铁螯合剂及其用途的制作方法

文档序号:1109281阅读:3046来源:国知局
专利名称:铁螯合剂及其用途的制作方法
技术领域
本发明涉及能螯合铁并且在定位(adress)或治疗铁超载(iron-overload)方面有用的化合物。
为了理解Fe在细胞增殖中的作用和Fe螯合剂作为有效的抗肿瘤药的可能用途,描述这种金属离子如何在正常细胞和肿瘤细胞中被运输和代谢很重要。这在D.R.Richardson的题为“Potentialof Iron Chelators as Effective Anti-proliferativeAgents(铁螯合剂作为有效的抗增殖药的潜力)”的综述文章中得到了详细的描述,这篇文章于1997年出版于Can J.Physiol.Pharmacol.75 1164-80,该文献引入本文作参考。
本文还参考D.R.Richardson在Leukaemia andLymphoma,1998,31 47-60中报道的“Analogues ofPyridoxal Isonicotinoyl Hydrazone(PIH)as PotentialIron Chelators for the Treatment of Neoplastia(吡哆醛异烟酰腙(PIH)类似物作为有效的铁螯合剂用于治疗肿瘤)”,该文献引入本文作参考,以下讨论大部分取自该文献。
Fe在血浆中的运输通过结合两个原子Fe(III)的糖蛋白运铁蛋白(Tf)进行。运铁蛋白通过结合到细胞膜上的特异性Tf受体(TfR)上而将其携带的Fe给予细胞。一旦结合到TfR上,Tf-TfR复合物就被内化在胞吞小泡中,通过血管内(intravescular)pH降至5.5而将Fe从该蛋白释放。除了特异性受体介导的从Tf摄取Fe的过程之外,还报道了在大鼠肝细胞、人肝癌细胞和人黑素瘤细胞中符合非特异性吸附胞饮作用的另一过程。一旦Fe从Tf上释放,它便尚未被表征的特异性膜转运蛋白结合。最近,已经识别了此后一蛋白的可能选择物,即基因Nramp2的产物。该分子已被称为二价阳离子转运蛋白1(DCT1),在从肠吸收Fe和Fe被运输通过内体膜中均可能涉及之。一旦Fe被运输通过该膜,其接着进入尚未良好表征的称为细胞内Fe库的区室。对该库的特性争议很大,其可能由柠檬酸、氨基酸和核苷酸的低MTFe复合物组成,或者Fe可能结合于高MT大分子。试验表明,该库由含有Fe的分子组成,其中Fe处于Fe(II)和Fe(III)氧化态。在一些细胞,如发育中的红细胞(erythroid)前体中,低MT重量Fe库仅代表细胞中Fe总量的很少一部分,而在其它细胞类型,如Chang细胞中,其可能代表存在的Fe总量的相当部分。该库中的铁可以用于掺入含Fe蛋白,如细胞色素和Fe-S蛋白,当过量时,Fe可以掺入Fe贮存蛋白铁蛋白中。
许多研究已详细阐述了Fe在细胞增殖中所起的作用。例如,在没有Fe时,核苷酸还原酶不能产生脱氧核苷酸,这对细胞周期有深刻影响,导致G1/S停滞,这可能导致编程性细胞死亡。癌细胞表达非常高水平的运铁蛋白受体(TfR),表明它们需要大量Fe。事实上,在体内,一些肿瘤细胞类型以与产生血红蛋白的细胞如网织红细胞相似的速率从Tf摄取Fe。所关心的是,在肿瘤细胞增殖期间,宿主可能抑制Fe,这在何杰金氏和非何杰金氏淋巴瘤中被发现,其中带有Fe的Tf的饱和度显著下降。后一现象被称为亚铁转变(hypoferremic shift),其被认为是阻碍肿瘤细胞生长的生理学反应。TfR在Fe吸收和细胞增殖中的重要性通过以下事实得到证明,即阻断Tf结合到TfR上的单克隆抗体42/6也抑制肿瘤生长。
肿瘤细胞对Fe螯合作用敏感的证据来自体外细胞培养实验,以及体内临床试验,其中用于治疗铁超载的螯合剂,去铁敏(DFO)和其它Fe螯合剂有效地抑制增殖。证明DFO的显著疗效的最有意义的报导之一来自在患有成神经细胞瘤(NB)的患者中进行的研究。在后一试验中,以8小时静脉输注给药的DFO导致9个患者中的7个在肿瘤细胞的骨浸润方面有大于50%的下降。而且,据报道在1个患者中肿瘤大小下降了48%。在最近的研究中,将DFO与细胞毒性药(环磷酰胺、表鬼臼毒吡喃葡糖苷、硫化三磷和卡铂)联合用于治疗III期和IV期NB患者。根据对57例患者的研究,24例有完全有效,5例非常好地部分有效,21例部分有效,3例略微有效,4例有疾病发展(progressive disease)。
