一种高负载姜黄素茶油O/W纳米乳液的制备方法与流程

文档序号:16264447发布日期:2018-12-14 21:49阅读:587来源:国知局
一种高负载姜黄素茶油O/W纳米乳液的制备方法与流程

本发明属于食品加工技术领域,涉及一种高负载姜黄素茶油o/w纳米乳液的制备方法。

背景技术

茶油含有丰富的不饱和脂肪酸,其中单不饱和脂肪酸的含量达68~77%,多不饱和脂肪酸的含量为7~14%,在茶油中还存在着大量诸如甾醇、多酚类物质及脂质伴随物等对人身体有益的物质,因此,茶油具有较高的营养和保健功能,可以提供必要的营养元素,还在预防和治疗高血压、心血管疾病等功能方面具有重要意义。

茶油多为液体状,具有高疏水效应,给直接饮用、或在食品、化妆品应用方面加工、应用带来诸多不便。目前市场茶油产品多为乳剂、软膏等,一方面难以满足食品加工的要求,还降低了茶油生物利用率。纳米乳液体系是油相、水相、表面活性剂以适当的比例混合形成的一种透明或半透明的热力学稳定体系,可作为疏水性药物、水难溶性药物的载体,茶油纳米体系可以提高茶油的水溶性及生物利用率。

姜黄素作为一种常见高疏水功能性植物多酚,具有抗炎、抗氧化、降血脂、抗动脉粥样硬化、抗肿瘤等多种功能。但是,作为功能成分和有效治疗剂,姜黄素的水溶解度较低,温度、紫外线等环境敏感度较高,严重限制了其广泛应用。



技术实现要素:

为解决上述问题,本发明提供了一种高负载姜黄素茶油o/w纳米乳液的制备方法。本发明中所述高负载为高溶解度。

一种高负载姜黄素茶油o/w纳米乳液的制备方法,包括以下步骤:

步骤1:称取姜黄素加入到无水乙醇中,避光搅拌,得混合液;

步骤2:取步骤1所得的混合液与吐温80混合,避光搅拌,形成表面活性剂复合溶液;

步骤3:向步骤2所得的表面活性剂复合溶液中逐滴加入茶油,搅拌混匀,得到混合体系;

步骤4:向步骤3所得的混合体系中逐滴加入超纯水,搅拌,搅拌速度为50~600转/分钟,搅拌时间为2~5h。

进一步地,步骤1中所述姜黄素和无水乙醇的质量比为(0.1~2):100。

进一步地,步骤1中搅拌时的温度为25℃,搅拌速度为40~600转/分钟,搅拌时间为20~30min。

进一步地,步骤2中所述混合液与吐温80的质量比为1:(1~5)。

进一步地,步骤2中搅拌时的温度为25℃,搅拌速度为500~1000转/分钟,搅拌时间为3~7h。

进一步地,步骤3中所述茶油和表面活性剂复合溶液的质量比为1:(2~8)。

进一步地,步骤3中搅拌时的温度为25℃,搅拌速度为500~1000转/分钟,搅拌时间为3~5h。

进一步地,步骤4中所述超纯水与混合体系的质量比为(5~7):10。

相比现有技术,本发明的有益效果在于:

(1)解决了茶油在水体系的加工问题,为其在食品及化妆品加工提供基础;

(2)提高茶油的功能特性,实现姜黄素及茶油双重生理功能;

(3)大大提高姜黄素水溶解度,姜黄素在纯水中的溶解度为11ng/ml,通过纳米复合物包载等手段也可提高其溶解度,但增溶效果不明显,本发明可达到17mg/ml,溶解度可提高上万倍,可极大地提高其生物利用率;

(4)本发明提高姜黄素环境稳定性及茶油的氧化稳定性,大量研究表明姜黄素在高温、紫外线等条件下会降解并失去活性,目前普遍应用的方法是加入一些抗氧化剂,降低其氧化特性,本发明通过茶油纳米溶液包载的手段,可降低姜黄素素在高温中的敏感性,保存率可提高约10%(见图3);同时发挥姜黄素在乳液界面的抗氧化功能,有效防止茶油中不饱和脂肪酸的氧化酸败行为,提高茶油中脂肪酸的氧化稳定性。

附图说明

图1为不同姜黄素茶油o/w纳米乳液体系粒径分布,图中插图为制备的姜黄素茶油o/w纳米乳液的外观图。

图2为不同姜黄素茶油o/w纳米乳液体系清除自由基能力(a)及总抗氧化能力(b)。

图3为不同温度和不同包载情况下姜黄素保留率。

具体实施方式

以下实施例用于说明本发明,但不用来限定本发明的保护范围。若未特别指明,实施例中所用技术手段为本领域技术人员所熟知的常识。

实施例1

一种高负载姜黄素茶油o/w纳米乳液的制备方法,包括以下步骤:

步骤1:称取0.5g姜黄素加入到50g无水乙醇中,避光搅拌溶解,得到混合液,所述搅拌时的温度为25℃,搅拌速度为60转/分钟,搅拌时间为30min;

步骤2:取步骤1得到的混合液1g与3g吐温80混合,避光搅拌,搅拌时的温度为25℃、搅拌速度为600转/分钟,搅拌时间为3h,形成表面活性剂复合溶液;

步骤3:以30滴/min的滴速,向步骤2所得表面活性剂复合溶液中逐滴加入2g茶油,搅拌混匀,得到混合体系,搅拌时的温度为25℃、搅拌速度为500转/分钟,搅拌时间为4h;

