形成、炎症和转移。第四方面,本发明通过第一方面的核酸在诊断工具制备中的用途解决了本发明所涉及问题。在第四方面的一个实施方案中,所述诊断工具被用于诊断疾病,其中所述疾病选自眼后部疾病,如糖尿病性视网膜病和老年黄斑变性;24乳腺癌、卵巢癌、前列腺癌、胰腺癌、甲状腺癌、鼻咽癌、结肠癌、肺癌和胃癌;骨肉瘤;黑素瘤;神经胶质瘤;成髓细胞瘤和成神经细胞瘤;白血病;WHIM综合征;免疫缺陷综合征;病理性新生血管形成;炎症;多发性硬化症;类风湿性关节炎/骨关节炎和肾炎。在第四方面的一个实施方案中,所述诊断工具被用于诊断血管发生、新生血管形成、炎症和/或转移。第五方面,本发明通过包含SDF-l和第一方面的核酸的复合物解决了本发明所涉及问题,其中所述复合物优选是晶体复合物。第六方面,本发明通过第一方面的核酸在SDF-1检测中的用途解决了本发明所涉及问题。第七方面,本发有通过用于筛选SDF-1拮抗剂或SDF-1激动剂的方法解决了本发明所涉及问题,所述方法包括下列步骤-提供候选SDF-1拮抗剂和/或候选SDF-1激动剂,-提供第一方面的核酸,-提供在SDF-1拮抗剂和/或SDF-1激动剂存在的情况下提供信号的检测系统,及-确定所述候选SDF-l拮抗剂是否是SDF-l拮抗剂和/或所述候选SDF-1激动剂是否是SDF-1激动剂。第八方面,本发明通过筛选SDF-1激动剂和/或SDF-1拮抗剂的方法解决了本发明所涉及问题,所迷方法包括下列步骤-提供固定于相的SDF-1,所述相优选固相,-提供第一方面的核酸,优选被标记的第一方面的核酸,-加入候选SDF-1激动剂和/或候选SDF-1拮抗剂,及-确定所述候选SDF-1激动剂是否是SDF-1激动剂和/或所述候选SDF-1拮抗剂是否是SDF-1拮抗剂。在第八方面的一个实施方案中,进行所述确定以便估计所述核酸是否被所述候选SDF-1激动剂或被候选SDF-1拮抗剂替代。第九方面,本发明通过用于检测SDF-1的包含第一方面的核酸的试剂盒解决了本发明所涉及问题。25第十方面,本发明通过可通过第七方面或第八方面的方法获得的SDF-1拮抗剂解决了本发明所涉及问题。本发明基于惊人的发现,即有可能制备出特异性结合SDF-1且与其具有高亲和力的核酸。SDF-1是具有SEQ.ID.No.1的氨基酸序列的碱性肽。经计算得到的SDF-1的pi为9.70。本文所用术语SDF-1指任何SDF-1,包括但不限于哺乳动物SDF-1。所述哺乳动物SDF-1优选选自小鼠、大鼠、兔、仓鼠、猴和人SDF-1。所述SDF-1最优选是人SDF-l(SEQ.ID.1)。发现可鉴定可以高亲和力SDF-1结合性核酸是令人惊讶的,因为Eaton等人(Eaton,Goldetal.1997)观察到通常极难制备针对碱性蛋白质的适体(aptamer)(即结合靶分子的D-核酸),因为此类把标会产生高但非特异性的信噪比。所述高信噪比由核酸表现出的对碱性靶标(如SDF-1)的高非特异性亲和力所致。可在使用本发明的核酸的本发明的任何方面实现所述核酸的特征,其中可单独或任意组合使用所述核酸。无意受任何理论束縛,发明人假定所观察到的本发明的核酸结合SDF-1的特异性共有一些结构特征,且具体指被称为核心序列(将在下文中更详细地讨论)的核苷酸序列之一,请参照图l-8及实施例1。但需知,这些图和实施例1包括几个不必在每个和任一本发明的核酸中实现的所述结构特征。如在权利要求书和实施例1中的进一步详述,可分别基于所述框和一些结构特征和元件对各种人SDF-1结合性核酸分子进行分类。本文将如述定义的各种类别称为"型",且更具体称为A型、B型和C型。在一个优选实施方案中,本发明的核酸是单个核酸分子。再一个实施方案中,所示单个核酸分子以许多单个核酸分子的形式存在。除非另有说明,本文中的术语"核酸"和"核酸分子"可互换使用。本领域技术人员将公认本发明的核酸分子优选由相互共价连接(优选通过磷酸二酯连接或键连接)的核苷酸构成。本发明的核酸还应包括与本发明的特定序列基本同源的核酸。应将术语"基本同源"理解为,同源性至少75%,优选85%,更优选90°/。,及最优选大于95%、96%、97%、98%或99%。存在于本发明的核酸中的同源核苷酸的实际百分比将取决于存在于所述核酸中的核苷酸总数。修饰百分比可基于存在于所述核酸中的核苷酸总数。可根据本领域技术人员已知的方式测定所述同源性。所述方法更具体为序列比较算法,然后基于指定程序参数计算待测序列相对于参比序列的序列同一性百分比。所述待测序列优选为所述应与另一核酸分子同源或待测是否与另一核酸分子同源(且如果是,以何种程度同源)的序列或核酸分子,其中也将所述另一核酸分子称为参比序列。在一个实施方案中,所述参比序列是本文所述核酸分子,更优选为具有SEQ.ID.No.5-144所示任一序列的核酸分子。可根据下列方法进行用于比较的最佳序列比对,.所述方法例如Smith&Waterman的局部同源性算法(Smith&Waterman,1981),Needleman&Wunsch的同源性比对算法(Needleman&Wunsch,1970),Pearson&Lipman的相似性搜索方法(Pearson&Lipman,1988),这些算法的计算机化实施(WisconsinGeneticsSoftwarePackage中的GAP、BESTFIT、FASTA和TFASTA,GeneticsComputerGroup,575ScienceDr"Madison,Wis.)或目测检查。适合于测定序列同一性百分比的算法的一个实例是在基本局部比对搜索工具(basiclocalalignmentsearchtool,以下称为"BLAST,,)中使用的算法,参见例如Altschul等人(Altschuletal.1990andAltschuletal,1997)。用于进4亍BLAST分析的软件可在美国生物技术信息中心(NationalCenterforBiotechnologyInformation)(以下称为"NCBI,,)中公开获得。McGinnis等人描述了在使用可从NCBI获得的软件(例如BLASTN(用于核苷酸序列)和BLASTP(用于氨基酸序列))进行序列同一性测定中采用的默认参数(McGinnisetal,2004)。27术语"本发明的核酸"还应包括包含本文公开的核酸序列或其部分的那些核酸,至所述核酸或所述部分优选参与结合SDF-1。可例如通过裁减本文公开的核酸而产生所述核酸。可裁减本文公开的核酸的任一末端或两个末端。也可裁减内部核苷酸序列,即裁减5,和3,末端核苷酸之间的核苷酸。此外,裁减还应包括删除本文公开的核酸序列中的短至一个核苷酸。也可裁减不只一个本发明的核酸片段,其中所述片段可短至仅为一个核苷酸长。本领域技术人员可通过常规实验或通过使用或釆用本文所述的方法(优选在本文实施例部分描述的方法)测定本发明的核酸的结合。本发明的核酸可为D-核酸或L-核酸。本发明的核酸优选是L-核酸。另外,也可能是所述核酸的一个或几个部分为D-核酸或所述核酸的至少一个或几个部分为L-核酸。术语所述核酸的"部分"应指短至一个核苷酸。本文通常将所述核酸分别称为D-核酸和L-核酸。因此,在一个特别优选的实施方案中,本发明的核酸由L-核苷酸构成,并包含至少一个D-核苷酸。所述D-核苷酸优选附着于不同于定义本发明的核酸片段的部分,优选与所述核酸的其他部分相互作用的所述核酸的那些部分。所述D-核苷酸优选分别附着于本发明的任意片段末端和任意核酸末端。在再优选的实施方案中,所述D-核普酸可被用作间隔物或连接物,优选将4务饰物(如PEG和HES)附着于本发明的核酸。即述特征亦在本发明的范围内,即每个和任一本文所述核酸分子(以其整体(以其核酸序列表示))均限于特定核香酸序列。换言之,应将所述实施方案中的术语"包含"解释为"含有"或"由...构成"。即述特征亦在本发明的范围内,即本发明的核酸是较长核酸的部分,其中所述较长核酸包含几个部分,其中至少一个所述部分是本发明的核酸或其部分。所述较长核酸的其他部分可为一个或几个D-核酸或L-核酸。本发明可使用任意组合。较长核酸的所述其他部分,可表现出不同于结合(优选结合SDF-1)的功能。一种可能的功能是允许与其他分子(其中所述其他分子优选与SDF-1不同)相互作用,例如,用于固定、交联、检测或扩增。在本发明的另一个实施方案中,本发明的核酸单独或组合包含几个本发明的核酸。术语"较长核酸"也涵盖包含几个本发明的核酸的所述核酸。本文所用L-核酸是由L-核苷酸构成的核酸,优选完全由L-核苷酸构成的核酸。本文所用D-核酸是由D-核普酸构成的核酸,优选完全由D-核苷酸构成的核酸。除非另有说明,术语"核酸,,和"核酸分子"在本文中可互换使用。除非另有说明,本文中的所有核苷酸序列也均以5,—3,的方向表示o无论本发明的核酸由D-核普酸构成、由L-核苷酸构成还是由两者的组合(所述组合是例如随机组合,或是由至少一个L-核苷酸和至少一个D-核酸构成的片段的特定序列)构成,所述核酸可由脱氧核糖核苷酸,核糖核苷酸或其组合构成。将本发明的核酸设计成L-核酸具有诸多优点。L-核酸是天然核酸的对映体。但由于核酸酶的广泛存在,D-核酸在水溶液中(且尤其在生物系统或生物样品中)不很稳定。天然核酸酶(尤其是来自动物细胞的核酸酶)不能降解L-核酸。由此,L-核酸在所述系统(包括动物和人体)中的生物学半衰期显著增长。由于L-核酸不易降解,故无核酸酶降解产物产生,从而观察不到由其所致的副作用。所述方面事实上界定了所有其他化合物(其用于治疗涉及SDF-1的疾病和/或病症)的L-核酸。也将通过不同于Watson-Crick碱基配对机理特异性结合靶分子的L-核酸或或部分或完全由L-核酸构成的适体(尤其含有参与所述适体与靶分子的结合的所述适体部分)称为镜像异构体(spiegelmer)。即述特征亦在本发明的范围内,即连接到所述核心核苷酸序列两侧的所述第一和第二核苷酸片段原则上可相互杂交。在所述杂交后形成双链结构。本领域技术人员将公认所述杂交可(尤其在体外和/或体内条件下)发生或不发生。如果发生杂交,则可至少基于碱基配对法则杂交形成双链结构,无需发生两个片段的全序列杂交。本文所用双链结构优选是由两个或多个独立链形成的部分分子或结构,其中存在至少一个(优选两个或多个)优选按照Watson-Crick碱基配对法则进行碱基配对的碱基对。本领域技术人员还将公认其他碱基配对(例如Hoogsten碱基配对)可存在于所述双链结构中或形成所述双链结构。即述特征亦在本发明的范围内,即无论是以D-核酸、L-核酸或D,L-核酸存在的核酸,或无论它们是DNA或RNA,本发明的核酸可作为单链或双链核酸存在。通常,本发明的核酸是表现出由一级序列限定的二级结构,并由此也可形成三级结构的单链核酸。但本发明的核酸也可为双链核酸,即彼此互补或部分互补的两条链相互杂交。这赋予核酸以稳定性,尤其在所述核酸是以天然D-形式而非L-形式存在时有利。可修饰本发明的核酸。可对所述核酸的单个核苷酸进行所述修饰,且所述修饰为本领域所熟知。有关所述修饰的实例尤其见Venkatesan等人(Venkatesan,Kimetal,2003)和Kusser(Kusser2000)。所述修饰物可为在构成所述核酸的个别核苷酸的2,位置处的H原子、F原子或0-CH3基团或NHr基团。此外,本发明的核酸也可包含至少一个LNA核苷酸。在一个实施方案中,本发明的核酸由LNA核苷酸构成。在一个实施方案中,本发明的核酸可为多分体(multipartite)核酸。本文所用多分体核酸是由至少两个核酸链构成的核酸。所迷至少两个核酸链形成功能单元,其中所述功能单元是靶分子的配体。可通过将所述核酸切成两条链,或通过合成与本发明的(即整体)核酸的第一部分相对应的一条核酸和与整体核酸的第二部分相对应的另一条核酸而从本发明的核酸得到所述至少两个核酸链。应公认切割和合成两者均可被用于制备如上所述具有2个以上链的多分体核酸。换言之,尽管各个核酸部分间可一定程度互补,但所述至少两个核酸链通常不同于互补且相互杂交的两条链。即述特征亦在本发明的范围内,即最后实现了本发明的核酸的完全闭合(即环状)结构,即本发明的核酸是闭合的,优选通过共价连接闭合,其中所述共价连接更优选发生在本文公开的核酸序列的5,末端和3'末端之间。发明人已发现,本发明的核酸表现出非常有利的Kd值范围。通过使用所谓的biacore仪(BiacoreAB,Uppsala,Sweden)进行的表面等离子共振测量是测定结合常数的一种可能方法,这也是本领域才支术人员已知的。可优选通过^f吏用实施例中描述的"pull-down测定法(pull-downbindingassay)"测量本文所用亲和力。表示所述核酸与所述靼标(在当前情况下为SDF-1)之间的结合强度的合适量度即为所谓Kd值,本领域技术人员知晓该值及其测定方法。本发明的核酸通过某个KD值来表征。本发明的核酸表现出的Ko值优选低于MM。约lpM的KD值被认为是核酸与靶标非特异性结合的特征。如本领域技术人员将公认的一样,一组化合物(如本发明的核酸)的Ko值在某个范围内。上述约lnM的Kd是仇逸的Ko值上限。结合靶标的核酸的Kn的优选下限可为约10pM或更高。即述特征亦在本发明的范围内,即个别核酸与ghrelin结合的Ko值优选在所述范围内。优选的范围可通过选择所述范围内的任意第一个数字和所述范围内的任意第二个数字来限定。优选的上限值是250nM和100nM,优选的下限值是50nM、10nM、1nM、100pM和10pM。只要仍能结合靶分子,本发明的核酸分子可具有任意长度。本领域将公认,存在本发明的核酸的优选长度。所述长度一般为15-120个核苷酸。本领域技术人员将公认,15-120的任何整数是本发明的核酸的可能长度。本发明的核酸的长度的更优选范围是约20-100个核苷酸、约20-80个核苷酸、约20-60个核苷酸、约20-50个核苷酸及约20-40个核苷酸的长度。即述特征亦在本发明的范围内,即本文公开的核酸包含优选为高分子量部分和/或优选使所述核酸尤其在动物体内(优选在人体内)的停留时间的特征发生改变的部分。所述修饰物的特别优选的实施方案是本发明的核酸的PEG化和HES化。本文所用PEG表示聚(乙二醇),31而HES表示羟乙基淀粉。本文所用PEG化优选为对本发明的核酸的修饰,其中所述修饰物由附着于本发明的核酸的PEG部分构成。本文所用HES化优选为对本发明的核酸的修饰,其中所述修饰物由附着于本发明的核酸的HES部分构成。欧洲专利申请EP1306382中描述了所述修饰物及用所述修饰物修饰核酸的方法,将所述专利公开通过引用整体并入本文。优选情况下,由高分子量部分构成或包含高分子量部分的修饰物的分子量,尤其在PEG作为所述高分子量部分的情况下为约2,000-200,000Da,优选40,000-120,000Da,且尤其在HES作为所述高分子量部分的情况下优选为约3,000-180,000Da,更优选60,000-140,000Da。例如德国专利申请DE12004006249.8中描述了HES修饰方法,将所述专利公开通过引用整体并入本文。即述特征亦在本发明的范围内,即如在专利申请WO2005074993和PCT/EP02/11950中进一步描述的那样,可以直链或支链形式使用PEG和HES中的任一者。原则上可在本发明的核酸分子的任何位置进行所述修饰。可优选在所述核酸分子的5,-末端核苦酸、3,-末端核苷酸和/或5'核苷酸和3'核苷酸之间的任意核苷酸上进行所述修饰。可将所述修饰物(且优选为PEG和/或HES部分)直接或通过连接子附着于本发明的核酸分子。即述特征亦在本发明的范围内,即本发明的核酸分子包含一种或多种修饰物,优选一种或多种PEG和/或HES部分。在一个实施方案中,个别连接分子将一种以上的PEG部分或HES部分附着于本发明的核酸分子上。本发明中使用的连接子本身可为直链的或支链的。本领域技术人员知晓此类连接子,且专利申请WCH005074993和PCT/EP02/11950中也进一步描述了所述连接子。无意受任何理论束缚,通过用高分子量部分(如聚合物(且更尤其是本文公开的聚合物(其优选为生理学上可接受的)))修饰本发明的核酸,似乎改变了分泌动力学。更具体而言,似乎由于所述经修饰的本发明核酸的分子量增加,且由于所述核酸不经历代谢(尤其是在L形式时),从而降低其从动物体内,优选从哺乳动物体内,及更32优选从人体内分泌。由于一般通过肾脏进行分泌,因此发明人推测经如述修饰的核酸的肾小球滤过率较不带此类高分子量修饰物的核酸显著减小,这导致其在体内的停留时间增长。与之相关,特别值得注意的是,尽管具有这种高分子量修饰,但本发明的核酸的特异性并未受到有害影响。如此这般,本发明的核酸具有令人惊讶的特征(所述特征通常不能从药学活性化合物中预期),从而无需通过使用赋予持续释放特性的药物制剂来使其持续释放。而以其包含高分子量部分的修饰形式,本发明的核酸本身就可用作持续释放制剂。如此这般,如本文公开的核酸分子的修饰物和经如述修饰的核酸分子及任何包含其的组合物可提供不同的,优选受控的药物动力学及其生物分布。这还包括在循环中的停留时间和向组织的分配。专利申请PCT/EP02/11950中进一步描述了所述修饰。但即述特征亦在本发明的范围内,即本文公开的核酸不包含任何修饰,且尤其不包含高分子量修饰(例如PEG化或HES化)。当希望将核酸于施用后快速清出身体时,尤其优选所述实施方案。当需要使用本发明的核酸或包含所述核酸的药物进行体内成像或特定给药时可能希望所述快速清除。可将本发明的核酸和/或本发明的拮抗剂用于制药。所迷药物包含任选与其他药学活性化合物组合在一起的至少一种本发明的核酸,其中本发明的核酸本身优选发挥药学活性化合物的作用。在一个优选实施方案中,所述药物至少包含药学可接受的载体。所述载体可为例如水、緩冲液、PBS、葡萄糖溶液、蔗糖溶液、甘露糖溶液、优选5%的蔗糖平衡液、淀粉、糖、明胶或任何其他可接受的栽体物质。所述栽体通常是本领域技术人员已知的。本领域技术人员将公认,也可将本发明药物的任何实施方案、用途和方面或与之相关的实施方案、用途和方面应用于本发明的药物组合物,反之亦然。用本发明的或根据本发明制备的核酸、药物组合物和药物治疗和/或预防的适应症、疾病和病症是由SDF-1直接或间接参与各自致病机理所致。当然,由于本发明的SDF-1结合性核酸与人或鼠的SDF-1相互作用或结合,本领域技术人员通常将理解可容易将本发明的SDF-1结合性核酸用于治疗、预防和/或诊断本文描述的任何人和动物疾病。可使用所述药物治疗和/或预防的疾病和/或病症和/或病状包括但不限于眼后部疾病,如视网膜病、糖尿病性视网膜病和老年黄斑变性(干性和湿性两种形式);癌症;乳腺癌、卵巢癌、前列腺癌、胰腺癌、曱状腺癌、鼻咽癌、结肠癌、肺癌和胃癌;骨肉瘤;黑素瘤;坤申经胶质瘤;成髓细胞瘤和成坤申经细胞瘤;白血病;B细胞'漫性淋巴细胞白血病、多发性骨髓瘤;淋巴瘤;WHIM综合征;免疫缺陷综合征;病理性新生血管形成;炎症;多发性硬化症;关节炎、类风湿性关节炎、骨关节炎和肾炎。在进一步实施方案中,所述药物包含其他药学活性剂。所述其他药学活性化合物可为本领域技术人员已知的药物,且优选选自趋化因子或细胞因子拮抗剂、皮质类固醇等。本领域技术人员理解假设可根据本发明通过使用本发明的核酸处理所述各种适应症时,所述其他药学活性剂可为原则上适用于治疗和/或预防所述疾病的任何药学活性剂。优选将本发明的核酸分子(尤其是以药物形式存在或使用时)与VEGF抑制剂(如来自PfizerOphthalmics的^底加他尼钠(Pegatanib)、来自NovartisOphthalmics的Lucentis(Ranitizumab)、来自Roche(药品核准标示外^f吏用)的阿瓦斯丁(贝伐单抗))组合;或与光动力疗法(如来自NovartisOphthalmics的Visudyne(维替泊芬))和可注射到玻璃体内的可的爭〉衍生物(如来自AlconInc.的Retaane(醋酸阿奈可他)组合。此外,所述其他药学活性剂也可为本发明的其他核酸。所述药物也可再包含至少一种与不同于SDF-1的靶分子结合或表现出不同于本发明的核酸之一的功能的核酸。本领域技术人员将公认确实可在任何可通过将针对SDF-1的拮抗剂施用给需要所述结抗剂的患者,且所述拮抗剂适合于消除疾病或的核酸。所述效应包括但不限于病理性新生血管形成、炎症和转移。本发明的核酸适用于所述及其他说明书导言部分所述尤其由SDF-1参与所致的疾病或病症(将其通过引用并入本文,以避免任何不必要的重复)。即述特征亦在本发明的范围内,即此外原则上还可将药物用于预防公开的与所述药物在所述疾病治疗中的用途相关的任何疾病。因此本领域技术人员已知对于相应疾病的相应标记物。所述相应标记物优选是SDF-1。此外,所述相应标记物选自氧化应激标记物(包括铁氰化物(TMR)的跨膜还原酶、山梨醇途径活性增加包括之后的山梨醇蓄积、细胞溶质NADH/NAD比率增加、NADPH耗尽和果糖蓄积及随之而来的晚期糖基化终产物(AGES)的非酶促产生和蛋白激酶C的随后激活、由亚硝化和氧化应激介导的下游事件(例如MAP激酶活化))、炎性标记物(包括ICAM-1、VCAM-1、RANTES、结合珠蛋白或C反应性蛋白)及促血管生成标记物(如促血红细胞生长素或VEGF)。由此看来,可将所述标记用于确定是否可用本发明的任意核酸分子治疗受试者或患者。