现已确定目前临床使用的药物DFO非常昂贵,口服无效,且需要长时间皮下输注(12-24小时/天,5-7天/周)以显著影响Fe代谢(Olivieri等,1997,Blood 89 739-61;Richardson等,1998,Am.J.Hematol.,58 299-305)。对口服有效且经济的Fe螯合剂的需求被deferiprone(也称为L1或1,2-二甲基-3-羟基吡啶-4-酮)不能成功地螯合Fe-超载患者中的Fe(Olivieri等,1998,New Eng.J.Med.337 417-23)的事实得到强调。事实上,用后一药物治疗患者导致肝纤维样变性和肝Fe水平的增加。
一组重要的在体外和体内都表现出高的Fe螯合功效的螯合剂是在上面的Richardson等,1998中提到的那些吡哆醛异烟酰腙(PIH)类配体。如在上面的Richardson等,1989和Vitolo等,1990,Inorg.Chim.Acta 733 39-50中所报道,这些螯合剂对Fe(III)具有很高的亲合力和特异性,其亲合力和特异性类似于DFO,并且远优于乙二胺四乙酸(EDTA)。另外,如Richardson等,1989,J.Lab Clin.Med.131 306-15中所讨论,这些配体通过简单的一步席夫碱缩合反应合成,它们经济且口服有效。有趣的是,PIH能够从线粒体螯合Fe,线粒体是可能在神经变性疾病遗传性共济失调中成为负载Fe的部位(Babcock等,1997,Science 276 1709-12;Foury等,1997,FEBS Lett.411373-7;Rotig等,1997,Nature Genetics 12 215-7)。
以前的研究已经表征了PIH类似物的生物学和化学性质,其中一些PIH类似物表现出在摩尔基础上比其母体化合物更高的活性。这些化合物衍生自三组芳醛,即吡哆醛、水杨醛和2-羟基-1-萘甲醛。通常,衍生自吡哆醛的螯合剂具有高螯合功效,但具有低抗增殖活性,而衍生自2-羟基-1-萘甲醛的螯合剂具有高Fe螯合功效和有效的抗增殖活性。因此,衍生自吡哆醛的芳酰腙被认为作为治疗Fe超载疾病的药物可能有用,而衍生自2-羟基-1-萘甲醛的螯合剂被认为对治疗癌症有更好的效果。应注意,许多其它Fe螯合剂也显示抗增殖活性,包括DFO。实际上,已报道了当DFO用于抗儿科肿瘤成神经细胞瘤时该药物的一些最效的作用。在Cory等,1995,Adv.Enzyme Regul.,35 55-68和Liu等,1995,Prog.Med.Chem.,32 1-35中,公开了衍生自2-吡啶甲醛和氨基硫脲的密切相关的一组螯合剂(例如3-氨基吡啶-2-甲醛缩氨基硫脲),其被发现为至今鉴定的最有效的核苷酸还原酶抑制剂之一。然而,发现这些螯合剂,尽管具有高抗增殖性质,但仅具有中等螯合功效和中等亲脂性,这使这些螯合剂在治疗Fe超载疾病方面并不很有效。
遗传性共济失调(FA)是严重的神经变性症状。在97%的患者中,该疾病是由于FRDA基因的内含子1中GAA三联体重复扩展,导致其表达显著降低。由该基因编码的蛋白被称为frataxin,它在线粒体中被发现。在过去几年中,已积累了证据提示frataxin在线粒体Fe代谢中起作用。使用酵母细胞的研究显示,由线粒体Fe的累积导致的同源基因(YFH1)缺失引起线粒体DNA、含有[Fe-S]簇的酶和呼吸作用的损失。类似于人FRDA基因,YFH1编码线粒体蛋白(Yfh1p)。当YFH1被再引入回酵母时,线粒体Fe输出进入细胞溶胶,提示“线粒体Fe循环”。
与失效酵母模型一致,注意到出现在FA患者心脏中的线粒体DNA、复合物I、复合物II/III和顺乌头酸酶的减少,该观察与线粒体损伤相符。另外,报道了在与线粒体位置相符的模型中,FA患者的心脏、肝和脾中Fe沉积增加。提出人的FA病理学是由线粒体Fe超载引起的这一项工作得到了证明Fe在心肌原纤维、缺损心肌和骨骼肌线粒体呼吸,和血红素生物合成途径中的干扰中沉积的这一项工作的强有力的支持。