步骤4:以30滴/min的滴速,向步骤3所得混合体系中逐滴加入4g超纯水,搅拌,搅拌速度为600转/分钟,搅拌时间为2h,得负载1.0wt‰姜黄素茶油o/w纳米乳液,1.0wt‰姜黄素茶油o/w纳米乳液中粒径分布为554.0±29.2nm,见图1;所得1.0wt‰姜黄素茶油o/w纳米乳液的dpph清除自由基可达到97.3±0.7%,见图2a;其总抗氧化能力可达到26.98±0.9t-aoc/ml,见图2b。

实施例2

一种高负载姜黄素茶油o/w纳米乳液的制备方法,包括以下步骤:

步骤1:称取0.18g姜黄素加入到30g无水乙醇中,避光搅拌溶解,得到混合液,所述搅拌时的温度为25℃,搅拌速度为80转/分钟,搅拌时间为20min;

步骤2:取步骤1得到的混合液1g与3g吐温80混合,避光搅拌,搅拌时温度为25℃、搅拌速度为600转/分钟,搅拌时间为5h,形成表面活性剂复合溶液;

步骤3:以30滴/min的滴速,向步骤2所得表面活性剂复合溶液中逐滴加入1g茶油,搅拌混匀,得到混合体系,搅拌时温度为25℃、搅拌速度为800转/分钟,搅拌时间为5h;

步骤4:以30滴/min的滴速,向步骤3所得混合体系中逐滴加入3g超纯水,搅拌,搅拌速度为90转/分钟,搅拌时间为3h,得负载0.75wt‰姜黄素茶油o/w纳米乳液,0.75wt‰姜黄素茶油o/w纳米乳液中粒径分布为548.3±30.7nm,见图1;所得0.75wt‰姜黄素茶油o/w纳米乳液的dpph清除自由基可达到86.9±3.2%,见图2a,其总抗氧化能力可达到29.13±0.4t-aoc/ml,见图2b。

实施例3

一种高负载姜黄素茶油o/w纳米乳液的制备方法,包括以下步骤:

步骤1:称取0.08g姜黄素加入到10g无水乙醇中,避光搅拌溶解,得到混合液,搅拌时温度为25℃,搅拌速度为90转/分钟,搅拌时间为25min;

步骤2:取步骤1得到的混合液1g与2g吐温80混合,避光搅拌,搅拌时的温度为25℃、搅拌速度为900转/分钟,搅拌时间为3.5h,形成表面活性剂复合溶液;

步骤3:以30滴/min滴速,向步骤2所得表面活性剂复合溶液中逐滴加入1g茶油,搅拌混匀,得到混合体系,搅拌时温度为25℃,搅拌速度为700转/分钟,搅拌时间为3.5h;

步骤4:以30滴/min滴速,向步骤3所得混合体系中逐滴加入2g超纯水,搅拌,搅拌速度为70转/分钟,搅拌时间为3.5h,得负载1.3wt‰姜黄素茶油o/w纳米乳液,1.3wt‰姜黄素茶油o/w纳米乳液中粒径分布为501.5±12.1nm,见图1;所得1.3wt‰姜黄素茶油o/w纳米乳液的dpph清除自由基可达到84.8±1.3%,见图2a,其总抗氧化能力可达到29.13±0.1t-aoc/ml,见图2b。

实施例4

不同温度和不同包载情况下姜黄素保留率对比,实验步骤如下:

步骤1:利用实施例1所述方法制备姜黄素茶油o/w纳米乳液,分别称取制备的5g姜黄素茶油o/w纳米乳液于30个棕色试剂瓶中;

步骤2:称取2.55g姜黄素加入到150g无水乙醇中,避光搅拌溶解,得到姜黄素乙醇混合液,所述搅拌时的温度为25℃,搅拌速度为60转/分钟,搅拌时间为30min,分别称取5g姜黄素乙醇混合液于30个棕色试剂瓶中;

步骤3:把步骤1得到的30瓶姜黄素茶油o/w纳米乳液和步骤2得到的30瓶姜黄素乙醇混合液分别取15瓶放置于25℃和50℃条件下;

步骤4:在不同时间段(0h、1h、3h、7h、21h、29h)分别取3瓶姜黄素茶油o/w纳米乳液和3瓶姜黄素乙醇混合液,稀释1500倍后,在428nm测定吸光值;

步骤5:计算姜黄素保留率,保留率(%)=at×100/a0,其中at指任意时间段时的吸光值,a0为初始时的吸光值。

结果显示,25℃条件下姜黄素保留率明显高于50℃条件下的姜黄素保留率。在7h时,25℃条件下乳液包载姜黄素和未包载姜黄素保留率相差达到最大。21h时,50℃条件下乳液包载姜黄素和未包载姜黄素保留率相差达到最大。29h时,25℃条件下乳液包载姜黄素和未包载姜黄素保留率下降至最低,其中,未包载姜黄素保留率略大于乳液包载姜黄素保留率;50℃条件下乳液包载姜黄素和未包载姜黄素保留率下降也下降至最低,其中,乳液包载姜黄素保留率略大于未包载姜黄素保留率。在7h之后,50℃条件下姜黄素保留率下降趋势均大于25℃条件下姜黄素保留率(见图3)。所述乳液包载是指茶油o/w纳米乳液包载。

以上所述之实施例,只是本发明的较佳实施例而已,仅仅用以解释本发明,并非限制本发明实施范围,对于本技术领域的技术人员来说,当然可根据本说明书中所公开的技术内容,通过置换或改变的方式轻易做出其它的实施方式,故凡在本发明的原理及工艺条件所做的变化和改进等,均应包括于本发明申请专利范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1