因此,再一方面,本发明涉及所述方法,其中测定相应标记物的存在与否及更具体的浓度。本领域技术人员已知用于检测所述标记物和任选定量所述标记物,及相应标记物应当存在或不存在于其中的范围,以判定受试者或患者是否患所述疾病中的任一种或处于患所述疾病的危险中的方法,及从而可按照本发明相应进行治疗的方法。在本发明的药物的一个实施方案中,将所述药物与其他疗法联合应用于本文公开的任一种疾病,尤其是待用本发明的药物进行治疗的疾病。"联合疗法"(或"综合疗法")包括施用本发明的药物和至少第二试剂(作为具体治疗方案的一部分),以期望通过这些治疗剂(即本发明的药物和所述第二试剂)的共同作用提供有益效应。这种联合的有益效应包括但不限于由治疗剂的联合所致的药物动力学或药效动力学共同作用。通常在限定的时间内完成所述治疗剂的联合施用(通常35为数分钟、数小时、数天或数周,取决于所选联合)。"联合疗法,,可旨在包括(但通常不包括)分别独立施用两种或多种所述治疗剂,所述分别独立施用偶尔也可导致本发明的联合。"联合疗法"旨在包括连续施用这些治疗剂,即在不同时间施用其中各治疗剂,和基本上同时施用这些治疗剂或所述治疗剂中的至少两种。可例如通过给受试者施用以固定比例含有各治疗剂的单胶嚢或多个各治疗剂的单胶嚢实现基本上同时给药。可通过任何合适途径实现各治疗剂的依次给药或基本上同时给药,所述途径包括但不限于局部途径、口服途径、静脉内途径、肌内途径和经过粘膜组织直接吸收。可通过相同途径或不同途径施用所述治疗剂。例如,可注射施用所选联合剂的第一种治疗剂,并可局部施用所述联合剂中的其他治疗剂。此外,也例如可局部施用所有治疗剂,或可注射施用所有治疗剂。除非另有说明,所述治疗剂的施用顺序不严格重要。"联合疗法"还可包括将上述治疗剂再与其他生物活性成分联合施用。如果联合疗法还包括非药物治疗,则可在能从治疗剂和非药物治疗的联合的共同作用中获得有益效应的任何合适时间实施所述非药物治疗。例如,在适当的情况下,在非药物治疗时隔治疗剂的施用或许有几天或甚至几周时,仍能达到有益效应。如在上述通用术语中所论述,原则上可以本领域技术人员已知的任何形式施用本发明的药物。优选的施用途径是全身施用,更优选通过肠胃外施用(优选通过注射)。此外,也可局部施用所述药物。其他施用途径包括肌内、腹膜内和皮下、经口、鼻内、气管内或肺部施用,优选侵入性最低并同时确保效力的施用途径。肠胃外施用通常被用于皮下、肌内或静脉内注射和输注。另外,一种用于肠胃外施用的方法釆用了本领域技术人员熟知的緩释或持续释放系统的植入,其确保维持恒定的剂量水平。此外,可通过局部4吏用合适的鼻内媒介物(vehicle)、吸入剂以鼻内形式施用本发明的优选药物,或可采用那些本领域技术人员所熟知的透皮贴剂的形式通过经皮途径施用本发明的优选药物。欲以透皮递送系统形式给药,(当然)要在整个给药过程中连续而非间歇给药。其他优选的局部制剂包括乳骨剂、软骨剂、洗剂、气雾喷雾剂和凝胶剂,其中活性成分的浓度范围通常将是0.01%-15%(w/w或w/v)。本发明的药物将通常包含溶解或分散于药学可接受的介质中的有效量的治疗活性成分,包括但不限于本发明的核酸分子。药学可接受的介质或栽体包括任何及所有溶剂、分散介质、包衣、抗细菌剂和抗真菌剂、等渗剂和吸收延迟剂等。本领域熟知用于药学活性物质的所述介质和制剂的应用。也可将补充的活性成分掺入本发明的药物中。本发明再一方面涉及药物组合物。所述药物组合物包含至少一种本发明的核酸,且优选包含药学可接受的粘合剂。所述粘合剂可为本领域使用和/或已知的任何粘合剂。所述粘合剂更特别是任何有关本文公开的药物的制备过程中论述的粘合剂。再一个实施方案中,所述药物组合物包含其他药学活性剂。根据本公开,本领域技术人员将知道药物和药物组合物的制备。通常可将所述組合物制成注射剂(作为液体溶液或悬浮液);制成适合于在注射前溶解或悬浮于液体中的固体形式;制成用于口服施用的片剂或其他固体剂;制成定时释放胶嚢;或制成当前使用的任何其他形式,包括滴眼剂、乳骨剂、洗剂、油骨剂、吸入剂等。由外科医生、内科医生或卫生保健工作者使用无菌制剂(例如基于盐水的洗液)来处理手术区中的特定区域也特别有用。也可通过微型装置、微颗粒或海绵递送组合物。配制后,将药物以与剂量制剂相容的方式施用,并施用药理学有效量。可易于以各种剂型(例如上述可注射溶液的类型)施用所述制剂,但也可采用药物释放胶囊等。在所述情形中,待施用的活性成分的量和组合物体积取决于待治疗的个体或受试者。给药所需的活性化合物的具体量取决于从业者的判断,且特异于每个个体。通常利用分散活性化合物所需的最小体积的药物。合适的施用方37案也是可变的,但可以开始施用所述化合物并监测结果,然后再以进一步的时间间隔提供进一步的受控剂量表示。例如,当以片剂或胶嚢(例如明胶胶嚢)形式口服施用时,可将活性药物成分(即本发明的核酸分子)和/或任何其他药学活性剂(在本文中也被称为治疗剂或活性化合物)与口服的、无毒的、药学可接受的惰性载体(例如乙醇、甘油、水等)相组合。而且,当期望或需要时,也可将合适的粘合剂、润滑剂、崩解剂和着色剂掺入所述混合物。合适的粘合剂包括淀粉,硅酸镁铝,淀粉浆,明胶,甲基纤维素,羧曱基纤维素钠和/或聚乙烯吡咯烷酮,天然糖类(例如葡萄糖或卩-乳糖),玉米增甜剂,天然和合成的树胶(例如阿拉伯胶、黄蓍胶或藻酸钠),聚乙二醇,蜡等。在这些剂型中使用的润滑剂包括油酸钠、硬脂酸钠、硬脂酸镁、苯曱酸钠、乙酸钠、氯化钠、二氧化硅、滑石、硬脂酸、其镁盐或钓盐和/或聚乙二醇等。崩解剂包括但不限于,淀粉、曱基纤维素、琼脂、膨润土、黄原胶淀粉、琼脂、藻酸或其钠盐、或泡腾混合物等。稀释剂包括例如乳糖、右旋糖、蔗糖、甘露醇、山梨糖醇、纤维素和/或甘氨酸。还可以诸如定时释放和緩释片剂或胶嚢、丸剂、粉剂、颗粒剂、酏剂、酊剂、混悬剂、糖浆剂和乳剂的口服剂型施用本发明的药物。有利地由脂肪乳浊液或悬浮液制备松剂。药物組合物或药物可为经灭菌的和/或含有佐剂,例如防腐剂、稳定剂、润湿剂或乳化剂、促溶剂(solutionpromoter)、用于调节渗透压的盐和/或緩冲剂。另外,它们还可包含其他在治疗上有价值的物质。根据常规混合、粒化或包被方法制备组合物,且所述组合物通常含有约0.1%-75%,优选约1%-50%的活性成分。可通过例如溶解、分散等制备液体(尤其是可注射的)组合物。将活性化合物溶解于药学纯溶剂(例如水、盐水、右旋糖水溶液、甘油、乙醇等)中或与之混合,从而形成可注射的溶液或悬浮液。另外,可配制适合于在注射前溶解于液体中的固体形式。对于固体组合物,赋形剂包括药物级的甘露醇、乳糖、淀粉、硬脂酸镁、糖精钠、滑石、纤维素、葡萄糖、蔗糖、碳酸镁等。还可用例如聚亚烷基二醇(如丙二醇)作为载体将上文限定的活性化合物配制成栓剂。在一些实施方案中,有利地由脂肪乳浊液或悬浮液制备栓剂。也可以脂质体递送系统(例如小单层嚢泡、大单层囊泡和多层囊泡)的形式分别施用本发明的药物和核酸分子。脂质体可由各种磷脂(包含胆固醇、硬脂胺或磷脂酰胆碱)构成。在一些实施方案中,将脂质成分的薄膜与药物水溶液水合而形成包裹所述药物的脂质层,这是本领域技术人员熟知的。例如,可以用本领域已知方法与亲脂化合物或非免疫原性高分子量化合物构建的复合物形式提供本文所述的核酸分子。另外,脂质体可在其表面携带所述核酸分子,以便用于靶向和在内部携带细胞毒性剂而介导细胞杀伤。美国专利6,011,020中提供了核酸相关复合物的实例。也可分别将本发明的药物和核酸分子与作为可定靶药物的载体的可溶聚合物相偶联。所述聚合物可包括聚乙烯吡咯烷酮、吡喃共聚物、聚羟丙基-曱基丙烯酰胺-苯酚、聚羟乙基天冬酰胺苯酚或经棕榈酰残基取代的聚环氧乙烷聚赖氨酸。此外,可分别将本发明的药物和核酸分子偶联至一类可用于实现药物的受控释放的可生物降解的聚合物,例如聚乳酸、聚£-己内酯、聚羟基丁酸、聚原酸酯、聚缩醛类、聚二氢吡喃、聚氰基丙烯酸酯类及水凝胶的交联或两亲性嵌段共聚物。如需要,待施用的药物组合物和药物还可含有较少量的非毒性辅助物质,例如润湿剂或乳化剂、pH緩冲剂及其他物质,例如乙酸钠和三乙醇胺油酸酯。可根据多种因素选择分别使用本发明的核酸分子和药物的给药方案,包括患者的类型、物种、年龄、体重、性别和医学状况;待治疗的病状的严重度;给药途径;患者的肾和肝功能;及所采用的具体适体或其盐。普通医师或兽医可容易确定和开出预防、对抗或阻止病状进展所需的药物有效量。在治疗本文公开的任何疾病中,本发明的核酸的有效血浆水平范39围优选为500fM-500nM。可优选以单次日剂量、每两天或每三天、每周、每两周、以单次月剂量或每三个月剂量分别施用本发明的核酸分子和药物。即述特征亦在本发明的范围内,即本文所述药物构成了本文公开的药物组合物。本发明再一方面涉及用于治疗需要这种治疗的受试者的方法,其中所述方法包括施用药学活性量的至少一种本发明的核酸。在一个实施方案中,受试者患有疾病或处于患所述疾病的风险中,其中所述疾病是任何本文公开的所述疾病,尤其是有关任何本发明的核酸在药物制备中的用途中公开的那些疾病中的任何一种。如本文优选使用的诊断或诊断剂或诊断工具适合于直接或间接检测有关本文中描述的各种病症和疾病时描述的SDF-1。所述诊断适合于检测和/或随访任何本文分别描述的病症和疾病。所述检测通过本发明的核酸与SDF-1的结合而成为可能。可直接或间接检测这种结合。相应的方法和工具是本领域技术人员已知的。尤其是,本发明的核酸可包含标记,所述标记使得能检测本发明的核酸,优选结合到SDF-1的核酸。所述标记优选选自放射性标记、酶标记和荧光标记。原则上,所有已知的针对抗体开发的测定法都可用于本发明的核酸,但将耙结合性抗体替换成了靶结合性核酸。在使用未标记的耙结合性抗体的抗体-测定法中,优选通过二抗来进行检测,用放射性标记、酶标记和荧光标记修饰所述二抗,并在其Fc-片段处结合所述靼结合性抗体。在核酸,优选本发明的核酸的情形中,用优选选自生物素、Cy-3和Cy-5的标记修饰所述核酸,且用针对所述标记的抗体(例如抗生物素抗体、抗Cy3抗体或抗Cy5抗体)检测这种标记,或当所述标记为生物素时,用天然结合生物素的链霉抗生物素蛋白或抗生物素蛋白检测所述标记。继而,优选用相应标记(例如放射性标记、酶标记或荧光标记)修饰所述抗体、链霉抗生物素蛋白或抗生物素蛋白(如同二抗一样)。再一个实施方案中,通过第二种检测工具检测或分析本发明的核酸分子,其中所述检测工具是分子信标。本领域技术人员已知分子信标方法。简言之,核酸探针(其也被称为分子信标)是待测核酸样品的反向互补序列,并因而可与待测核酸样品部分杂交。在结合核酸样品后,分子信标的荧光基团分离,导致荧光信号发生变化,优选为强度变化。这种变化与存在的核酸样品量相关。本领域技术人员理解,由于本文概述的SDF-1与其相应的受体之间的关系,可使用本发明的核酸分子诊断的疾病和病症原则上正是关于所述核酸分子用于治疗和/或预防所述疾病的用途时所描述的疾病和病症。除此以外,本发明的核酸分子的用途存在于造血减少、侵入或转移减少、B细胞发生和趋化现象减少、T细胞化学趋化减少和诱导生长抑制和凋亡。有关SDF-1的检测,优选方法包括下列步骤(a)提供待测SDF-1是否存在的样品(b)提供本发明的核酸,(c)让所述样品与所述核酸反应,优选在反应容器中进行反应,其中步骤(a)可在步骤(b)之前进行,或步骤(b)可在步骤(a)之前进行。在一个优选实施方案中,还提供步骤d),检测样品与核酸的反应。优选将步骤b)的核酸固定至表面。所述表面可为反应容器(例如反应管、平板的孔)表面,或可为包含于所述反应容器中的装置(例如珠)表面。可通过任何本领域技术人员已知的手段将核酸固定至所述表面,包括但不限于非共价或共价连接。优选通过所述表面和所述核酸之间的共价化学键建立连接。但即述特征亦在本发明的范围内,即将所述核酸间接固定至所述表面,其中这种间接固定涉及使用其他组分或一对相互作用偶体(interactionpartner)。所述其他组分优选为与待固定的核酸特异性相互作用的化合物(其也被称为相互作用偶体),并从而介导所述核酸附着于所述表面。所述相互作用偶体优选选自核酸、多肽、蛋白质和抗体。所述相互作用偶体优选为抗体,更41优选为单克隆抗体。所述相互作用偶体也可为核酸,优选功能性核酸。所述功能性核酸更优选选自适体、镜像异构体和至少与所述核酸部分互补的核酸。再一个备选实施方案中,所述核酸与所述表面的结合由多分体相互作用偶体(multi-partiteinteractionpartner)介导。所述多分体相互作用偶体优选为由第一成员和第二成员构成的一对相互作用偶体或一个相互作用偶体,其中所述第一成员包含于或附着于所述核酸,而所述第二成员包含于或附着于所述表面。所述多分体相互作用偶体优选选自包括生物素和抗生物素蛋白、生物素和链霉抗生物素蛋白、及生物素和中性链霉抗生物素蛋白(neutravidin)的相互作用偶体对。所述相互作用偶体对的第一成员优选是生物素。所述方法的优选结果是形成了SDF-1和所述核酸的经固定的复合物,其中更优逸可检测到所述复合物。技术特征亦在实施方案的范围内,即可从所述复合物中检测出SDF-1。用于检测SDF-1的方法还包括从优选已用于进行步骤c)的反应容器中除去样品。再一个实施方案中,所述方法还包括将SDF-1的相互作用偶体固定于表面(优选如上定义的表面)的步骤,其中所述相互作用偶体如本文中定义,和优选如上面在关于相应的方法时所定义的,及更优选在它们的各种实施方案中包括核酸、多肽、蛋白质和抗体。在此实施方案中,特別优选的检测工具是本发明的核酸,其中所述核酸可优选为经标记的或未标记的。在所述核酸为经标记的情况下,它可直接或间接被检测。这种检测也可涉及第二种检测工具的>(吏用,所迷第二种检测工具也优选选自核酸、多肽、蛋白质和在本文所述的各种实施方案中的具体形式。所述检测工具优选特异于本发明的核酸。在更优选的实施方案中,所述第二种检测工具是分子信标。在一个优选实施方案中,所述核酸或所述第二种检测工具或两者可包含检测标记。所述检测标记优选选自生物素、溴脱氧尿苷标记、洋地黄毒苷标记、荧光标记、UV-标记、放射性标记和螯合剂分子。此外,所述第二种检测工具也可与优选由所述核酸所含有、由所述核酸所包含或附着于所述核酸的检测标记相互作用。特别优选的组合如下检测标记是生物素而第二种检测工具是针对生物素的抗体,或其中检测标记是生物素而第二种检测工具是抗生物素蛋白或携带抗生物素蛋白的分子,或其中检测标记是生物素而第二种检测工具是链霉抗生物素蛋白或携带链霉抗生物素蛋白的分子,或其中检测标记是生物素而第二种检测工具是中性链霉抗生物素蛋白或携带中性链霉抗生物素蛋白的分子,或其中检测标记是溴脱氧尿苷而第二种检测工具是针对溴脱氧尿苷的抗体,或其中检测标记是洋地黄毒苷而第二种检测工具是针对洋地黄毒苷的抗体,或其中检测标记是螯合剂而第二种检测工具是放射性核素,其中所述检测标记优选附着于所述核酸。将公认的是,此类组合也可被应用于其中核酸附着于表面的实施方案。在这种实施方案中,检测标记优选附着于相互作用偶体。最后,即述特征亦在本发明的范围内,即用第三种检测工具检测第二种检测工具,所述第三种检测工具优选是酶,更优选为在检测所述第二种检测工具时显示出酶促反应的酶,或所述第三种检测工具是用于检测辐射(更优选由放射性核素发射的辐射)的工具。所述第三种检测工具优选特异性检测所述第二种检测工具和/或与所述第二种检测工具相互作用。此外,在将SDF-1的相互作用偶体固定在表面上并将本发明的核酸优选加入到在相互作用偶体和SDF-1之间形成的复合物中的实施方案之中,可将样品从反应体系中移除,更优选从在进行步骤c)和/或d)的反应容器中移除。在一个实施方案中,本发明的核酸包含荧光部分,且其中在所述核酸与SDF-1之间形成复合物时和在所述核酸与游离的SDF-1之间形成复合物时的所述荧光部分的荧光不同。再一个实施方案中,所述核酸是本发明的核酸的衍生物,其中所述核酸的衍生物包含至少一种腺苷的荧光衍生物以替换腺苷。在一个优选实施方案中,所述腺苷的荧光衍生物是亚乙烯基腺苷。再一个实施方案中,利用荧光检测由本发明的核酸的衍生物和SDF-1构成的复合物。在所述方法的一个实施方案中,信号产生于步骤(c)或步骤(d),且所述信号优选与样品中SDF-1的浓度相关。在一个优选的方面,可在96孔平板中进行所述测定,其中将成分固定在如上描述的反应容器中,并将孔用作反应容器。还可将本发明的核酸用作药物设计的起始材料。主要存在两种可能方法。一种方法是筛选化合物文库,而所述化合物文库优选为低分子量化合物文库。在一个实施方案中,所述筛选是高通量篩选。高通法(trial-and-error)评估。最好是通过比色测量法来进行所述分析。与之相关使用的文库是本领域技术人员已知的。此外,也可将本发明的核酸用于药物的合理设计。合理药物设计优选是设计药学先导结构。从靶标的三维结构开始,用计算机程序把包含许多不同化合物的结构的数据库搜索一遍,所述三维结构通常通过诸如X射线晶体学或核磁共振光镨学之类的方法来确定。所述选择通过计算机来完成,随后可在实验室中检测所确定的化合物。可从任何本发明的核酸开始进行合理药物设计,并涉及与本发明构,优选三维结构。在任何情况下,所述结构仍显示出与本发明的核酸相同或相似的结合特征。在合理药物设计中的进一步的步骤中或作为备选步骤,优选用不同于核苷酸和核酸的化学基团来模拟结合到神经递质的所述核酸的那些部分的三维结构。通过这种模拟,可设计出不同于所述核酸的化合物。所述化合物优选为小分子或肽。在例如通过使用本领域技术人员已知的竟争性测定法来筛选化合物文库的情况下,可发现合适的SDF-1类似物、SDF-1激动剂或SDF-l拮抗剂。这种竟争性测定法可如下建立。将本发明的核酸,优选作为结合靶标的L-核酸的镜像异构体偶联至固相。为了鉴定SDF-1类似物,可将经标记的SDF-1加入至所述测定法。潜在的类似物将与SDF-1分子竟争性结合所述镜像异构体,这将伴随通过相应标记获得的信号降低。筛选激动剂或拮抗剂可涉及使用本领域技术人员已知的细胞培养测定法。本发明的试剂盒可包含至少一种或几种本发明的核酸。另外,试剂盒可包含至少一种或几种阳性或阴性对照。阳性对照可例如是SDF-1,尤其是针对其来选择本发明核酸或本发明核酸与其结合的SDF-1,优选以液体形式。阴性对照可例如是根据类似于SDF-1的生物物理学性质而限定的肽,但其不会被本发明的核酸所识别。此外,所述试剂盒可包含一种或几种緩沖液。各种成分可以干燥或冻干的形式,或以溶解于液体中的形式包含在试剂盒中。所述试剂盒可包括一个或几个容器,所述容器继而可包含一种或几种所述试剂盒的成分。再一个实施方案中,所述试剂盒包括说明书或操作手册,其将有关如何使用试剂盒及其各种成分的信息提供给使用者。如本文中所优选使用的,术语治疗在一个优选实施方案中也包括预防和/或随访。本发明的核酸的药学和生物分析测定主要用于评估它在几种人体和非人体的体液、组织和器官中的药物动力学和生物动力学特性。为此,可使用任何本文公开和本领域技术人员已知的检测方法。本发明再一方面提供了用于检测本发明的核酸的夹心杂交测定法。在所述检测测定法中,使用了捕获探针和检测探针。所述捕荻探针与本发明的核酸的第一个部分互补,而检测探针与本发明的核酸的第二个部分互补。捕获探针和检测探针均可由DNA核苷酸、经修饰的DNA核苷酸、经〈务饰的RNA核苷酸、RNA核苷酸、LNA核苷酸和/或PNA核普酸形成。因此,所述捕获探针包含与本发明的核酸的5'-末端互补的片段,45而检测探针包含与本发明的核酸的3,-末端互补的片段。在所述情况下,将捕获探针通过其5,-末端固定至表面或基质,其中所述捕获探针可在其5,-末端处直接固定,或通过在其5,-末端和表面或基质之间的连接子进行固定。但原则上,可将连接子连接至捕获探针的每个核苷酸。所述连接子可由本领域技术人员已知的亲水性连接子形成,或由D-DNA核苷酸、经修饰的D-DNA核苷酸、D-RNA核苷酸、经修饰的D-RNA核香酸、D-LNA核苷酸、PNA核苷酸、L-RNA核苷酸、L-DNA核苷酸、经修饰的L-RNA核苷酸、经修饰的L-DNA核苷酸和/或L-LNA核苷酸形成。此外,所述捕获探针也可包含与本发明的核酸的3,-末端互补的片段,而所述检测探针也可包含与本发明的核酸的5,-末端互补的片段。在该情况下,所述捕获探针通过其3,-末端固定至表面或基质,其中所述捕获探针可在其3,-末端处直接固定,或通过在其3,-末端和表面或基质之间的连接子进行固定。但原则上,可将连接子连接至与本发明的核酸互补的片段的每个核苷酸。连接子可由本领域技术人员已知的亲水性连接子形成,或由D-DNA核苷酸、经修饰的D-DNA核苷酸、D-RNA核苦酸、经修饰的D-RNA核苷酸、D-LNA核苷酸、PNA核苷酸、L-RNA核苷酸、L-DNA核苷酸、经^f务饰的L-RNA核苷酸、经#>饰的L-DNA核苷酸和/或L-LNA核苷酸形成。的,数。可与本发明的核酸杂交的捕获探针和检测探针的核苷酸总数的最大值应是本发明的核酸所包含的核苷酸数。检测探针和捕获探针的最小核苷酸数(2-10个核苷酸)应可使它们分别与本发明的核酸的5,-末端或3,-末端杂交。为了实现在本发明的核酸和存在于所分析的样品中的其他核酸之间的高的特异性和选择性,捕获探针和检测探针的核苷酸总数应是或最多为本发明的核酸所包含的核苷酸数。此外,所述检测探针优选携带如本文先前所描述的可检测的标记物分子或标记。