由于FA病理学与线粒体Fe超载有关,所以基于这些结果的新治疗方法可为FA患者提供希望。一种策略是使用能渗透线粒体的特异性Fe螯合剂。由National Institute of Health(国家健康协会)赞助的试验已经在研究临床使用的Fe螯合剂去铁敏(DFO)治疗FA患者的用途。然而,DFO不能有效地移动(mobilize)细胞Fe,以前的研究已经证明它在移动网织红细胞中负载Fe的线粒体的Fe方面无效。
与DFO相反,另一个被称为吡哆醛异烟酰腙(PIH)的螯合剂在移动网织红细胞中线粒体Fe超载的实验模型的Fe方面显示出高活性。多种体外、体内和临床试验研究已证明PIH及其类似物在治疗Fe超载疾病方面具有潜力。
虽然已进行许多工作来开发Fe螯合剂以用于药物应用,但仍需要新的安全有效的螯合剂。本发明的发明者现在开发了适用于治疗Fe超载疾病的新的Fe螯合剂。本发明的发明者已经合成了被称为 2-吡啶甲醛异烟酰腙(2-pyridylcarboxaldehydeisonicotinoyl hydrazone,PCIH)类似物的一组新的配体。几种PCIH类似物在移动神经上皮瘤细胞系(SK-N-MC)的Fe方面比DFO或PIH具有更高的活性,并且表现出低的抗增殖活性。
优选地,R1是疏水性的芳基或杂环基。更优选地,R1是任选地在环上任一空位连接有烷基、卤素、硝基、胺和羟基的苯基、吡啶、呋喃或噻吩环。更优选地,R1是苯甲酰基、卤代苯甲酰基、间溴苯甲酰基、异烟酰基,或噻吩基。
本发明的发明者已发现当R1本质是亲水性的时,该类似物水的溶性更好,但是螯合剂在移动Fe方面显示较差的功效。由于已制备了多种具有不同的R1基的类似物,所以本发明包括一系列具有不同R1基的类似物。
更优选地,该类似物选自2-吡啶甲醛间溴苯甲酰腙(PCBBH)、2-吡啶甲醛2-噻吩羧基腙(PCTH)。
2-吡啶甲醛间溴苯甲酰腙(PCBBH)的Br取代基可以被其它任何卤素基团取代。
在第二方面,本发明提供适于用作体内铁螯合剂的药物组合物,该组合物包含治疗有效量的具有分子式1的2-吡啶甲醛异烟酰腙(PCIH)类似物,它们的异构体或它们的盐,以及药学适用的载体或稀释剂, 其中R1是芳基或杂环,且R2是H或OH;。
优选地,R1是疏水性的芳基或杂环基。更优选地,R1是任选地在环上任一空位连接有烷基、卤素、硝基、胺和羟基的苯基、吡啶、呋喃或噻吩环。在一种优选的形式中,R1是苯甲酰基、卤代苯甲酰基、间溴苯甲酰基、异烟酰基,或噻吩基。
优选地,该类似物选自化合物2-吡啶甲醛异烟酰腙(PCIH)、2-吡啶甲醛2-噻吩羧基腙(PCTH)、2-吡啶甲醛苯甲酰腙(PCBH)、2-吡啶甲醛间溴苯甲酰腙(PCBBH)。
2-吡啶甲醛间溴苯甲酰腙(PCBBH)的Br取代基可以被其它任何卤素基团取代。
在一个实施方案中,载体是可口服给予的载体。优选地,该药物组合物是配方为肠溶包衣的颗粒剂或胶囊剂的剂量形式。
优选地,该药物组合物进一步含有适当的缓冲剂以将患者或个体胃部pH调节至使酸水解最小化的水平。对于本文的活性化合物,包括游离碱和盐酸盐而言,该pH应为约6-8(更优选为约7)。更优选地,缓冲剂为磷酸-柠檬酸缓冲剂。
术语“给予治疗有效量”意指包括将类似物给予或施用于生物体的方法,该方法使该类似物表现其预期的治疗功能。类似物的治疗有效量将根据许多因素变化,如个体的疾病类型、年龄、性别、体重,以及类似物在个体的细胞中螯合铁的能力。可以调节剂量以提供最优治疗效果。例如,可以每日给予几个分开的剂量或者可以根据治疗情况紧急需要而按比例减少剂量。
该类似物可以以常规方式给予,如注射(皮下注射、静脉注射等)、口服给予、吸入、经皮施用,或直肠给予。取决于给药途径,类似物可以用物质包衣以防止该类似物受酶、酸和其它可能使该类似物螯合剂灭活的天然条件的破坏。
类似物也可以非胃肠或腹膜内给予。可以在甘油、液态聚乙二醇和它们的混合物以及在油中制备分散体。在常规贮存和使用条件下,这些制剂可以含有防腐剂以防止微生物生长。