原则上,可将所述标记或标记物分子连接至所述检测探针的每个核苷酸。所述标记或标记物优选位于检测探针的5,-末端或3,-末端,其中可在检测探针内的与本发明的核酸互补的核苷酸与所述标记之间插入连接子。所述连接子可由本领域技术人员已知的亲水性连接子形成,或由D-DNA核苷酸、经修饰的D-DNA核苷酸、D-RNA核苷酸、经修饰的D-RNA核苷酸、D-LNA核苷酸、PNA核苷酸、L-RNA核苷酸、L-DNA核苦酸、经修饰的L-RNA核苷酸、经修饰的L-DNA核苷酸和/或L-LNA核苷酸形成。可如下检测本发明的核酸使本发明的核酸以其一端与捕获探针杂交,且以其另一端与检测探针杂交。然后,通过例如一个或多个洗涤步骤移除未结合的检测探针。随后可测量结合的检测探针量,所述检测探针优选携带标记或标记物分子。如本文优选使用的,除非另有说明,术语"疾病"和"病症,,应可互换使用。如本文使用的,术语"包含"优选无意限制所述术语之前的主题或由所述术语所描述的主题。但在备选实施方案中,应将术语"包含,,理解为"含有",从而理解为限制所述术语之前的主题或由所述术语所描述的主题。下表中概括了本文所使用的本发明的核酸分子和靶分子SDF-1的各序列标识号、化学性质,其实际序列及内部参考号。需知,已用生物素化的人D-SDF-1(SEQ.ID.4)在适体(即d-核酸水平(D-RNA))水平表征了所述核酸,或用天然构型的SDF-1、L-SDF-l(人SDF-1a,SEQ-ID.1)在镜像异构体(即L-核酸(L-RNA))水平表征了所述核酸。不同的核酸共有一个内部参考名称(但分别以一个SEQ.ID针对D-RNA(适体)分子,且一个SEQ,ID.针对L-RNA(镜像异构体)分子)。表l(A)<table>tableseeoriginaldocumentpage48</column></row><table>RNA/肽序列内部参考号18L-RNA(镜像异构体)AGCGUGAAAGUAACACGUAAAAUGAAAGGUAACCACGCU191-A619L-RNA(镜像异构体)AAAGYRACAHGUMAAX,UGAAAGGUARC;X,=A或缺失A型的式-l20L-RNA(镜像异构体)AAAGYRACAHGUMAAUGAAAGGUARCA型的式-221L-RNA(镜像异构体)AAAGYRACAHGUMAAAUGAAAGGUARCA型的式-322L-RNA(镜像异构体)AAAGYAACAHGUCAAUGAAAGGUARCA型的式-423L-RNA(镜像异构体RS證RA型的式-5-5'24L-RNA(镜像异构体YRYDSYA型的式-5-3,25L-RNA(镜像异构体)CUGUGAAAGCAACAUGUCAAUGAAAGGUAGCCGCAG192-A10-00226L-RNA(镜像异构体)UGUGAAAGCAACAUGUCAAUGAAAGGUAGCCGCA192-A10-00327L-RNA(镜像异构体)GUGAAAGCAACAUGUCAAUGAAAGGUAGCCGC192-A10-00428L-RNA(镜像异构体)(JGAAAGCAACAUGUCAAUGAAAGGIMGCCG192-A10-00529L-RNA(镜像异构体)GAAAGCAACAUGUCAAUGAAAGGUAGCC192-A10-00630L-RNA(镜像异构体)AAAGCAACAUGUCAAUGAAAGGUAGC192-A10-00731L-RNA(镜像异构体)GCGUGAAAGCAACAUGUCAAUGAAAGGUAGCCGCGC192-A10-00832L-RNA(镜像异构体)GCGCGAAAGCAACAUGUCAAUGAAAGGUAGCCGCGC192-A10-01533L-RNA(镜像异构体)GCGGAAAGCAACAUGUCAAUGAAAGGUAGCCCGC192-A10-01434L-RNA(镜像异构体)CGUGAAAGCAACAUGUCAAUGAAAGGUAGCCGCG192-A10-01635L-RM(镜像异构体)GCGC/UAGCAACAUGUCAAUGAAAGGUAGCGUGC192-A10-01736L-RNA(镜像异构体)GUGCAAAGCAACAUGUCAAUGAAAGGUAGCGCGC192-A10-018,200780030524.3势溢齿被40/98M<table>tableseeoriginaldocumentpage50</column></row><table>表l(D)<table>tableseeoriginaldocumentpage51</column></row><table>表l(E)<table>tableseeoriginaldocumentpage52</column></row><table><table>tableseeoriginaldocumentpage53</column></row><table>表l(G)<table>tableseeoriginaldocumentpage54</column></row><table>表l(H)<table>tableseeoriginaldocumentpage55</column></row><table><table>tableseeoriginaldocumentpage56</column></row><table><table>tableseeoriginaldocumentpage57</column></row><table>表l(K)<table>tableseeoriginaldocumentpage58</column></row><table><table>tableseeoriginaldocumentpage59</column></row><table>表l(M)<table>tableseeoriginaldocumentpage60</column></row><table><table>tableseeoriginaldocumentpage61</column></row><table>表l(o)<table>tableseeoriginaldocumentpage62</column></row><table>表l(p)<table>tableseeoriginaldocumentpage63</column></row><table>附图简述本发明通过附图、实施例和序列表来进一步举例说明,从这些附图、实施例和序列表中可获得另外的特征、实施方案和优点,其中图1示结合人SDF-1的相关RNA配体的序列比对,其中标出了在一个优选实施方案中以其整体对于结合人SDF-1来说必不可少的序列基序("A型");图2A示RNA配体192-A10-001的衍生物("A型,,序列基序的人SDF-1RNA配体);图2B示RNA配体192-A10-001的衍生物("A型,,序列基序的人SDF-1RNA配体);图3示结合人SDF-1的相关RNA配体的序列比对,其中标出了在一个优选实施方案中以其整体对于结合人SDF-1来说必不可少的序列基序("B型");图4A示RNA配体193-C2-001和193-G2-001的衍生物("B型"序列基序的人SDF-1RNA配体);图4B示RNA配体193-C2-001和193-G2-001的衍生物("B型"序列基序的人SDF-1RNA配体);图5示结合人SDF-1的相关RNA配体的序列比对,其中标出了在一个优选实施方案中以其整体对于结合人SDF-1来说必不可少的序列基序("C型,,);图6示RNA配体190-A3-001的衍生物("C型"序列基序的人SDF-1RNA配体);图7A示RNA配体190-D5-001的衍生物("C型"序列基序的人SDF-1RNA配体);图7B示RNA配体190-D5-001的衍生物("C型"序列基序的人SDF-1RNA配体);图8示RNA配体197-B2的衍生物("C型"序列基序的人SDF-1RNA配体);图9示结合人SDF-1的其他RNA配体;图10示人SDF-1诱导性Jurkat人T细胞白血病细胞的趋化性,其中在Jurkat人T细胞白血病细胞向各种浓度的SDF-1迁移3小时后,获得了关于人SDF-1的剂量-反应曲线,表示为随SDF-1浓度改变而变化的荧光信号;图11示人SDF-1结合性适体192-A10-001与生物素化的人D-SDF-l在37。C下的结合分析的结果,表示为随生物素化的人D-SDF-l浓度改变而变化的适体结合;图12示在趋化性测定实验中测得的人SDF-1结合性镜像异构体192-A10-001的趋化效力;让细胞向的0.3nM人SDF-1(于37。C下与各种量的镜像异构体192-A10-001预温育)迁移,表示为随镜像异构体192-A10-001浓度改变而变化的对照的百分比;图13示人SDF-1结合性适体192-A10-001、192-F10-001、192國C9画001、192-E10-001、192-C10-001、192-D11-001、192-G11-001、192-H11-001、192-D10-001、192-E9-001和192-H9-001与生物素化的人D-SDF-l在37。C下的竟争性结合分析的结果,表示为在1nM和5nM的未标记的适体192-A10-001、192-F10-001、192-C9-001、192-E10-001、192-C10-001、192-D11-001、192-G11-001、192-H11-001、192-D10-001、192-E9-001和192-H9-001下,经标记的适体192-A10-001(用作被未标记的适体替代的参照)的结合;图14示人SDF-1结合性适体192-A10-008与生物素化的人D-SDF-l在37。C下的结合分析的结果,表示为随生物素化的人D-SDF-l浓度改变而变化的适体结合;图15示Biacore2000感应图(sensorgram),标出了人SDF-1结合性镜像异构体192-A10-008与人SDF-1(其被通过胺偶联过程固定在PioneerFl感应芯片上)结合的K。值,表示为随时间而变化的响应值(RU);另外列出镜像异构体192-A10-008和192-A10-001的开关率及Ko值;图16示通过趋化性测定实验测得的人SDF-1结合性镜像异构体192-A10-008的趋化效力;让细胞向的0.3nM人SDF-1(于37。C下与各种量的镜像异构体192-A10-008预温育)迁移,表示为随镜像异构体192-A10-008浓度改变改变而变化的对照的百分比;图17示Biacore2000感应图,标出了镜像异构体193-G2-01与人SDF-1(其被通过胺偶联过程固定在PioneerFl感应芯片上)结合的Kd植,表示为随时间而变化的响应值(RIO;另外列出镜像异构体193-G2-001和193-C2掘的开关率及K。值;图18示人SDF-1结合性适体193-G2-012与生物素化的人D-SDF-1在37。C下的结合分析的结果,表示为随生物素化的人D-SDF-1浓度改变而变化的适体结合;图19示人SDF-1结合性适体190-A3-001、190-A3-003、l卯-A3-004、190-A3-007、191國D5陽001、191画D5國002、191-D5-003、191-D5-004、191-D5-005、191-D5-006和191-D5-007与生物素化的人D-SDF-1在37。C下的竟争性结合分析的结果,表示为在500nM、50nM和10nM的未标记的适体190-A3-001、190-A3-003、190-A3-004、190-A3-007、191-D5-001、191-D5-002、191-D5-003、191-D5-004、191-D5-005、191-D5-006和191-D5-007下,经标记的适体190-A3-001或191-D5-001(用作纟皮未标记的适体替代的参照)的结合;图20示人SDF-1结合性适体190-A3-004和191-D5-007与生物素化的人D-SDF-1在37。C下的结合分析的结果,表示为随生物素化的人D-SDF-1浓度改变而变化的适体结合;图21示Biacore2000感应图,标出了镜像异构体191-D5-007与人SDF-1(其被通过胺偶联过程固定在PioneerFl感应芯片上)结合的Ko值,表示为随时间而变化的响应值(RU);另外列出镜像异构体191-D5-001、191-D5-007、190-A3-003和197-B2的开关率及Ku值;图22示通过趋化性测定实验测得的人SDF-1结合性镜像异构体190-A3-004的趋4匕效力;让细胞向0.3nM人SDF-1(于37。C下与各种量的镜像异构体l卯-A3-004预温育)迁移,表示为随镜像异构体190-A3-004浓度改变而变化的对照的百分比;66图23A示通过趋化性测定实验测得的人SDF-1结合性镜像异构体193-G2-012國5,-PEG、197-B2-006-5,-PEG、191画D5-007画5,-PEG和191-A10-008-5,-PEG的趋化效力;让细胞向0.3nM人SDF-l(于37°C下与各种量的镜像异构体193-G2-012-5,-PEG、197-B2-006-5,-PEG、191-D5-007-5,-PEG和191-A10-008-5,-PEG预温育)迁移,表示为随镜像异构体193-G2-012-5,-PEG、197-B2-006-5,-PEG、191-D5-007-5,-PEG和191-A10-008-5,-PEG浓度改变而变化的对照的百分比;图23B示通过趋化性测定实验测得的人SDF-l结合性镜像异构体197-B2-006-5,PEG和197-B2-006-31b-5,-PEG的趋化效力;让细胞向0.3nM人SDF-l(于37。C下与各种量的镜像异构体197-B2-006-5,PEG和197-B2-006-31b-5,-PEG预温育)迁移,表示为随镜像异构体197-B2-006-5,PEG和197-B2-006-31b-5,-PEG浓度改变而变化的对照的百分比;图24A示Biacore2000感应图,标出了镜《象异构体193-G2國012國5,-PEG、191-A10-008-5,-PEG和191画A10誦001-5,-PEG与人SDF-l(其被通过胺偶联过程固定在PioneerFl感应芯片上)结合的Ko值,表示为随时间而变化的响应值(RU);图24B示Biacore2000感应图,标出了镜《象异构体197-B2-006-5,PEG、197-B2-006-31b誦5,誦PEG和191-D5誦007画5,-PEG与人SDF-l(其被通过胺偶联过程固定在PioneerFl感应芯片上)结合的Ko值,表示为随时间而变化的响应值(RU);图25A示通过趋化性测定实验测得的人SDF-l结合性镜像异构体192-A10-001、192-A10-001-5,-HES130和192-A10-001-5,-HES100的趋化效力;让细胞向0.3nM人SDF-l(于37。C下与各种量的镜像异构体192-A10-001、192-A10-001國5,-HES130和192-A10-001-5,-HES100预温育)迁移,表示为随镜像异构体192-A10-001、192-A10-001-5,-HES130和192-A10-001-5,-HES100浓度改变而变化的对照的百分比;67图25B示通过趋化性测定实验测得的人SDF-1结合性镜像异构体192-A10德、192-A10-001-5,-PEG30和192-A10-001-5,-PEG40的趋化效力;让细胞向0.3nM人SDF-l(于37。C下与各种量的镜像异构体192-A10德、192-A10-001-5,-PEG30和192-A10-001~5,-PEG40预温育)迁移,表示为随镜像异构体192-A10-001、192-A10-001-5,-PEG30和192-A10-001-5,-PEG40浓度改变而变化的对照的百分比;图26示通过趋化性测定实验测得的对照镜像异构体的趋化效力;让细胞向0.3nM人或鼠SDF-l(于37°。下与各种量的对照镜像异构体预温育)迁移,表示为随对照镜像异构体浓度改变而变化的对照的百分比;图27示鼠SDF-l诱导性Jurkat人T细胞白血病细胞的趋化性,其中在Jurkat人T细胞白血病细胞向各种SDF-l浓度迁移3小时后,获得了关于SDF-l的剂量-反应曲线,表示为荧光信号;图28示通过趋化性测定实验测得的人SDF-l结合性镜像异构体192-A10-001和191-D5-007-5,PEG的趋化效力;让细胞向0.3nM人SDF-l(于37°C下与各种量的镜像异构体192-A10-001和191-D5-007-5,PEG预温育)迁移,表示为随镜像异构体192-A10-001和191-D5-007-5,PEG浓度改变而变化的对照的百分比;图29示SDF-l结合性镜像异构体192-A10-001在使用人卩"J卜SDF-la(于37°C下与各种量的镜像异构体192-A10-001预温育)的CXCR4-受体结合测定中的效力,根据镜像异构体192-A10-001浓度标绘特异性结合的[^J-SDF-la;和图30示人SDF-l结合性镜像异构体192-A10-001对使用1nM人SDF-la产生的表达CXCR4的细胞的MAP激酶刺激的抑制;图31示主动l^环出芽须!l定(aorticringsproutingassay)中人SDF-l结合性镜^f象异构体193-G2-012-5,-PEG和PEG化的对照镜4象异构体对SDF-l诱导性出芽的抑制,其中来自大鼠主动脉的环被包埋在胶原基质中,且与含或不含镜像异构体的SDF-l温育6天(a:对照;b:10nMSDF-l;c:10nMSDF-l+1人SDF画l结合性镜<象异构体193-G2-012-5,-PEG;d:10nMSDF-1+1PEG化的对照镜像异构体);图32示主动脉环出芽测定中人SDF-1结合性镜像异构体193-G2-012-5,-PEG和PEG化的对照镜像异构体对SDF-1诱导性出芽的抑制,其中以平均值+Z-SD显示出芽指数(每条件5环)(*:SDF-1值与对照显著不同(Mann-Whitney-检验;p=0.009);**:SDF-1+结合人SDF-1的镜像异构体193-G2-012-5,-PEG的值与SDF-1的值显著不同(Mann-Whitney誦检验;p=0.028);图33示与未使用人SDF-1结合性镜像异构体193-G2-012-5,-PEG处理的大鼠血浆SDF-1水平相比,在静脉推注人SDF-1结合性镜像异构体193-G2-012-5,-PEG后大鼠血浆中人SDF-1结合性镜像异构体193-G2-012-5,-PEG和SDF-1的水平,其中在96小时的时间内测定血浆中人SDF-1结合性镜像异构体193-G2-012-5,-PEG和SDF-1水平。实施例实施例1:人SDF-1结合性核酸使用生物素化的人D-SDF-1作为靶标,可产生几种人SDF-1结合性核酸,所述核酸的核苷酸序列显示于图1-9。使用生物素化的人D-SDF-1在适体(即D-核酸)水平表征所述核酸,或使用天然构型的SDF-1(L-SDF-1)在镜像异构体水平(即L-核酸)表征所述核酸。采用使用生物素化的人D-SDF-1的竟争性或直接pull-down测定法使用生物素化的人D-SDF-1分析适体(实施例4)。通过Biacore仪2000进行的表面等离子体共振测量(实施例6)和体外趋化性测定(实施例5)使用天然构型的SDF-1(L-SDF-1)检测了镜像异构体。如此产生的核酸分子显示出不同的序列基序,三种主要类型定义于图1、2A和2B(A型),图3、4A和4B(B型),图5、6、7A、7B和8(C型)。对于核苷酸序列基序的定义,使用了IUPAC缩写以用于不确定的核苷酸S强G或C;W弱A或U;G或A;C或U;G或U;A或C;B非AC或U或G;D非CA或G或U;H非GA或C或U;V非UA或C或G;N全部A或G或C或U。除非另有说明,任何核酸序列或片段和框的序列均分别以5,->3,的方向显示。1.1A型SDF-l结合性核酸如图1所示,所有A型SDF-l结合性核酸的序列都包含一个核心核苷酸序列,所述核心序列两侧连有可相互杂交的5,-和3,-末端片段。但在所述分子中并非一定发生这种杂交。采用使用生物素化的人D-SDF-1的直接和竟争性pull-down测定法在适体水平表征所述核酸,以便根据它们的结合行为对它们进行分级(实施例4)。将选择出的序列合成为镜像异构体(实施例3),并使用天然构型的SDF-l(L-SDF)根据体外细胞培养趋化性测定法进行检测(实施例5),及通过使用Biacore仪2000进行的表面等离子体共振测量进行检测(实施例6)。所定义的框或片段的序列在A型SDF-1结合性核酸之间可能不同,这影响了对SDF-l的结合亲和力。基于对被概括为A型SDF-l结合性核酸的不同的SDF-l结合性核酸所进行的结合分析,下述核心核普酸序列及其核苷酸序列各自及更优选以其整体在结合SDF-l中必不可少所有鉴定的A型SDF-l结合性核酸的核心核苷酸序列共有序列呤咬基氨嘌嘧酮亚RYKMAAAG豕RACAHGU班AAXaUGAAAGGUARCI(A型的式-l),其中xa缺失或为'A,。如果'A,缺失,则可将核心核苷酸序列的序列概括为A型的式-2(kAAGyRACAHGU徵AA!UGAAAGGUARCl)。在核心核苷酸序列内具有额外的核苷酸'A,且仍结合SDF-1的A型SDF-1结合性核酸191-A6(核心核苷酸序列AAAGUAACACGU在AAjUGAAAGGUAiC)使得包括备选的核心核苷酸序歹'J(^AAGYRACAHGUMAARUGAAAGGUARCl,A型的式画3)。作为A型SDF-1结合性核酸的所有其他核酸实例,根据对人SDF-1的结合亲和力表征所述A型SDF-1结合性核酸192-A10-001。使用pull-down结合测定法(KD=1.5nM,图11)和通过表面等离子体共振测量法(KD=1.0nM,图15)测定平衡结合常数KD。使用体外细胞培养趋化性测定法测量出0,12nM的192-A10-001的IC5。(抑制浓度50%X图12)。然后,通过测定相对192-A10-001的竟争性pull-down结合而分析了图1所示的所有A型SDF-1结合性核酸(图13;并非所有被检测的A型SDF-1结合性核酸示于图13中)。在这些竟争实验中,A型SDF-1结合性核酸192-B11和192-C10表现出等于192-A10-001的结合亲和力。测定A型SDF-1结合性核酸192-G10、192-F10、192-C9、192-E10、192-D11、192-G11、192-H11和191-A6得更弱的结合亲和力。A型SDF-1结合性核酸192-D10、192-E9和192-H9的结合亲和力极甚弱于192-A10-001(图13)。如上所述,A型SDF-1结合性核酸192-B11和192-C10表现出等于192-A10-001的对SDF-1的结合亲和力。但它们在核心核苷酸序列的核苷酸序列上显示少许差异。因此,可通过核苷酸序列AAAGYAACAHGUCAAUGAAAGGUARCl(A型的式-4)概括三种结合SDF-1的具有几乎相等的高亲和力的分子的共有序列,其中192-A10-001的核心核苷酸序列的核苷酸序列(核苷酸序列AAAGCAACAUGUCAAUGAAAGGUAGCl)代表具有最好的A型SDF-1结合性核酸的结合亲和力的核苷酸序列。A型SDF-1结合性核酸的5,-末端片段的6个核苷酸中的5或6个核苷酸可与A型SDF-1结合性核酸的3,-末端片段的6个核苷酸中的相应的5或6个核苷酸杂交,从而形成末端螺旋。尽管这些核苷酸在几个位置上是可变的,但不同核苷酸允许5,-和3,-末端片段各自6个核苷酸中的5或6个杂交。图1中显示的A型SDF-1结合性核酸的5'-末端和3,-末端片段可概括为5,末端片段的通式('RSHRYR,,A型的式-5-5,)和3,-末端片段的通式('YRYDSY,,A型的式-5-3,)。通过测定相对原始分子192-A10-001和192-A10-008的竟争性pull-down结合而分析了A型SDF-1结合性核酸192-A10-001的截短衍生物(图2A和2B)。这些实验显示可将192-A10-001的6个末端核普酸(5,末端GCUGUG;3,末端CGCAGC)减少至衍生物192-A10-002的5个核香酸(5,末端CUGUG;3,末端CGCAG)而不降低结合亲和力。然而,当截短至4个末端核苷酸(5,末端UGUG;3,末端CGCA;192-A10-003)或更少(192-A10-004/-005/-006/-007)导致对SDF-1的结合亲和力降低(图2A)。可将图2A和图2B中显示的测定的具有A型SDF-1结合性核酸192-A10-001的f汙生物的5和4个核苷酸的长度的5,-末端和3,-末端片段概括为5,-末端片段的通式(4X2BBBS,,A型的式-6-5,)和3,-末端片段的通式('SBBVX3,;A型的式-6-3,)中,其中X2缺失或为'S,,X3缺失或为'S,。5'-和3,-末端片段的核苷酸序列对A型SDF-1结合性核酸的结合亲和力具有影响。这不仅由核酸192-F10和192-E10显示,而且还由192-A10-001的衍生物显示(图2B;)。192-F10和192-E10的核心核苷酸序列与192-B11和192-C10的相同,但在5,-末端片段的3,-末端和在3,-末端片段的5,-末端包含少许差异,从而导致结合亲和力降低。用'GCGCG,和'CGCGC,(192-A10-015)替换A型SDF-1结合性核酸192-A10-002的5,-和3'-末端核苷酸'CUGUG,和'CGCAG,导致结合亲和力降低,然而使用'GCGUG,和'CGCGC,(192-A10-008)的替换导致与对于192-A10-002结合亲和力相同(图2B,图15,图12,图16)。另外,相对192-A10-001或其衍生物192画A10曙008(两者具有相同的对SDF-1的结合亲和力)的结合亲和力,将各自具有4个5,-和3,-末端核苷酸的A型SDF-1结合性核酸192-A10-001的9个衍生物(192-A10-014/-015/-016M)17/-018/-019/-020/-021/-022/-023)检测为适体。所有克隆表现出弱于、甚弱于或极甚弱于192-A10-001(6个核苷酸形成末端螺旋)或具有5个末端的192-A10-008(图2B)的对SDF-1的结合亲和力。因此,5,-和3,-末端片段的核苷酸的序列核苷酸数对于与SDF-1的有效结合极为重要。如对于A型SDF-1结合性核酸192-A10-002和192-A10-08所示,5,-和3,-末端片段的优选组合是'CUGUG,和'CGCAG,(A型SDF-1结合性核酸192-A10-002的5,-和3,-末端片段)及'GCGUG,和'CGCGC,(A型SDF-1结合性核酸192-A10-008的5,-和3,-末端片段)。然而,通过组合所有^:测A型SDF-1结合性核酸的5,-和3,-末端片段,得出A型SDF-1结合性核酸的5,-末端片段的通式是'X!X2NNBV,(A型的式-7-5,),A型SDF-1结合性核酸的3,-末端片段的通式是'BNBNX3X4,(A型的式-7-3,),其中Xj是'R,或缺失,X2是'S,,X3是'S,及X4是'Y,或缺失;或Xj缺失,X2是'S,或缺失,X3是'S,或缺失及X4缺失。1.2B型SDF-1结合性核酸如图3所示,所有B型SDF-1结合性核酸的序列都包含一个核心核苷酸序列,所述核心序列两侧连有可相互杂交的5,-和3,-末端片段。但在所述分子中并非一定发生这种杂交。采用使用生物素化的人D-SDF-1的直接和竟争性pull-down测定法在适体水平表征所述核酸,以便根据它们的结合行为对它们进行分级(实施例4)。将选择出的序列合成为镜像异构体(实施例3),并使用天然构型的SDF-1(L-SDF)根据体外细胞培养趋化性测定法进行检测(实施例5),及通过使用Biacore仪2000根据表面等离子体共振测量法进行检测(实施例6)。73所定义的框或片段的序列在B型SDF-1结合性核酸之间可能不同,这影响了对SDF-1的结合亲和力。基于对被概括为B型SDF-l结合性核酸的不同的SDF-1结合性核酸所进行的结合分析,下述核心核苷酸序列及其核苷酸序列各自及更优选以其整体在结合SDF-1中必不可少所有鉴定的B型SDF-1结合性核酸的核心核苷酸序列共有序列(B型的式-1)。通过测定相对A型SDF-1结合性核酸192-A10掘(在pull-down结合测定法中测定的1.5nM的Kd[圉11,通过表面等离子共振测量法测定的1,0nM的K。[图15j,0.12nM的IC50;[图12)的竟争性pull-down结合而分析了在核心核普酸序列的一个位置上相异的B型SDF画l结合性核酸193-G2-001、193-C2-001和193-F2-001。三种,皮测B型SDF-1结合性核酸中每一种都显示出优于A型SDF-1结合性核酸192-A10-001的对人SDF-1的结合,其中193-G2-001的结合亲和力与193-C2-001和193-F2-001的一样好(图3)。数据表明B型SDF-1结合性核酸193-G2-001、193-C2-001和193-F2-001的核心核苷酸序列的核苷酸序列中的差异对于对SDF-1的结合亲和力没有影响。例如,根据对人SDF-1的结合亲和力表征所述B型SDF-1结合性核酸193-G2-001。使用pull-down结合测定法(KD=0.3nM)和通过表面等离子体共振测量法(KD=0.5nM,图17)測定平衡結合常数Kd。使用体外细胞培养趋化性测定法测量出0.08nM的193-G2-001的IC50(抑制浓度50%)。相反,核心核苷酸序列的序列不同的B型SDF-1结合性核酸193-B3-002、193-H3-002、193-E3-002和193-D1-002结合性质更差(图3)。因此,具有提高的对SDF-1的结合亲和力的B型SDF-1结合性核酸共有具有序列(B型的式-2)的核心核苷酸序列。B型SDF-1结合性核酸的5,-末端片段的6个核苷酸中有4、5或6个核苷酸可与B型SDF-1结合性核酸的3,-末端片段的6个核苷酸中的相应的4、5或6个核苷酸杂交,从而形成末端螺旋。尽管这些核苷酸在几个位置上是可变的,但不同核苷酸允许5,-和3,-末端片段各自6个核苷酸中的5或6个杂交。可将图3中显示的B型SDF-1结合性核酸的5,-末端和3,-末端片段概括为5,末端片段的通式(B型的式-3-5,;'X,GCRWG,,其中Xi是'A,或缺失)和3,-末端片段的通式(B型的式-3-3,;'KRYSCX4',其中X4是'U,或缺失)。B型SDF-1结合性核酸193-Gl-002、193-D2-002、193-A1-002和193-D3-002具有更弱的对SDF-1的的结合亲和力,尽管它们与193-C2-001、193-G2-001和193-F2-001共有相同的核心核苷酸序列(B型的式-2)(图3)。B型SDF-1结合性核酸193-Gl-002、193-D2-002、193-A1-002和193-D3-002的不利的结合性质可为由5,-和3,-末端片段的核苷酸数和序列所致。通过测定相对原始分子193-G2-001和193-G2-012的竟争性pull-down结合而分析了B型SDF-1结合性核酸193-G2-001和193-C2-001的截短衍生物(图4A和4B)。这些实验显示将B型SDF-1结合性核酸193-G2-001和193-C2-001的6个末端核苷酸(5,末端AGCGUG;3'末端UACGCU)減少至5个核苷酸(5,末端GCGUG;3'末端UACGC)产生具有相似结合亲和力的分子(193-C2-002和193-G2-012)。用pull-down结合测定法测定平衡结合常数KD(KD=0.3nm,图18)。然而,当截短至4个末端核苷酸(5,末端CGUG;3'末端UACG;193-C2-003)或更少(193-C2画004、193-C2-005、193-C2-006、193-C2-007)时导致对SDF-1的结合亲和力降低,所述亲和力可通过4吏用竟争性pull-down结合测定法来测量(图4A)。在5,-和3,-末端处的5个末端核香酸的核苷酸序列分别具有对B型SDF-1结合性核酸的结合亲和力的影响。用'GCGCG,和'CGCGC,(193-G2-013)替换5,-和3'-末端核苷酸'GCGUG,和'UACGC,(193-C2-002,193-G2-12)导致结合亲和力降低。另外,检测了具有核苷酸长为4个碱基对的末端螺旋的B型SDF-1结合性核酸193-GZ-001的4种不同衍生物(193-G2-014/-015/-016/-017)。它们均表现出对SDF-1的结合亲和力降低(图4B)。因此,5'-和3,-末端核苷酸序列和长度对于与SDF-1的有效结合是必需的。具有图4A和4B中显示的B型SDF-1结合性核酸193-C2-003和193-G2-012的衍生物的5和4个核苷酸的长度的5,-末端和3,-末端片段可概括为5,-末端片段的通式('X2SSBS,,B型的式-4-5,,其中X2缺失或为'G,)和3,-末端片段的通式('BVSSX3,,B型的式-4-3,,其中乂3缺失或为'C,)。如对于B型SDF-1结合性核酸193-G2-001和193-C2-01及它们的衍生物193-G2-012和193-C2-002所示,5,-和3,-末端片段的优选实施方案是'X,GCGUG,(5,-末端片段;B型的式5-5,)和'UACGCX4,(3,-末端片段;B型的式5-3,),其中Xi是'A,或缺失,且X4是'U,或缺失。然而,通过组合所有被测B型SDF-1结合性核酸的5,-和3,-末端片段,得出B型SDF-1结合性核酸的5,-末端片段的通式是U2SVNS,(B型的式-6-5,),B型SDF-1结合性核酸的3,-末端片段的通式是'BVBSX3X4,(B型的式-6-3,),其中Xi是'A,或缺失,X2是'G,,X3是'C,及X4是'U,或缺失;或Xj缺失,X2是'G,或缺失,X3是'C,或缺失及X4缺失;1.3C型SDF-1结合性核酸如图5所示,所有C型SDF-1结合性核酸的序列都包含一个核心核苷酸序列,所述核心序列两侧连有可相互杂交的5,-和3,-末端片段。但在所述分子中并非一定发生这种杂交。采用使用生物素化的人D-SDF-1的直接和竟争性pull-down测定法在适体水平表征所述核酸,以便根据它们的结合行为对它们进行分级(实施例4)。将选择出的序列合成为镜像异构体(实施例3),并使用天然构型的SDF-1(L-SDF)根据体外细胞培养趋化性测定法进行检测(实施例5),及通过使用Biacore仪2000根据表面等离子体共振测量法进行检测(实施例6)。所定义的框或片段的序列在C型SDF-1结合性核酸之间可能不同,这影响了对SDF-1的结合亲和力。基于对被概括为C型SDF-l结合性核酸的不同的SDF-1结合性核酸所进行的结合分析,下述核心核苷酸序列及其核苷酸序列各自及更优选以其整体在结合SDF-1中必不可少所有鉴定的C型SDF-1结合性核酸的核心核苷酸序列共有序列GGUfAGGGCU據食,AAGUCGG(C型的式-1),其中XA缺失或为'A,除C型SDF-1结合性核酸197-D1夕卜,所有鉴定的C型SDF-1结合性核酸的序列的核心核苷酸序列共有核苷酸序列as—一—^■—i一GGU《AGGGCUfi^AGUCGG(C型的式-2)。在核心核苷酸序列内缺少一个核苷酸'A,且仍结合SDF-1的C型SDF-1结合性核酸197-D1(核心核苷酸序列|gguuagggcua^agucgg|)使得包括备选的核心核苷酸序列(lGGU!AGGGCUH綠GUCGGl,C型的式-3)。首先,通过测定相对A型SDF-1结合性核酸192-A10-00K通过pull-down测定法和通过表面等离子体共振测量法测量的KD=1.5nM;IC50=0.12nM)的竟争性pull-down结合而分析了图5所示所有C型SDF-1结合性核酸。在竟争实验中,C型SDF-1结合性核酸191-D5-001、197-B2、190-A3-001、197-H1、197-H3和197-E3表现出弱于192-A10-001的结合亲和力。测得191國A5、197-B1、197-D1、197-H2和197-D2的结合亲和力甚弱(图5)。通过进一步的竟争性pull-down结合测定法、表面等离子体共振测量法和体外趋化性测定法进一步表征了所述分子或其衍生物。根据对人SDF-1的结合亲和力表征了C型SDF-1结合性核酸191-D5-001,其中通过表面等离子体共振测量法测定出平衡结合常数K。(KD=0.8nM,图21)。使用体外细胞培养趋化性测定法测量出0.2nM的191-D5-001的IC50(抑制浓度50%)。通过表面等离子体共振测量法测定出C型SDF-1结合性核酸197-B2对人SDF-1的结合亲和力(KD=0.9nM),在体外细胞培养趋化性测定法分析出其0.2nM的IC5o(抑制浓度50%)。这些数据表明C型SDF-1结合性核酸191-D5-001和197-B2具有相似的对SDF-1的结合亲和力(图5和8)。C型SDF-1结合性核酸190-A3-001(48个核苷酸)包含17个核苷酸的5,-末端片段和12个核苷酸的3,-末端片段,其中在另一方面,在5,-末端片段的5,末端的4个核苷酸和在3,-末端片段的3'末端的4个核苷酸可相互杂交,从而形成末端螺旋。此外,5,-末端片段中的核苷酸'UGAGA,也可与3'-末端片段中的核苷酸'UCUCA,'杂交,从而形成末端螺旋。分子190-A3-001的5,-末端片段减少至8个核苷酸('GAGAUAGG,)和3,-末端片段中减少至9个核苷酸('CUGAUUCUC,)(其中5,-和3,-末端片段的8、9个核苷酸中的6个可相互杂交)对针对SDF-1的结合亲和力无影响(190-A3-004;图6和图19)。使用竟争性pull-down结合测定法(1^=4.6nM,图20)和通过表面等离子体共振测量法(KD=4.7nM)测定190-A3-004的平衡結合常数Kd。使用体外细胞培养趋化性测定法测量出0.1nM的190-A3-004的IC5。(抑制浓度50%)(图22)。然而,在5,-末端片段截短至2个核苷酸导致结合亲和力极强降低(190-A3-007;图6和图19)。C型SDF-1结合性核酸191-D5-001、197-B2和197-H1(核心核苷酸序歹'j:I^GUUAGGGCUAGAAGUCGGl)、197-H3/191-A5(核心核普酸序歹'j:lGGUUAGGGCUCGAAGUCGGl)和197-E3/197-B1(核心核苷酸序列IgguuagggcuugaagucggI)共有几乎相同的核心核苷酸序列(C型的式-4;核苷酸序列GGUUAGGGCUHGAAGUCGG)。191画D5画001、197-B2和197-H1不共有相似的5,國和3,-末端片段(197-H3和197-E3具有与197-B2相同的5,-和3,-末端片段)。然而,5,-末端片段的相应的10个(197-B2、197曙E3、197隱H3)核苷酸或10个核香酸中的9个(191-D5-001、197-H1)核苷酸可与3,-末端片段的相应10个核苷酸(197-B2、197-E3、197-H3)或10个核苷酸中的9个(191-D5-001,197-H1)核苷酸杂交(图5)。从而,上述C型SDF-1结合性核酸197-B2、191-D5-001、197-H1、197-E3和197-H3及191-A5、197誦B1、197画H2、197-D1和197-D2的785'-末端片段包含共同通用的'RKSBUSNVGR,(C型的式-5-5,)的核苷酸序列。上述C型SDF-1结合性核酸197-B2、191-D5-001、197-H1、197-E3和197-H3及191-A5、197-B1、197-H2、197-D1和197-D2的3'-末端片段包含共同通用的'YYNRCASSMY,(C型的式-5-3,)的核苷酸序列,其中优选C型SDF-l结合性核酸197-B2、191-D5-001、197-H1、197-E3和197-H3的5,和3,-末端片段。可将C型SDF-l结合核酸197-B2、191-D5-001、197-H1、197-E3和197-H3的这些优选5,_和3,_末端片段概括为通式'RKSBUGSVGR,(C型的式-6-5,;5,-末端片段)和'YCNRCASSMY,(C型的式-6-3,;3,-末端片段)。构建C型SDF-1结合性核酸191-D5-001的截短的f汴生物,且在竟争性pull-down结合测定法中相对于原始分子191-D5-001对其进行检测(图7A,图7B和图19)。首先,如图7A所示,首先将5,-和3,-末端片段的长度从各自10个核苷酸(191-D5-001)缩短至各自7个核苷酸(191-D5-004),其中5,-末端片段和3,-末端片段的IO个核苷酸(191-D5-001)中9个或7个核苷酸(191-D5-004)的6个可相互杂交。分别从5,-和3,-末端片段的核苷酸减少至7个核苷酸(其中7个核苷酸中的6个可相互杂交)导致对SDF-1的结合亲和力降低(191-D5-004)。修饰C型SDF-1结合性核酸191-D5-004的末端片段,其中用'C,(191-D5-005)替换191-D5-004的3,-末端片段中的非配对核苷酸'A,。所述修饰导致结合的提高。此衍生物——C型SDF-1结合性核酸191-D5-005表现出与191-D5-001相似的对SDF-1的结合性。再分别截短5,-和3,-末端片段至5个核苷酸,产生总长为29个核苷酸的分子(191-D5-007)。因为191-D5-001与C型SDF-1结合性核酸197-B2、191-D5-001、197國H1、191-A5、197-H3、197-B1、197誦E3、197画D1、197-H2和197-D2的相似性,及因为对于191-D5-007所示数据,可推测5,-和3,-末端片段原则上可被截短至5个核苷酸,其中成功地检测5'-末端片段的核苷酸序列'CGGGA,和3,-末端片段的'UCCCG,(C型SDF-1结合性核酸191-D5-007010)。令人惊讶的是,C型SDF-1结合性核酸191-D5-007与SDF-1的结合比191-D5-001更好一些(使用竟争性结合测定法在适体水平上测定的)。使用pull-down结合测定法(KD=2.2nM,图20)和通过表面等离子共振测量法(KD=0.8nM,图21)测定191-D5-007的平衡结合常数Ko。使用体外细胞培养趋化性测定法测量出o.lnM的191-D5-007的IC5。(抑制浓度50%)。进一步将两个末端片段都截短至4个核苷酸(191-D5-010,图7A)。具有各自4个核苷酸的5,-和3,-末端片段的C型SDF-1结合性核酸191-D5-001的另外的衍生物(191-D5-017/-024/-029)在竟争性pull-down结合测定法中相对191-D5-007也显示对SDF-1的结合亲和力降低(图7B)。还检测了具有各自5个核苷酸的备选的5,-和3,-末端片段及(191-D5-017-29a、191國D5-017-29b、191-D5-019-29a、191-D5-024-29a、191-D5-024-29b)。这些衍生物的5,-末端片段的通式是'XsSSSV,(C型的式-7-5,),这些衍生物的3,-片段的通式是'BSSSXs,C型的式-7-3,),其中Xs缺失或为S,。5个被测变体中的2个显示与191-D5-007相同的对SDF-1的结合亲和力(191-D5-024國29a、191-D5-024-29b;图7B)。可将显示对SDF-1的最佳结合亲和力,且分别包含5个核苷酸的5,-末端和3,-末端片段的191-D5-001衍生物(191-D5-007、191-D5誦024-29a、191-D5-024-29b)的5,-末端和3,-末端片段的序列概括为通式(5,-末端片段'SGGSR,,C型的式-8-5,;3,-末端片段,YSCCS,,C型的式-8-3')。通过测定相对原始分子197-B2和191-D5-007的竟争性pul卜down结合而分析了C型SDF-1结合性核酸197-B2的截短衍生物(图8)。通过相对于191-D5-007使用竟争性pull-down结合测定法,显示197-B2具有与191-D5-007相同的对SDF-1结合亲和力。将5,-和3,-末端片段从各自10个核苷酸(197-B2)缩短至各自5个核苷酸(197-B2-005)而无损于结合亲和力,其中5,-末端片段和3,-末端片段的核苷酸可完全相互杂交。如果用197-B2-006的'GCCGG,(5,-末端片段)和'CCGGC,(3,-末端片段)替换197-B2-005的5,-末端('GCGGG,)和3,-末端('CCUGC,)片段,那么对SDF-1的结合亲和力得到完全保持。因为197-B2和191-D5-001(及它们的衍生物)共有相同的核心核苷酸序列(IgguuagggcuagaagucggI)且检测了拥有具有各自4个核苷酸的长度的5,-和3,-末端片段的191-D5的几种衍生物,所以略去了5,-和3,-末端片段的进一步截短。设计两种另外的衍生物,所述衍生物分别在5,-和3,-末端包含6个核苷酸(5,-和3,-末端片段)。两种分子(197-B2-006誦31a和197-B2-006-31b)对SDF-1的结合亲和力与对于191-D5-007和197-B2-006所示亲和力相同(图8)。可将显示对SDF-1的最佳结合亲和力,且分别包含5个核苷酸的5,-末端和3,-末端片段的197-B2衍生物的5,-末端和3,-末端片段的序列概括为通式(5,-末端片段'GCSGG,,C型的式-9-5,;3,-末端片段,CCKGC,,C型的式-9-3,)。通过组合C型SDF-1结合性核酸191-D5-001(5,-末端片段:'SGGSR,,C型的式-8-5,;3,-末端片段:,YSCCS,,C型的式-8-3,)和197-B2(5,-末端片段'GCSGG,,C型的式-9-5,;3,-末端片段:,CCKGC,,C型的式-9-3,)的截短衍生物的优选5,-和3,-片段,得出5'-末端和3,-末端片段的共同优选通式是'SSSSR,(5,-末端片段,C型的式-10-5,)和'YSBSS,(3,-末端片段C型的式-10-3,)。1.4其他SDF-1结合性核酸此外,鉴定了不共有'A型,、'B型,和'C型,的SDF-1结合性基序的其他三种SDF-1结合性核酸。通过使用pull-down结合测定法,它们经分析为适体(图9)。要理解,图1-9中显示的任何序列是本发明的核酸,包括其截短形式,但还包括其延伸形式,但条件是分别经所述截短和延伸的核酸分子仍能结合靶标。实施例2:SDF结合性镜像异构体的40kda-PEG和其他修饰物为延长镜像异构体的体内血浆停留时间,如第3章中所述将镜象异构体193-G2-012,192-A10-008,191-D5-007,197-B2-006和197-B2-006-31b在5'末端处共价偶联至40kDa聚乙二醇(PEGXPEG化的克隆193-G2-012-5,-PEG,192画A10-008-5,PEG,191-D5-007-5,PEG,197陽B2-006-5,PEG和197画B2-006-31b誦5,PEG)。在体外细胞培养TAX测定法(第5章)中和通过使用Biacore进行的等离子体共振测量法(第6章)分析了PEG化的镜像异构体分子。所有经40kDa-PEG-修饰的镜像异构体仍能抑制SDF-1诱导性趋化作用,且能在低纳摩尔范围内结合SDF-1(图23A、23B、24A和图24B)。此外,用40kDa-PEG、30kDa-PEG、lOOkDa-HES或130kDa-HES(PEG化的克隆:192-A10-001-5,PEG40、192-A10-001-5,PEG30、192-A10-001-5,HES100、192-A10-001-5,HES130;第3章中的偶联方法)修饰SDF结合性镜像异构体192-A10-001。如图25A和图25B所示,PEG-部分和HES-部分对镜像异构体抑制SDF-1诱导性趋化潜能均无影响。实施例3:适体和镜像异构体的合成和衍生化3.1小规模合成利用2'TBDMSRNA亚砩酰胺化学(Damha和Ogilvie,1993),使用ABI394合成4义(AppliedBiosystems,FosterCity,CA,USA),通过固相合成来制备适体和镜像异构体。D-和L-构型的rA(N-Bz)-、rC(Ac)-、rG(N画ibu)-和rU誦亚砩酰胺购自ChemGenes,Wilmington,MA。适体和镜像异构体通过凝胶电泳进行纯化。3.2大规模合成及修饰利用2,TBDMSRNA亚磷酰胺化学(DamhaandOgilvie,1993),使用AktaPilot100合成仪(AmershamBiosciences;GeneralElectricHealthcare,Freiburg),通过固相合成来制备镜像异构体。L國rA(N-Bz)画、L曙rC(Ac)-、L-rG(N-ibu)-和L誦rU画亚磷酰胺购自82ChemGenes,Wilmington,MA,USA。5,-氨基-修饰剂购自AmericanInternationalChemicalsInc.(Framingham,MA,USA)。镜像异构体的合成始于分别经L-riboG;L-riboC、L-riboA、L-riboU修饰的CPG,孔径为1000A(LinkTechnology,Glasgow,UK)。对于偶联(每个循环是15分钟),使用0.3M在乙腈中的苄硫基四唑(AmericanInternationalChemicalsInc.,Framingham,MA,USA)和3.5当量的各自0.2M在乙腈中的亚磷酰胺溶液。使用氧化封端循环。其他用于寡核苷酸合成的标准溶剂和试剂购自Biosolve(Valkenswaard,NL)。合成镜像异构体,DMT-ON;在去保护后,使用Sourcel5RPC介质(Amersham),通过制备型RP-HPLC(WincottF等人,1995)对其进行纯化。用80%乙酸除去5,DMT-基团(在室温下90分钟)。随后,加入2MNaOAc水溶液,并使用5K再生纤维素膜(Millipore,Bedford,MA)通过正切流动过滤来对镜像异构体进行脱盐。3.3PEG化为了延长镜像异构体在体内的血浆停留时间,将镜像异构体在5,-末端处共价偶联至40kDa聚乙二醇(PEG)部分。为了PEG化(关于PEG化方法的技术细节,可参见欧洲专利申请EP1306382),将纯化的5,-氨基修饰的镜像异构体溶解于H20(2.5ml)、DMF(5ml)和緩沖液A(5ml;通过混合柠檬酸*1120[7g、硼酸[3.54gl、磷酸2.26m"和1MNaOH[343mlj并加入H20至终体积1L而制备;用1MHC1调节pH=8,4)的混合物中。用1MNaOH使镜像异构体溶液的pH达到8.4。然后,在37°C下以6份(每份0.25当量海30分钟添加40kDaPEG-NHS酯(NektarTherapeutics,Huntsville,AL),直至达到75-85%的最大产率。在添加PEG-NHS酯的过程中,用1MNaOH将反应混合物的pH保持在8-8.5。将所述反应混合物与4ml尿素溶液(8M)、和4ml緩冲液B(0.1M的在H20中的乙酸三乙基铵)混合,并加热至95。C15分钟。然后,83采用乙腈梯度(緩冲液B;緩冲液C:0.1M的在乙腈中的乙酸三乙基铵),使用Source15RPC介质(Amersham),通过RP-HPLC,使用源15RPC介质(Amersham)来纯化PEG化的镜像异构体。用5%緩冲液C洗脱过量的PEG,用10-15%緩冲液C洗脱PEG化的镜像异构体。将纯度>95%(这通过HPLC来评估)的产物级分合并,并与40m13MNaOAC相混合。通过正切流动过滤(5K再生纤维素膜,Millipore,BedfordMA)对PEG化的镜像异构体进行脱盐。3.4HES化为了伸长镜像异构体的体内血浆停留时间,将镜像异构体共价偶联至大于130kDa的不同分子量和置换度(substitutiondegree)大于0.5的羟乙基淀粉(HES)。镜像异构体的5,-末端是优选的缀合位点。对于HES化(关于HES化方法的技术细节,可参见GermanOffenlegungsschriftDE10112825Al,及关于D/L-核酸参见PCTWO02/080979A2),将纯化的5,-氨基修饰的镜像异构体溶解在碳酸氢钠(0.3M,1ml)中,且将pH调节至8.5。有关镜像异构体,向N,N-二曱基曱酰胺(1ml)中加入5倍过量的游离HES酸(3.3mmol,Supramol,Rosbach,Germany)和二(N-琥珀酰重胺基)碳酸酯(3.3mmol),从而产生HES的活化的N-羟基琥珀酰亚胺酯溶液。为了溶解所有反应物,将混合物在60。C下短暂搅拌,冷却至25。C,然后在25。C下搅拌1.5h。向活化的HES的溶液中加入镜像异构体溶液,在25°C和pH8.5下搅拌所得的混合物。通过分析IEX-HPLC监控反应。通常缀合在l小时内进行至大于75%。为了通过Source15Q介质(GE,Freiburg,Germany)进行IEX-HPLC纯化,将反应混合物与IO倍量的緩冲液A(lmMEDTA,25mMTris,10mM在水/乙腈(9:1)中的NaC104,pH4)混合。用5。/。的緩冲液A(lmMEDTA,25mMTris,500mM的在水/乙腈(9:l)中的NaC104,pH4)洗脱过量的HES,其中用20-30%的緩冲液B洗脱HES-镜像异构体缀合物。将纯度大于95%(如通过HPLC估计的)的产物级分合并,然后通过正切流动过滤(5K再生纤维素膜,MiHipore,BedfordMA)进行脱盐。实施例4:结合常数的测定(Pull-down结合测定法)4.1直接pull-down结合测定法在37。C下,根据pull-down测定测量适体对生物素化人D-SDF-1的亲和力。4吏用[Y-32p画标记的ATP(HartmannAnalytic,BraunschweigGermany),通过T4多核苦酸激酵(Invitrogen,Karlsruhe,Germany)对适体进行5,-磷酸标记。经标记的适体的比放射性为200,000誦800,000cpm/pmol。在变性和复性后将适体在37。C下以10、20、30或40pM的浓度与不同量的生物素化的人D-SDF-1—起于选择緩冲液(20mMTris國HClpH7.4;137mMNaCl;5mMKC1;1mMMgCl2;1mMCaCl2;0.1%[w/vollTween-20)中温育4-12小时以便在低浓度下达到平衡。用lOpg/ml人血清白蛋白(Sigma-Aldrich,Stdnheim,Germany)和10ng/ml酵母RNA(Ambion,Austin,USA)补充选择緩冲液,以便防止结合伴侣吸附至所使用的塑料器具或固定基质的表面。生物素化的D-SDF-1的浓度范围祐没定为8pM-100nM;总反应体积为1ml。将肽和肽-适体复合物固定在1.5^1StreptavidinUltralinkPlus颗粒(PierceBiotechnology,Rockford,USA)上,所述颗粒已用选择緩冲液预平衡,并重悬于6fil的总体积中。颗粒在相应的温度下于热混匀器中保持悬浮30分钟。在分离上清液并适当洗涤后,在闪烁计数器中对固定的放射性进行定量。将结合百分比对生物素化的人D-SDF-1的浓度进行绘图,且通过使用软件算法(GRAFIT;ErithacusSoftware;SurreyU.K.)并假定1:1的化学计量来获得解离常数。4.2竟争pull-down结合测定法为了比较不同的结合D-SDF-1的适体,实施竟争性分级测定法。为达到此目的,将可获得的最具亲和力的适体进行放射性标记(参见上文)并用作参照物。在变性和复性后,将它在一定的条件下于37X:与生物素化的D-SDF-1在1ml选择緩沖液中进行温育,所述条件导致在NeutrAvidin琼脂糖或StreptavidinUltralinkPlus(两者都来自Pierce)上固定和洗涤之后约5-10%的与所述肽的结令(无竟争)。将过量的变性和复性的未标记的D-RNA适体变体以不同的浓度(如2、10和50nM)与经标记的参照适体一起加入,以便进行平行结合反应。待测适体与参照适体竟争性结合乾标,从而降低结合信号,所述信号降低取决于它们的结合特征。在所述测定法中发现的最具活性实施例5:通过SDF-1结合性镜像异构体进行的对SDF-1诱导性趋化作用的抑制的分析将Jurkat人T细胞白血病细胞(获自DSMZ,Braunschweig)在37。C和5%C02下培养在含有Glutamax(Invitrogen,Karlsruhe,Germany)的RPMI1640培养基(其含有10%胎牛血清白蛋白、100单位/ml青霉素和100pg/ml链霉素(Invitrogen,Karlsruhe,Germany))中。在实验前一天,将细胞以0.3x106/ml(9xio6/30ml)接种在新培养瓶中的标准培养基(Invitrogen,Karlsruhe,Germany)中。关于实验,将细胞离心(以300g进行5分钟)、重悬浮、计数及用15mlHBH(含有1mg/ml牛血清白蛋白和20mMHEPES的Hanks平衡盐溶液;Invitrogen,Karlsruhe,Germany)清洗一次。然后以3xi06/ml或1.33xi06/ml重悬浮细胞,这取决于所使用的过滤板的类型。然后让细胞通过过滤板的多孔膜向含有SDF-1和不同量的镜像异构体的溶液迁移数小时。使用具有多孔聚碳酸酯膜(5pm的孔大小)(Corning;3421)的Transwell板和插入物或MultiScreenMIC板(Millipore,MAMIC5S10)。5.1用于Transwell板的方案在Transwell板的更低的区室中在600HBH中制备刺激溶液(SDF-1+不同浓度的镜像异构体),并温育20-30分钟。所有条件进行至少2次。将插入物转移至含有刺激溶液的孔中,并向插入物(3x105个细胞/孔)中加入100pl的3x106/ml的细胞悬浮液。然后让细胞在37。C下迁移3小时。此后,取出插入物,并向孔(也向校准孔)中加入60pl刃天青(resazurin)(Sigma,Deisenhofen,Germany)工作溶液(440|uM于PBS中;Biochrom,Berlin,Germany)。然后将平板在37。C下温育2.5-3小时。在温育后,将每个孔的200|iil转移至黑色96孔平板。在FluostarOptima多检测平板读出器(BMG,Offenburg,Germany)中在544nm(激发)和590nm(发射)处进行萸光信号的测量。5.2用于MilliporeMultiScreen平板的方案在0.2ml低profile96管平板中将刺激溶液(SDF-1+不同浓度的镜像异构体)配制为10X溶液。用移液器将135piHBH加入MultiScreen平板的更低的区室中,并加入15nl刺激溶液。所有条件进行一式三份。在20-30分钟,将过滤板插入装有刺激溶液的平板中,并向过滤板孔(1x105个细胞/孔)中加入75pi的1.33x106/ml的细胞悬浮液。然后让细胞在37。C下迁移3小时。此后,取出插入物,向更低的孔中加入20|nl刃天青工作溶液(440于PBS中)。然后将平板在37。C下温育2.5-3小时。在温育后,将每个孔的lOOjnl转移至黑色96孔平板。如上所述进行荧光信号的测量。5.3评估关于评估,就背景荧光(孔中无细胞)校正荧光值。然后计算在含和不含SDF-1的情况下的实验条件之间的差异。将不含镜像异构体87(仅SDF-1)的样品的值设定为100%,将含镜像异构体的样品的值计算为该值的百分数。关于剂量-反应曲线,将百分数值对镜像异构体浓度作图,并根据图从所得的曲线确定IC5()-值(在不含镜像异构体的情况下的活性的50%存在时的镜像异构体的浓度)。5.4结果5,4.1通过人SDF-1产生的Jurkat细胞的剂量依赖性刺激发现人SDF-1以剂量依赖性的方式刺激Jurkat细胞的迁移,半最大刺激在约0.3nM处(图11)。5.4.2通过SDF-1结合性镜像异构体进行的对人SDF-1诱导性趋化作用的剂量依赖性抑制当让细胞向含有人SDF-1和递增浓度的SDF-1结合性镜像异构体的溶液迁移时,观察到剂量依赖性的抑制。在实施例1中具体描述了被测镜像异构体各自的IC5Q。当使用非特异性对照镜像异构体而非SDF-1结合性镜像异构体时,未观察到抑制效应达到1pM(图26)。5.4.3通过SDF-1结合性镜像异构体进行的对小鼠SDF-1诱导性趋化作用的剂量依赖性抑制SDF-1在跨物种中具有良好的保守性来自小鼠的SDF-1与人SDF-la仅相差一个氨基酸(第18位为异亮氨酸而非缬氨酸)。小鼠SDF-1可刺激Jurkat细胞的趋化作用(图27),而发现所述作用被镜像异构体192-A10-001和191-D5-007-5,-PEG(具有与人SDF-1相同的潜能)抑制(图28)。实施例6:通过表面等离子共振测量法进行的结合分析使用Biacore仪2000(BiacoreAB,Uppsala,Sweden)分析镜像异构体与人SDF-la的结合。当通过胺基实现偶联时,将SDF-la逆水透析1-2小时(MilliporeVSWP混合的纤维素酯;孔尺寸为0.025)以去除干扰性的胺。在蛋白质偶联之前,通过以5pl/分钟的流速注射35nl0.4MNHS和0.1MEDC的1:1稀释物来活化CM4感应芯片(BiacoreAB,Uppsala,Sweden)。然后以2jil/分钟的流速注射浓度为0.1-1.5pg/ml的趋化因子,直到装置的响应值在1000-2000RU(相对单位)的范围内。通过以5nl/分钟的流速注射35jil盐酸乙醇胺溶液(pH8.5)来使未反应的NHS酯失活。将感应芯片用结合緩冲液预处理两次,并以10pl/分钟平衡l-2小时直到基线看似稳定。对于所有蛋白质,通过一系列在选择緩沖液(Tris-HC120mM、NaCl137mM、KCI5mM、CaCl21mM、MgCl21mM、Tween200.1%[w/v、pH7.4)中浓度为1000、500、250、125、62.5、31.25和0nM的镜像异构体注射液来评估动力学参数和解离常数。在所有实验中,在37。C下用Kinject命令来进行分析,所述命令定义了在10pl/分钟的流速下締合时间为180秒而解离时间为360秒。数据分析和解离常数(KD)的计算采用BIAevaluation3.0软件(BIACOREAB,Uppsala,Sweden)来进行,其使用了Langmuir1:1化学计量拟合算法。实施例7:通过SDF-1结合性镜像异构体进行的对[^J卜SDF-1与表达CXCR4的细胞的抑制7.1方法编码人CXCR4受体的cDNA克隆(NM—003467.2)购自OriGeneTechnologies(Rockville,MD)且将其克隆入pCR3.1-载体(Invitrogen,Karlsruhe,Germany)。使用Lipofectamin2000(Invitrogen)将所得的栽体转染入CHO-K1细胞(DSMZ,Braunschweig,Germany),通过用遗传霉素处理来选择稳定表达的细胞系。通过RT-PCR验证受体的表达。关于结合测定,将表达CXCR4的细胞以1x105个细胞/孔的细胞密度接种入包被有多聚赖氨酸的24孔平板,在37°C和5%C02于CHO-Ultra培养基(Cambrex,Verviers,Belgium)(其含有50个单位/ml青霉素、50ng/ml链霉素和0,5mg/ml遗传霉素)中培养过夜。关于结合实验,除去培养基,用额外含有20mMHEPES、1mg/ml牛血清白蛋白、0.1mg/ml杆菌肽(HBB)的Hanks平衡盐溶液清洗细胞一次。然后将细胞在室温下与50pM125JI-SDF-l(PerkinElmer,Rodgau,Germany)和变浓度的镜像异构体一起在0.2mlHBB中温育1小时。通过向数孔中加入未标记的人SDF-l(R&DSystems,Wiesbaden,Germany)至0.5pM的终浓度来测定非特异性结合。在温育期后,除去上清液,用冰冷的HBB清洗孔3次。然后用0.1ml0.1MNaOH裂解细胞。将裂解物转移入闪烁瓶(szintillationvial),且加入4mlUnisafe1LiquidSzintillation混合物(Zinsser,Frankfurt,Germany)后,在BeckmanLS6500闪烁计数器中计数。因为非特异性结合(在高量的未标记的SDF-l存在的情况的结合)的值比在高浓度(500pM)的镜像异构体存在的情况下的总结合的值更高一些,所以将在最大结合("max")和在500pM镜像异构体存在的情况下的结合之间的差异用于计算ICs。值。7.2结果将结合的[^J卜SDF-1对镜像异构体的浓度作图显示了,SDF-1的结合可被镜像异构体192-A10-001阻断,ICs。为约60pM(图29)。实施例8:通过SDF-1结合性镜像异构体对SDF-1诱导性MAP激酶活化的抑制8.1方法将表达CXCR4的CHO细胞以0.5x106个细胞/孔的细胞密度接种入6孔平板,并在37。C和5%C02于CHO-Ultra培养基(Cambrex,Verviers,Belgium)(其含有50个单位/ml青霉素、50pg/ml链霉素和0.5mg/ml遗传霉素)中培养约3小时,在细胞贴壁后,除去培养基,并代之以含有50个单位/ml青霹素、50jig/ml链霉素的Ham'sF12培养基。然后将细胞在37。C和5%C02下过夜温育,在刺激前3个小时,再用新鲜的Ham'sF12培养基替换培养基一次。用1nM人SDF-1和不同量的镜像异构体刺激细胞5或IO分钟。然后,除去培养基,用1ml水冷的磷酸緩冲盐水(PBS)快速清洗细胞一次,然后用SDS-样品緩沖液(Tris/HClpH6.8,62.5mM;甘油,10%;SDS,2%;溴酚蓝,0.01%;p巯基乙醇,5%)进行裂解。向各孔中加入1pl0.5u/|iilBenzonase(Merck,Darmstadt,Germany),在室温下温育5-10分钟后,将裂解物转移至Eppendorf管中,在95°C下温育5分钟,然后在-20°C下贮存直至进一步分析。在10。/。的变性SDS-聚丙烯酰胺凝胶上分离25^1的裂解物。然后通过电印迹将蛋白质转移至HybondECL硝酸纤维素膜(Amersham/GEHealthcare,Munich,Germany)上。印迹后,用丽春红(0.2%于3%三氯乙酸中)对膜进行染色以控制蛋白质的上样量,将膜转移,然后通过在含有10%的脱脂乳的TBS-T(Tris緩冲盐溶液(20mMTris/HCl,pH7.6,137mMNaCl)和0.1%Tween20)中在2-8°C下温育过夜来进行封闭。然后将膜与兔抗裤酸-MAP-激酶抗体(1:1000于TBS-T中的10%乳中)一起在室温下温育2小时。在用TBS-T清洗三次(每次5分钟)后,将膜与抗兔IgG-HRP-缀合物(1:2000于TBS-T中的10%乳中)一起在室温下温育1小时。然后将膜用TBS-T再清洗3次(每次5分钟),然后在LumiGloR化学发光试剂中温育1分钟。通过对HyperfilmTMECL化学发光胶片(Amersham/GEHealthcare)暴露30秒-2分钟来检测发光。抗体和发光检测试剂是PhosphoPlusp44/42MAP激酶(Thr202/Tyr204)抗体试剂盒(来自CellSignalingTechnology)(NewEnglandBiolabs,Frankfurta.M.,Germany)的组分。8.2结构反映激活的MAP激酶的条带的强度增加表明,使用1nM人SDF-1刺激表达CXCR4的细胞5分钟导致对MAP激酶的强烈刺激。此MAP激酶的激活可被镜像异构体191-A10-001以剂量依赖的方式抑制(图30)。实施例9:在主动脉环出芽测定法中进行的对人SDF-1结合性镜像异构体193-G2-012-5,-PEG的功能分析为了在血管发生器官培养测定中检测人SDF-1结合性镜像异构体193-G2-012-5,-PEG也是具有功能的,进行主动脉环出芽测定。所述测定(其中估计来自外植体的脉管样延伸(vessel-likeextensions)的长度和丰度)已成为最广泛使用的用于血管发生的器官培养模型(Auerbachetal.2003)。已显示SDF-1在所述类型的测定中诱导出芽(Salcedoetal.1999)。将大鼠主动脉切成环,包埋在胶原基质中,将其与SDF-1和SDF-1+人SDF-1结合性镜像异构体193-G2-012-5,-PEG或SDF+不结合SDF-1的无功能的PEG化的对照镜像异构体一起温育。在6-7天后,通过拍照和测定出芽指数来分析出芽(即,内皮细胞的向外生长)。方法来自雄性大鼠的主动脉获自BagheriLifesciences(Berlin,Germany)。新制备主动脉,然后在水上转入含有50个单位/ml青霉素,50ng/ml链霉素(两者都来自Invitrogen,Karlsruhe,Germany)和2.5jug/ml两性霉素B(Cambrex,USA)的MCDB131-培养基(Invitrogen,Karlsruhe,Germany)中。关于实验,将单个主动脉与培养基一起转移至细胞培养皿,除去残留的结締组织。然后使用解剖刀将主动脉切成约1-2mm长的环。将环在Medi腿199(Invitrogen,Karlsruhe,Germany)中充分清洗(至少5次),然后置于24孔平板的孔(每孔装有450pl的胶原溶液)中。通过将9ml大鼠尾部胶原(3mg/ml于0.1。/。的乙酸中;Sigma,Deisenhofen,Germany)与1.12ml10XMedium199(Invitrogen,Karlsruhe,Germany)、1.12ml10X胶原緩沖液(0.05NNaOH,200mMHEPES,260mMNaHC03)和0.6ml200mMGlutamin混合来制备所述胶源溶液。以使被切割的边界与孔底部垂直的方向排列环。通过将平板在37。C下温育至少1小时来让胶原固化。然后每孔加入lmlMCDB131-培养基和添加物(SDF-1和镜像异构体)。然后在37°C下温育环6-7天。作为出芽的对照,额外地用VEGF(血管内皮生长因子)进行实验。通过使用数码相机拍照来记录出芽。在一些情况下,通过加入1ml10%多聚甲醛来固定环,然后将其2-8。C下贮存以用于进一步的证明。用ScionImage图像处理软件分析照片。在借助于拍自镜台测微器的图像校准后,在离环的一个边缘0.33mm的距离处划线。通过软件生成沿着该线的直方图(plothistogram),打印直方图,对峰值(表示穿过线的芽)进行计数。将该数用作出芽指数。对每个条件的4-5个环进行评估。使用Excel的WinSTAT进行统计分析。结果可证明,SDF-1诱导出芽,且可用人SDF-1结合性镜像异构体193-G2-012-5,-PEG阻断该效应。对于无功能的PEG化的对照镜l象异构体未观察到SDF-1诱导性出芽的阻断(图31和32)。实施例10:以单次静脉内推注人SDF-1结合性镜像异构体193-G2-012-5,-PEG对大鼠施用后SDF-1和人SDF-1结合性镜《象异构体193-G2-012-5,-PEG的血浆水平为了检测人SDF-1结合性镜像异构体193-G2-012-5,-PEG在体内是否具有功能,以静脉内推注的形式给大鼠施用人SDF-1结合性镜像异构体193-G2-012-5,-PEG,测定人SDF-1结合性镜像异构体193-G2-012-5,-PEG和SDF-1的血浆水平。作为对照,测定未处理的93大鼠SDF-1的血浆水平。动物,施用和样品收集将人SDF-1结合性镜像异构体193-G2-012-5,-PEG在PBS中溶解至终浓度0.5mg/ml,然后过滤灭菌。以单次静脉内推注的形式给雄SpragueDawley大鼠(体重约300g)施用1.0mg/kg人SDF-1结合性镜像异构体193-G2-012-5,-PEG。在数个时间点收集血液样品(如图33中所示)以跟踪人SDF-1结合性镜像异构体193-G2-012-5,-PEG的血浆清除。用于定量镜像异构体的夹心杂交测定法通过夹心杂交测定法定量样品中人SDF-1结合性镜像异构体193-G2-012-5,-PEG的量。夹心杂交测定法的原理甚似通常使用的镜像异构体的ELISA(酶联免疫吸附测定法)固定和检测。检测基于生物素化的检测探针与镜像异构体的一个末端的杂交。镜像异构体的残余单链末端介导杂交后复合物至经固定的捕荻探针的固定。在已除去未结合的复合物后,最后通过链霉抗生物素蛋白/碱性磷酸酶缀合物转化化学发光底物来检测与镜像异构体杂交的检测探针。如Drolet等人(Droletet.al,2000)所述,这样的夹心杂交测定法也被用于检测和定量RNA适体。杂交板的制备将193-G2-012捕获探针(Seq.ID.:240)在4。C下以100nM(于0.5M磷酸钠、1mMEDTA中,pH8.5)过夜固定至白色的DNA-BIND96孑L平板(ComingCostar,Wiesbaden,Germany)。于25。C下,用0.5%w/v的BSA(在0.25M磷酸钠、0.5mMEDTA中,pH8.5)清洗孔两次,并封闭2小时,再次清洗,然后在室温下贮存直至使用。在杂交前,用清洗緩冲液(3xSSC,0.5。/。[w/v十二烷基肌氨酸钠,pH7.0;预先配制不含月桂酰肌氨酸钠的20x原液[3MNaCl,0.3M柠檬94酸钠I,并相应稀释)清洗2次。样品制备以一式两份测定所有样品。将血浆样品在水上解冻,涡漩,及在冷冻台式离心机中短暂离心。将组织匀浆在室温下解冻,于室温下以最大速度离心5分钟。按照下列配比,在室温下用杂交緩冲液(40nM的清洗緩冲液中的193-G2-012检测探针[Seq.ID.241)稀释样品1:1010nl样口+90|11杂交緩冲液1:10020fxll:10+180^11杂交緩冲液测定所有样品稀释物。将人SDF-1结合性镜像异构体193-G2-012-5,-PEG标准物系列稀释至跨度0.001-40nM范围的12个点的校正曲线。校正标准与在研究的样品的校正标准相同。.杂交和检测将样品在95。C下加热5分钟,然后冷却至室温。于25。C,500rpm下,在振荡器中将镜像异构体/检测探针复合物退火至经固定的捕获探针45分钟。通过分别用清洗緩冲液和lxTBST(20mMTris-Cl,137mMNaCl,0.1%Tween20,pH7.5)清洗两次除去未结合的镜像异构体。在500rpm的振荡器中,通过以1:5000在lxTBST中稀释的链霉抗生物素蛋白碱性磷酸酶在25°C下检测杂交的复合物1小时。为了除去未结合的缀合物,再次用lxTBST清洗孑L。最后用100mlCSDP底物(AppliedBiosystems,Darmstadt,Germany)充满孑L,并在25°C下温育45分钟。用FLUOstarOptima微量平板读出计(BMGLabtechnologies,Offenburg,Germany)观'J量化学发光。数据分析将下列被测样品稀释液用于定量数据分析大鼠EDTA血浆1:100用于定量镜像异构体的ELISA使用体外酶联免疫吸附测定法定量存在于血浆样品中的SDF-1的量,所述测定法使用对于包被在96孔平板上的人SDF-la是特异的抗体(人SDF-laELISA试剂盒;RayBiotech,NorcrossGA,USA)。按照厂商说明书进行测定。结果如图33中所示,未处理的大鼠中常规SDF-1的血浆水平处于较低的皮摩尔范围内(约50pM)。相反,用人SDF-1结合性镜像异构体193-G2-012-5,-PEG处理的大鼠的血浆水平似乎不同在施用人SDF-1结合性镜像异构体193-G2-012-5,-PEG后前8个小时内,SDF-1血浆水平升高至约700pM。在12-72小时内,SDF-1的血浆水平再次降低至约50pM。SDF-1血浆水平的所述时程可直接与人SDF-1结合性镜像异构体193-G2-012-5,-PEG的血浆水平关联。因为人SDF-1结合性镜像异构体193-G2-012-5,-PEG的肾脏清除,人SDF-1结合性镜像异构体193-G2-012-5,-PEG的血浆水平在72小时内从约1100nM降低至低于50nM。然而,从未PEG化的镜像异构体(约15000Da)或具有低于肾的过滤极限的分子量的其他分子(如SDF-1)来看,人SDF-1结合性镜像异构体193-G2-012-5,-PEG(MW约54000Da)在1小时内未被清除出身体。内源性SDF-1被人SDF-1结合性镜像异构体193-G2-012-5,-PEG结合,从而形成SDF-l-镜像异构体-复合軟》其中SDF-1的清除和/或降解被延迟,作为结果这在前8个小时内导致SDF-1血浆水平升高。由于人SDF-1结合性镜像异构体193-G2-012-5,-PEG随着时间继续清除(其中清除率要比许多更小的分子如SDF-1低得多),从而由人SDF-1结合性镜像异构体193-G2-012-5,-PEG和SDF-1形成的复合物的血浆水平降低(图33)。参考文献除非另有说明,本文所引用的文献的完整参考文献资料(将其公开通过引用并入本文)如下Aiuti,A.,I.J.Webb,etal.(1997)."ThechemokineSDF-1isachemoattractantforhumanCD34+hematopoieticprogenitorcellsandprovidesanewmechanismtoexplainthemobilizationofCD34+progenitorstoperipheralblood."JExpMed185(1):111-20.AltschulSF,GishW,MillerW,MyersEW,LipmanDJ(1990),Basiclocalalignmentsearchtool.JMolBiol.215(3):403-10.AltschulSF,MaddenTL,SchafferAA,ZhangJ,ZhangZ,MillerW,LipmanDJ(1997).GappedBLASTandPSI-BLAST:anewgenerationofproteindatabasesearchprograms.NucleicAcidsRes.25(17):3389-402.Ambati,J.,A.Anand,etal.(2003),Ananimalmodelofage-relatedmaculardegenerationinsenescentCcl-2-orCcr-2-deficientmice.NatMed.9:1390-7.Arya,S,K.,C.C,Ginsberg,etal.(1999)."InvitrophenotypeofSDFlgenemutantthatdelaystheonsetofhumanimmunodeficiencyvirusdiseaseinvivo."JH薩Virol2(3):133-8.Auerbachetal.(2003)Angiogenesisassays:acriticaloverview.Clin.Chem.49:32-40.Baggiolini,M.(1998).,,Chemokinesandleukocytetraffk.'Nature392(6676):565-8.Baggiolini,M.,B.Dewald,etal.(1994)."Interleukin-8andrelatedchemotacticcytokines--CXCandCCchemokines."AdvImmunol55:97-179.Balabanian,K.,B.Lagane,etal.(2005)."WHIMsyndromeswithdifferentgeneticanomaliesareaccountedforbyimpairedCXCR4desensitizationtoCXCL12."Blood105(6):2449-57.Balabanian,K.,J.Couderc,etal.(2003)."Roleofthechemokinestromalcell-derivedfactor1inautoantibodyproductionandnephritisinmurinelupus."JImmunol170(6》3392-400,Balkwill,F.(2004)."Cancerandthechemokinenetwork."NatRevCancer4(7):540-50.Bazan,J.F.,K.B.Bacon,etal.(1997)."Anewclassofmembrane-boundchemokinewithaCX3Cmotif."Nature385(6617》640-4.Bertolini,F.,C.Dell'Agnola,etal.(2002)."CXCR4neutralization,anoveltherapeuticapproachfornon-Hodgkin'slymphoma."CancerRes62(11):3106-12.Bleul,C.C.,J.L.Schultze,etal.(1998)."Blymphocytechemotaxisregulatedinassociationwithmicroanatomiclocalization,differentiationstate,andBcellreceptorengagement."JExpMed187(5):753-62.Bleul,C.C.,M.Farzan,etal.(1996)."ThelymphocytechemoattractantSDF-lisaligandforLESTR/fusinandblocksHIV-1entry."Nature382(6594):829-33.Brooks,H.L.,Jr.,S.Caballero,Jr.,etal.(2004)."Vitreouslevelsofvascularendothelialgrowthfactorandstromal-derivedfactor1inpatientswithdiabeticretinopathyandcystoidmacularedemabeforeandafterintraocularinjectionoftriamcinolone."ArchOphthalmol122(12):1801-7.Buckley,C.D.,N,Amft,etal.(2000》"PersistentinductionofthechemokinereceptorCXCR4byTGF-beta1onsynovialTcellscontributestotheiraccumulationwithintherheumatoidsynovium."JImmunol165(6):3423-9.Burger,J.A.,N.Tsukada,etal.(2000)."Blood-derivednurse-likecellsprotectchroniclymphocyticleukemiaBcellsfrom98spontaneousapoptosisthroughstromalcell-derivedfactor画l."Blood96(8):2655-63.Butler,J.M.,S.M.Guthrie,etal.(2005)."SDF-1isbothnecessaryandsufficienttopromoteproliferativeretinopathy."JClinInvest115(1):86-93.Cabioglu,N.,A.Sahin,etal.(2005》"ChemokinereceptorCXCR4expressioninbreastcancerasapotentialpredictivemarkerofisolatedtumorcellsinbonemarrow."ClinExpMetastasis22(1》39-46.Corcione,A.,L.Ottonello,etal.(2000),"Stromalcell-derivedfactor-lasachemoattractantforfollicularcenterlymphomaBcells."JNatlCancerInst92(8):628-35.Crump,M.P.,J.H.Gong,etal.(1997)."Solutionstructureandbasisforfunctionalactivityofstromalcell-derivedfactor-l;dissociationofCXCR4activationfrombindingandinhibitionofHIV-1."EmboJ16(23):6996-7007.D'Apuzzo,M.,A.Rolink,etal.(1997)."ThechemokineSDF-l,stromalcell-derivedfactor1,attractsearlystageBcellprecursorsviathechemokinereceptorCXCR4."EurJImmunol27(7):1788-93.DeKlerck,B.,L.Geboes,etal.(2005)."Pro-inflammatorypropertiesofstromalcell-derivedfactor-l(CXCL12)incollagen-inducedarthritis."ArthritisResTher7(6):R1208-20.DroletDW,NelsonJ,TuckerCE,ZackPM,NixonK,BolinR,JudkinsMB,FarmerJA,WolfJL,GillSC,BendeleRA(2000).Pharmacokineticsandsafetyofananti-vascularendothelialgrowthfactoraptamer(NX1838)followinginjectionintothevitreoushumorofrhesusmonkeys.Pharm.Res.17:1503Eaton,B.E.,L.Gold,etal.(1997)."Post國SELEXcombinatorialoptimizationofaptamers."BioorgMedChem5(6):1087-96.Fedyk,E.R"D.Jones,etal.(2001)."ExpressionofstromaNderivedfactor-lisdecreasedbyIL-1andTNFandindermalwoundhealing."JImmunol166(9):5749-54.Fong,D.S.,L.P.Aiello,etal.(2004)."Diabeticretinopathy."DiabetesCare27(10):2540-53.Geminder,H.,O.Sagi-Assif,etal.(2001)."ApossibleroleforCXCR4anditsligand,theCXCchemokinestromalcell-derivedfactor-l,inthedevelopmentofbonemarrowmetastasesinneuroblastoma."JImmunol167(8):4747-57.Godessart,N.(2005)."Chemokinereceptors:attractivetargetsfordrugdiscovery."AnnNYAcadSci1051:647-57.Grassi,F.,S.Cristino,etal.(2004)."CXCL12chemokineup-regulatesboneresorptionandMMP-9releasebyhumanosteoclasts:CXCL12levelsareincreasedinsynovialandbonetissueofrheumatoidarthritispatients."JCellPhysiol199(2):244-51.Grunewald,M.,I.Avraham,etal.(2006)."VEGF-inducedadultneovascularization:recruitment,retention,androleofaccessorycells."Cell124(1):175-89.Guleng,B.,K.Tateishi,etal.(2005)."Blockadeofthestromalcell-derivedfactor-l/CXCR4axisattenuatesinvivotumorgrowthbyinhibitingangiogenesisinavascularendothelialgrowthfactor-independentmanner."CancerRes65(13):5864-71.Gulino,A,V.,D.Moratto,etal.(2004)."AlteredleukocyteresponsetoCXCL12inpatientswithwartshypogammaglobulinemia,infections,myelokathexis(WHIM)syndrome."Blood104(2):444-52.Hartmann,T.N.,M.Burger,etal.(2004)."TheroleofadhesionmoleculesandchemokinereceptorCXCR4(CD184)insmallcelllungcancer."JBiolRegulHomeostAgents18(2):126-30,Hwang,J.H.,H.K.Chung,etal.(2003)."CXCchemokinereceptor4expressionandfunctioninhumananaplasticthyroidcancercells."JClinEndocrinolMetab88(1):408-16.Jiang,W"P.Zhou,etal.(1994)."MolecularcloningofTPAR1,agenewhoseexpressionisrepressedbythetumorpromoter12-O-tetradecanoylphorbol13-acetate(TPA).,'ExpCellRes215(2):284-93.Jose,P.J.,D.A.Griffiths-Johnson,etal.(1994)."Eotaxin:apotenteosinophilchemoattractantcytokinedetectedinaguineapigmodelofallergicairwaysinflammation."JExpMed179(3):881-7.Juarez,J.andL.Bendall(2004)."SDF-1andCXCR4innormalandmalignanthematopoiesis."HistolHistopathol19(1):299-309.Kanbe,K.,K.Takagishi,etal.(2002)."Stimulationofmatrixmetalloprotease3releasefromhumanchondrocytesbytheinteractionofstromalcell-derivedfactor1andCXCchemokinereceptor4."ArthritisRheum46(1):130-7.Kang,H.,G.Watkins,etal.(2005)."Stromalcellderivedfactor画l:itsinfluenceoninvasivenessandmigrationofbreastcancercellsinvitro,anditsassociationwithprognosisandsurvivalinhumanbreastcancer."BreastCancerRes7(4):R402-10.Kawai,T.,U.Choi,etal.(2005)."Enhancedfunctionwithdecreasedinternalizationofcarboxy國terminustruncatedCXCR4responsibleforWHIMsyndrome."ExpHematol33(4):460-8.Koshiba,T.,R.Hosotani,etal.(2000)."Expressionofstromalcell-derivedfactor1andCXCR4ligandreceptorsysteminpancreaticcancer:apossiblerolefortumorprogression."ClinCancerRes6(9):3530-5.Krumbholz,M.,D.Theil,etal.(2006)."Chemokinesinmultiplesclerosis:CXCL12andCXCL13up-regulationisdifferentiallylinkedtoCNSimmunecellrecruitment."Brain129:200-211.Kryczek,I"A.Lange,etal.(2005)."CXCL12andvascularendothelialgrowthfactorsynergisticallyinduceneoangiogenesisinhumanovariancancers."CancerRes65(2):465-72.Kucia,M.,R.Reca,etal.(2005)."Traffickingofnormalstemcellsandmetastasisofcancerstemcellsinvolvesimilarmechanisms:pivotalroleoftheSDF小CXCR4axis."StemCells23(7):879-94.Kusser,W.(2000)."Chemicallymodifiednucleicacidaptamersforinvitroselections:evolvingevolution."JBiotechnol74(1》27-38.Lapteva,N.,A.G.Yang,etal.(2005)."CXCR4knockdownbysmallinterferingRNAabrogatesbreasttumorgrowthinvivo."CancerGeneTher12(1):84-9.M.J.Damha,K.K.Ogilvie,MethodsinMolecularBiology,Vol.20Protocolsforoligonucleotidesandanalogs,ed.S.Agrawal,p.81-114,HumanaPressInc.1993Ma,Q.,D.Jones,etal.(1998)."ImpairedB-lymphopoiesis,myelopoiesis,andderailedcerebellarneuronmigrationinCXCR4-andSDF誦l-deficientmice."ProcNatlAcadSciUSA95(16):9448-53.Marechal,V.,F.Arenzana-Seisdedos,etal.(1999)."OppositeeffectsofSDF-1onhumanimmunodeficiencyvirustype1replication."JVirol73(5):3608-15.Matthys,P.,S.Hatse,etal.(2001)."AMD3100,apotentandspecificantagonistofthestromalcell-derivedfactor-1chemokinereceptorCXCR4,inhibitsautoimmunejointinflammationinIFN-gammareceptor-deficientmice."JImmunol167(8):4686-92.McGinnisS,MaddenTL(2004).BLAST:atthecoreofapowerfulanddiversesetofsequenceanalysistools.NucleicAcidsRes.32(WebServerissue):W20-5.Meleth,A.D.,E.Agron,etal.(2005)."Seruminflammatorymarkersindiabeticretinopathy."InvestOphthalmolVisSci46(11》1024295-301.Menu,E.,K.Asosingh,etal.(2006)."Theinvolvementofstromalderivedfactor1alphainhomingandprogressionofmultiplemyelomainthe5TMMmodel."Haematologica.Miller,M.D.andM.S.Krangel(1992)."Biologyandbiochemistryofthechemokines:afamilyofchemotacticandinflammatorycytokines."CritRevImmunol12(1-2):17-46.Moser,B.,M.Wolf,etal.(2004)."Chemokines:multiplelevelsofleukocytemigrationcontrol."TrendsImmunol25(2):75-84.Muller,A.,B.Homey,etal.(2001)."Involvementofchemokinereceptorsinbreastcancermetastasis."Nature410(6824):50-6.Murdoch,C.(2000)."CXCR4:chemokinereceptorextraordinaire."ImmunolRev177:175-84.Murphy,P.M.,M.Baggiolini,etal.(2000)."Internationalunionofpharmacology.XXII.Nomenclatureforchemokinereceptors."PharmacolRev52(1):145-76.Nagasawa,T.,H.Kikutani,etal.(1994)."Molecularcloningandstructureofapre-B-cellgrowth-stimulatingfactor."ProcNatlAcadSciUSA91(6):2305-9.Nagasawa,T.,S.Hirota,etal.(1996)."DefectsofB-celllymphopoiesisandbone-marrowmyelopoiesisinmicelackingtheCXCchemokinePBSF/SDF-1."Nature382(6592):635-8.Needleman&Wunsch(1970),Ageneralmethodapplicabletothesearchforsimilaritiesintheaminoacidsequenceoftwoproteins.JMolBiol.48(3):443-53.Oppenheim,J.J.,C.O.ZachaHae,etal.(1991)."Propertiesofthenovelproinflammatorysupergene',intercrine"cytokinefamily."AiinuRevImmunol9:617-48.Orimo,A.,P.B.Gupta,etal.(2005)."Stromalfibroblastspresent103ininvasivehumanbreastcarcinomaspromotetumorgrowthandangiogenesisthroughelevatedSDF-1/CXCL12secretion."Cell121(3):335-48.Pearson&Lipman(1988),Improvedtoolsforbiologicalsequencecomparison.Proc.Nat,l,Acad.Sci.USA85:2444Perissinotto,E.,G.Cavalloni,etal.(2005)."Involvementofchemokinereceptor4/stromaIcell-derivedfactor1systemduringosteosarcomatumorprogression."ClinCancerRes11(2Pt1):490-7.Phillips,R.J.,M.D.Burdick,etal.(2003)."Thestromalderivedfactor-l/CXCL12-CXCchemokinereceptor4biologicalaxisinnon-smallcelllungcancermetastases."AmJRespirCritCareMed167(12):1676-86.Ponath,P.D.,S.Qin,etal.(1996)."Cloningofthehumaneosinophilchemoattractant,eotaxin.Expression,receptorbinding,andfunctionalpropertiessuggestamechanismfortheselectiverecruitmentofeosinophils."JClinInvest97(3):604-12.Rubin,J.B.,A.L.Kung,etal.(2003)."AsmaU-moleculeantagonistofCXCR4inhibitsintracranialgrowthofprimarybraintumors."ProcNatlAcadSciUSA100(23):13513-8.Salcedoetal.(1999)VascularendothelialgrowthfactorandbasicfibroblastgrowthfactorinduceexpressionofCXCR4onhumanendothelialcells.Invivoneovascularizationinducedbystromal國derivedfactor-la.Am.J.Pathol.154:1125-1135.Salcedo,R.andJ.J.Oppenheim(2003)."Roleofchemokinesinangiogenesis:CXCL12/SDF-1andCXCR4interaction,akeyregulatorofendothelialcellresponses."Microcirculation10(3-4):359-70.Salcedo,R.,K.Wasserman,etal.(1999)."VascularendothelialgrowthfactorandbasicfibroblastgrowthfactorinduceexpressionofCXCR4onhumanendothelialcells:Invivoneovascularizationinducedbystromal-derivedfactor-1alpha."AmJPathol154(4》1125-35.Salvucci,O.,L.Yao,etal.(2002)."Regulationofendothelialcellbranchingmorphogenesisbyendogenouschemokinestromal-derivedfactor國l."Blood99(8):2703-11.Saur,D.,B.Seidler,etal.(2005)."CXCR4expressionincreasesliverandlungmetastasisinamousemodelofpancreaticcancer."Gastroenterology129(4):1237-50.Schall,T.J.andK.B.Bacon(1994)."Chemokines,leukocytetrafficking,andinflammation."CurrOpinImmunol6(6》865-73.Scotton,C.J.,J.L.Wilson,etal.(2002)."MultipleactionsofthechemokineCXCL12onepithelialtumorcellsinhumanovariancancer."C謝erRes62(20):5930-8.Sengupta,N.,S.Caballero,etal.(2005)."Preventingstemcellincorporationintochoroidalneovascularizationbytargetinghomingandattachmentfactors."InvestOphthalmolVisSci46(1):343-8.Shirozu,M.,T.Nakano,etal.(1995)."Structureandchromosomallocalizationofthehumanstromalcell-derivedfactor1(SDF1)gene."Genomics28(3):495-500.Smith&Waterman(1981),Adv.Appl.Math.2:482Soriano,A"C.Martinez,etal.(2002)."Plasmastromalcell-derivedfactor(SDF)國llevels,SDFl-3'Agenotype,andexpressionofCXCR4onTlymphocytes:theirimpactonresistancetohumanimmunodeflciencyvirustype1infectionanditsprogression."JInfectDis186(7):922-31.Springer,T.A.(1995)."Trafficsignalsonendotheliumforlymphocyterecirculationandleukocyteemigration."AnnuRevPhysiol57:827-72.105Sun,Y.X.,A.Schneider,etal.(2005)."SkeletallocalizationandneutralizationoftheSDF-1(CXCL12)/CXCR4axisblocksprostatecancermetastasisandgrowthinosseoussitesinvivo."JBoneMinerRes20(2):318-29.Takenaga,M.,H.Tamamura,etal.(2004)."AsingletreatmentwithmicrocapsulescontainingaCXCR4antagonistsuppressespulmonarymetastasisofmurinemelanoma."BiochemBiophysResCommun320(1):226-32.Tamamura,H.,M.Fujisawa,etal.(2004)."IdentificationofaCXCR4antagonist,aT140analog,asananti-rheumatoidarthritisagent."FEBSLett569(1-3):99-104.Tashiro,K.,H.Tada,etal.(1993)."Signalsequencetrap:acloningstrategyforsecretedproteinsandtypeImembraneproteins."Science261(5121):600-3.Venkatesan,N.,S.J.Kim,etal,(2003)."Novelphosphoramiditebuildingblocksinsynthesisandapplicationstowardmodifiedoligonucleotides."CurrMedChem10(19):1973-91.Wang,J.,E.Guan,etal.(2001)."Roleoftyrosinephosphorylationinligand-independentsequestrationofCXCR4inhumanprimarymonocytes-macrophages."JBiolChem276(52):49236-43.Wang,N.,Q.L.Wu,etal.(2005)."Expressionofchemoi"i"receptorCXCR4innasopharyngealcarcinoma:patternofexpressionandcorrelationwithclinicaloutcome."JTranslMed3:26.WincottF,DiRenzoA,ShafferC,GrimmS,TraczD,WorkmanC,SweedlerD,GonzalezC,ScaringeS,UsmanN(1995).Synthesis,deprotection,analysisandpurificationofRNAandribozymes.NucleicAcidsRes.23(14):2677-84Yamaguchi,J"K.F.Kusano,etal.(2003)."Stromalcell-derivedfactor-leffectsonexvivoexpandedendothelialprogenitorcellrecruitmentforischemicneovascularization."Circulation107(9):1322-8.Yasumoto,K.,K.Koizumi,etal.(2006)."RoleoftheCXCL12/CXCR4axisinperitonealcarcinomatosisofgastriccancer."CancerRes66(4):2181-7.Zeelenberg,I.S.,L.Ruuls-VanStalle,etal.(2001)."RetentionofCXCR4intheendoplasmicreticulumblocksdisseminationofaTcellhybridoma."JClinInvest108(2):269-77.Zeelenberg,I.S.,L.Ruuls-VanStalle,etal.(2003)."ThechemokinereceptorCXCR4isrequiredforoutgrowthofcoloncarcinomamicrometastases,"CancerRes63(13):3833-9,Zhou,Y.,P.H.Larsen,etal.(2002)."CXCR4isamajorchemokinereceptorongliomacellsandmediatestheirsurvival."JBiolChem277(51):49481-7.Zou,Y,R"A.H.Kottmann,etal.(1998)."FunctionofthechemokinereceptorCXCR4inhaematopoiesisandincerebellardevelopment."Nature393(6685):595-9.可将本说明书、权利要求书和/或附图中公开的本发明的特征单独及以其任意組合作为以本发明的各种形式实现本发明的依据。权利要求1.核酸分子,其优选结合SDF-1,所述核酸分子选自A型核酸分子、B型核酸分子、C型核酸分子和具有SEQ.ID.No.142、SEQ.ID.No.143和SEQ.ID.No.144所示任一核酸序列的核酸分子。2.权利要求1的核酸分子,其中所述A型核酸分子包含下列核心核苷酸序列5"AAAGYRACAHG画AAUGAAAGGUARC3'(SEQ.ID.19)其中XA缺失或为A。3.权利要求2的核酸分子,其中所述A型核酸分子包含选自下列序列的核心核普酸序列5,AAAGYRACAHGUMAAXAUGAAAGGUARC3,(SEQ.ID.No.20)、5'AAAGYRACAHG丽AAAUGAAAGGUARC3"(SEQ.ID.No.21)和5"AAAGYAACAHGUCAAUGAAAGGUARC3'(SEQ.ID.No.22),所述核心核苷酸序列优选包含5,AAAGYAACAHGUCAAUGAAAGGUARC3'(SEQ.ID.No.22)。4.权利要求2和3中任一项的核酸分子,其中所述核酸分子以5,->3,方向包含第一核苷酸片段、所述核心核苷酸序列和第二核苷酸片段。5.权利要求2和3中任一项的核酸分子,其中所述核酸分子以5,->3,方向包含第二核苷酸片段、所述核心核苦酸序列和第一核苷酸片段。6.权利要求4和5的核酸分子,其中所述核酸分子包含所述第一和所述第二核苷酸片段,且所述第一和所述第二核苷酸片段任选相互杂交,其中在杂交后形成双链结构。7.权利要求4-6中任一项的核酸分子,其中所述双链结构由4-6个碱基对,优选5个碱基对构成。8.权利要求4-7中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,XiX2NNBV3,(SEQ.ID.No.44),且所述第二核苷酸片段包含核苷酸序列5,BNBNX3X43,(SEQ.ID.No.45),其中Xi缺失或为R,X2为S,乂3为S及X4缺失或为Y;或Xi缺失,X2缺失或为S,X3缺失或为S及X4缺失。9.权利要求4-8中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,RSHRYR3,(SEQ.ID.No.23),且所述第二核苷酸片段包含核苷酸序列5,YRYDSY3,(SEQ.ID.No.24),所述第一核苷酸片段优选包含核苷酸序列5,GCUGUG3,,且所迷第二核苷酸片段优选包含核香酸序列5,CGCAGC3'。10.权利要求4-8中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,X2BBBS3,(SEQ.ID.No.42),且所述第二核苷酸片段包含核苷酸序列5,SBBVX33,(SEQ.ID.No.43),其中X2缺失或为S,且X3缺失或为S;所述第一核苷酸片段优选包含核苷酸序列5,CUGUG3,,且所述第二核苷酸片段优选包含核苷酸序列5,CGCAG3,;或所述第一核苷酸片段优选包含核苷酸序列5'GCGUG3,,且所迷第二核苷酸片段优选包含核苷酸序列5,CGCGC3,。11.权利要求2-10中任一项的核酸分子,其中所述核酸分子具有SEQ.ID.No.5-18、25-41、133、137、139-141所示任一核酸序列。12.权利要求l的核酸分子,其中所述B型核酸分子包含下列核心核苷酸序列5"GUGUGAUCUAGAUGUA誇GGCUGWUCCUAGUYAGG3,(SEQ.ID息57)。13.权利要求12的核酸分子,其中所述B型核酸分子包含核心核苷酸序列GUGUGAUCUAGAUGUADUGGCUGAUCCUAGUCAGG(SEQ.ID息58)。14.权利要求12和13中任一项的核酸分子,其中所述核酸分子以5,->3,方向包含第一核苷酸片段、所述核心核苷酸序列和第二核苷酸片段。15.权利要求12和13中任一项的核酸分子,其中所述核酸分子以5,->3,方向包含第二核苷酸片段、所述核心核苷酸序列和第一核苷酸片段。16.权利要求14和15中任一项的核酸分子,其中所述核酸分子包含所述第一和第二核苷酸片段,且所述第一和第二核苷酸片段任选相互杂交,其中在杂交后形成双链结构。17.权利要求14-16中任一项的核酸分子,其中所述双链结构由4-6个碱基对,优选5个碱基对构成。18.权利要求14-17中任一项的核酸分子,其中所述第一核苷酸片段包含核香酸序列5,X!X2SVNS3,(SEQ.ID.No.77),且所述第二核普酸片段包含核苷酸序列5,BVBSX3X43,(SEQ.ID.No.78),其中Xi缺失或为A,X2是G,X3是C及X4缺失或为U;或X!缺失,X2缺失或为G,X3缺失或为C及X4缺失。19.权利要求14-18中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,X,GCRWG3,(SEQ.ID.No.59),且所述第二核苷酸片段包含核苷酸序列5,KRYSCX43,(SEQ.ID.No.60),其中Xi缺失或为A,且X4缺失或为U。20.权利要求14-19中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,X,GCGUG3,(SEQ.ID.No.75),且所述第二核苷酸片段包含核苷酸序列5,UACGCX43,(SEQ.ID.No.76),其中X!缺失或为A,且X4缺失或为U,所述第一核苷酸片段优选包含核苷酸序列5,AGCGUG3,,且所述第二核苷酸片段优选包含核苷酸序列5,UACGCU3'。21.权利要求14-18中任一项的核酸分子,其中所述第一核苷酸片段包含核香酸序列5,X2SSBS3,(SEQ.ID.No.73),且所述第二核苷酸片段包含核苷酸序列5,BVSSX33,(SEQ.ID.No.74),其中X2缺失或为G,且X3缺失或为C,所述第一核苷酸片段优选包含核苷酸序列5'GCGUG3',且所述第二核苷酸片段优选包含核苷酸序列5,UACGC3'。22.权利要求12-21中任一项的核酸分子,其中所述核酸分子具有SEQ.ID.No.46-56、61-72和132所示任一核酸序列。23.权利要求l的核酸分子,其中所述C型核酸分子包含核心核苷酸序列GGUYAGGGCUHRXAAGUCGG(SEQ.ID.No.90),其中XA缺失或为A。24.权利要求23的核酸分子,其中所述C型核酸分子包含选自下列序列的核心核苷酸序列5,GGUYAGGGCUHRAAGUCGG3'(SEQ.ID.No.91)、5"GGUYAGGGCUHRAGUCGG3'(SEQ.ID.No.92)和5,GGUUAGGGCUHGAAGUCGG3,(SEQ.ID息93),所述核心核苷酸序列优选包含5,GGUUAGGGCUHGAAGUCGG3,(SEQ.ID.No.93)。25.权利要求23和24中任一项的核酸分子,其中所述核酸分子以5,->3,方向包含第一核苷酸片段、所述核心核苷酸序列和第二核苷酸片段。26.权利要求23和24中任一项的核酸分子,其中所述核酸分子以5,->3,方向包含第二核苷酸片段、所述核心核苷酸序列和第一核苷酸片段。27.权利要求25和26的核酸分子,其中所述核酸分子包含所述第一和第二核苷酸片段,其中所述第一核苷酸片段的至少一部分和所述第二核苷酸片段的至少一部分任选相互杂交,其中在杂交后形成双链结构。28.权利要求25-27中任一项的核酸分子,其中所述第一核苷酸片段的长度和所述第二片段的长度各自分别为0-17个核苷酸,优选4-10个核苷酸,及更优选4-6个核苷酸。29.权利要求27和28中任一项的核酸分子,其中所述双链结构包含4-10个碱基对,优选4-6个碱基对,更优选5个碱基对。30.权利要求29的核酸分子,其中所述双链结构包含4-10个连续碱基对,优选4-6个连续碱基对,更优选5个连续碱基对。31.权利要求25-30中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,RKSBUSNVGR3,(SEQ.ID.No.120),且所述第二核苷酸片段包含核苷酸序列5,YYNRCASSMY3,(SEQ.ID.No.121),所述第一核苷酸片段优选包含核苷酸序列5,RKSBUGSVGR3,(SEQ.ID.No.122),且所述第二核苷酸片段优选包含核苷酸序列5,YCNRCASSMY3,(SEQ.ID.No.123)。32.权利要求25-30中任一项的核酸分子,其中所述第一核苷酸片段包含核香酸序列5,XsSSSV3,(SEQ.ID.No.124),且所述第二核苷酸片段包含核苷酸序列5,BSSSXS3,(SEQ.ID.No.125),其中&缺失或为S。33.权利要求25-30和32中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,SSSSR3,(SEQ.ID.No.130),且所述第二核苷酸片段包含核苷酸序列5,YSBSS3,(SEQ.ID.No.131),所述第一核苷酸片段优选包含核苷酸序列5,SGGSR3,(SEQ.ID.No.126),且所述第二核苷酸片段优选包含核苷酸序列5,YSCCS3,(SEQ.ID息127)。34.权利要求25-30、32和33中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,GCSGG3,(SEQ.ID.No.128),且所述第二核苷酸片段包含核苷酸序列5,CCKGC3,(SEQ.ID.No.129),所述第一核苷酸片段优选包含核苷酸序列5,GCCGG3,,且所述第二核苷酸片段优选包含核苷酸序列5,CCGGC3,。35.权利要求25-30中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,CGUGCGCUUGAGAUAGG3,,且所述第二核苷酸片段包含核苷酸序列5,CUGAUUCUCACG3'。36.权利要求25-30中任一项的核酸分子,其中所述第一核苷酸片段包含核苷酸序列5,UGAGAUAGG3',且所述第二核苷酸片段包含核苷酸序列5'CUGAUUCUCA3,。37.权利要求25-30中任一项的核酸分子,其中所述第一核苷酸片段包含核普酸序列5,GAGAUAGG3,,且所述第二核苷酸片段包含核苷酸序歹'J5,CUGAUUCUC3,。38.权利要求23-37中任一项的核酸分子,其中所述核酸分子具有SEQ.ID.No.79-89、94-119和134-136所示任一核酸序列。39.权利要求l的核酸分子,其中所述核酸分子具有SEQ.ID.No.142-144所示任一核酸序列。40.权利要求1-39中任一项的核酸分子,其中所述核酸分子是针对SDF-1的拮抗剂。41.权利要求1-39中任一项的核酸分子,其中所述核酸分子是所述SDF-1受体系统的拮抗剂,其中所述SDF-1受体系统的所述SDF-1受体优选是CXCR4受体。42.权利要求1或41中任一项的核酸分子,其中所述SDF-1是人SDF-1和/或所述SDF-l受体系统的所述SDF-1受体是人SDF-1受体。43.权利要求1-42中任一项的核酸分子,其中SDF-1包含SEQIDNo.1所示氨基酸序列。44.权利要求1-43中任一项的核酸,其中所述核酸包含修饰物。45.权利要求44的核酸,其中所述修饰物选自HES部分和PEG部分。46.权利要求45的核酸,其中所述修饰物是由直链或支链PEG构成的PEG部分,其中所述PEG部分的分子量优选约2-180kD,更优选约60-140kD及最优选约40kD。47.权利要求45的核酸,其中所述修饰物是HES部分,其中所述HES部分的分子量优选约10-130kD,更优选约30-130kD及最优选约100kD。48.权利要求1-47中任一项的核酸,其中所述核酸的核苷酸是L誦核苷酸,优选SEQ.ID.No.19、20、21、22、57、58、90、91、92和93所示任一序列的核苷酸。49.药物组合物,其包含权利要求1-48中任一项的核酸,且任选包含其他组分,其中所述其他组分选自药学可接受的赋形剂和药学活性剂。50.权利要求1-48中任一项的核酸在药物制备中的用途。51.权利要求50的用途,其中所述药物被用于治疗和Z或预防疾病或病症,其中所述疾病或病症受SDF-1介导,所述疾病或病症优选选自眼后部疾病(back-of-the-eyediseases),如糖尿病性一见网膜病和老年黄斑变性;乳腺癌、卵巢癌、前列腺癌、胰腺癌、曱状腺癌、鼻咽癌、结肠癌、肺癌和胃癌;骨肉瘤;黑素瘤;神经胶质瘤;成髓细胞瘤和成神经细胞瘤;白血病;WHIM综合征;免疫缺陷综合征;病理性新生血管形成;炎症;多发性硬化症;类风湿性关节炎/骨关节炎和肾炎。52.权利要求50的用途,其中所述药物被用于抑制血管发生、新生血管形成、炎症和转移。53.4又利要求1-48中任一项的核酸在诊断工具制备中的用途。54.权利要求53的用途,其中所述诊断工具被用于诊断疾病,其中所述疾病受SDF-1介导,所述疾病优选选自眼后部疾病,如糖尿病性视网膜病和老年黄斑变性;乳腺癌、卵巢癌、前列腺癌、胰腺癌、甲状腺癌、鼻咽癌、结肠癌、肺癌和胃癌;骨肉瘤;黑素瘤;神经胶质瘤;成髓细胞瘤和成神经细胞瘤;白血病;WHIM综合征;免疫缺陷综合征;病理性新生血管形成;炎症;多发性硬化症;类风湿性关节炎/骨关节炎和肾炎。55.权利要求53的用途,其中所述诊断工具被用于诊断血管发生、新生血管形成、炎症和/或转移。56.包含SDF-1和权利要求1-48中任一项的核酸的复合物,其中所述复合物优选是晶体复合物。57.权利要求1-48中任一项的核酸在SDF-1检测中的用途。58.用于筛选SDF-1拮抗剂或SDF-1激动剂的方法,所述方法包括下列步骤-提供候选SDF-1拮抗剂和/或候选SDF-1激动剂,-提供权利要求1-48中任一项的核酸,-提供在SDF-1拮抗剂和/或SDF-1激动剂存在的情况下提供信号的检测系统,及-确定所述候选SDF-l拮抗剂是否是SDF-l拮抗剂和/或所述候选SDF-1激动剂是否是SDF-1激动剂。59.用于筛选SDF-1激动剂和/或SDF-1拮抗剂的方法,所述方法包括下列步骤-提供固定于相的SDF-1,所述相优选固相,-提供权利要求1-48中任一项的核酸,优选被标记的权利要求1-48中任一项的核酸,-加入候选SDF-1激动剂和/或4矣选SDF-1拮抗剂,和-确定所述候选SDF-l激动剂是否是SDF-l激动剂和/或所述候选SDF-1拮抗剂是否是SDF-1拮抗剂。60.权利要求59的方法,其特征在于进行所述确定以便估计所述核酸是否被所述候选SDF-1激动剂或被候选SDF-1拮抗剂替代。61.用于检测SDF-1的试剂盒,其包含权利要求1-48中任一项的核酸。62.可通过权利要求58-60中任一项的方法获得的SDF-1拮抗剂。全文摘要本发明涉及核酸分子,优选SDF-1结合性核酸分子,其选自A型核酸分子、B型核酸分子、C型核酸分子和具有SEQ.ID.No.142、SEQ.ID.No.143和SEQ.ID.No.144所示任一核酸序列的核酸分子。文档编号C12Q1/68GK101506364SQ200780030524公开日2009年8月12日申请日期2007年7月18日优先权日2006年7月18日发明者C·马什,D·尤尔伯格,F·雅洛世,K·布赫纳,N·丁斯,S·克鲁斯曼,W·普尔斯克申请人:诺松制药股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1