适于注射用的药物组合物包括无菌水溶液(水溶性药物)或用于无菌注射溶液或分散体临时制剂的分散体和无菌粉末。在这些情况下,该组合物必须无菌并且必须具有一定的流动性以使其容易注射。它在生产和贮存条件下必须稳定并且必须在没有微生物如细菌和真菌污染作用的条件下保存。载体可为溶剂或含有例如水、醇、多元醇(例如、甘油、丙二醇和液体聚乙二醇等)的分散体介质,它们的适当的混合物,以及植物油。可以通过,例如,使用包衣如卵磷脂,通过在分散情况下维持所需的颗粒大小和通过使用表面活性剂维持适当的流动性。可以通过各种抗菌剂和抗真菌剂,例如对羟基苯甲酸酯类、氯代丁醇、酚、抗坏血酸、乙基汞硫代水杨酸钠等实现防止微生物作用。在许多情况下,优选在组合物中包含等渗剂,例如糖、多元醇如甘露糖醇、山梨糖醇、氯化钠。可注射的组合物的延长的吸收可以通过在组合物中包含延迟吸收的试剂实现,例如单硬脂酸铝和明胶。
可以通过将所需剂量的类似物掺入到含有上面列举的一种或几种成分的适当溶剂中,根据需要,接着过滤灭菌而制备无菌注射溶液。通常,通过将类似物掺入到含有基本分散介质和所需的选自上面列举的其它成分的无菌载体中而制备分散体。
该类似物可以口服给予,例如和惰性稀释剂或可同化的可食用载体一起给予。可以将该类似物和其它成分包入硬或软壳明胶胶囊中,压成片剂,或直接掺入个体的饮食中。为了口服治疗给药,可以将该类似物掺入赋形剂并以可吞咽(ingestible)片剂、口含(buccal)片、锭剂、胶囊剂、酏剂、悬浮剂、糖浆剂、糯米纸囊剂(wafer)等的形式使用。这种组合物和制剂应至少含有1%(重量)的活性化合物。组合物和制剂的百分比当然可以变化并可以方便地在单位重量的约5%至约80%单位之间。在这种治疗用组合物中该类似物的量是获得适当剂量的量。
片剂、锭剂、丸剂、胶囊剂等还可以含有下列物质粘合剂如gragacanth树胶、阿拉伯树胶、玉米淀粉或明胶;赋形剂如磷酸二钙;崩解剂如玉米淀粉、马铃薯淀粉、藻酸等;润滑剂如硬脂酸镁;以及甜味剂如蔗糖、乳糖或糖精或矫味剂如薄荷、冬青油,或樱桃香精。当剂量单位形式是胶囊时,除了以上类型的物质之外,其还可以含有液体载体。各种其它物质可以作为包衣存在或者修饰剂量单位的物理形式。例如,片剂、丸剂,或胶囊可以用紫胶、糖或以上两者包衣。糖浆剂或酏剂可以含有类似物、作为甜味剂的蔗糖、作为防腐剂的对羟基苯甲酸甲酯和对羟基苯甲酸丙酯、染料和矫味剂如樱桃香精或橙香精(orange flavor)。当然,在制备任何剂量单位形式中所使用的任何物质均应为药物纯并且在所采用的量下基本上无毒。另外,可以将该类似物掺入缓释制剂和配方中。
术语“药学可接受的载体”意为包括溶剂、分散介质、包衣、抗菌剂和抗真菌剂、等渗剂和延迟吸收剂等。这种介质和试剂用于药物活性物质在本领域是公知的。除非常规介质或试剂与该类似物不相容,它们在治疗组合物和治疗方法中的用途均可以考虑。辅助活性物质也可以掺入本发明的组合物中。为了方便给药和有利于剂量的均一性,将剂量单位形式配方成非胃肠给予的组合物尤为有利。本文中所用的剂量单位形式指适于作为单位剂量给予的物理上分立的单位;各单位含有经计算以产生所需疗效的预定量的类似物和所需的药物载体。本发明的新的剂量单位形式的规格由以下(a)和(b)规定并取决与(a)和(b),(a)该类似物的独特性质和要实现的特定疗效,(b)本领域中固有的配制这种用于治疗个体中与铁相关的疾病或铁超载疾病的类似物的限制。为了方便并有效地给药,将有效量的主要类似物和适当的药学可接受的载体混合在可接受的剂量单位中。在组合物含有辅助活性成分的情况下,参考所述成分的通常给药剂量和给药方式确定其剂量。
优选地,该药物组合物以30-500mg/kg患者体重的剂量给予。更优选地,剂量为50-100mg/kg体重。
在第三方面,本发明提供铁螯合治疗方法,所述方法包括将本发明第二方面的药物组合物给予患者。
在第四方面,本发明提供治疗个体的铁超载疾病的方法,所述方法包括将本发明第二方面的药物组合物给予患者。
在一个实施方案中,铁超载疾病是β-地中海贫血。在另一个实施方案中,该疾病是遗传性共济失调。
在第五方面,本发明提供本发明的第一或第二方面的2-吡啶甲醛异烟酰腙(PCIH)类似物在生产用于治疗铁超载疾病的药物中的用途。
考虑到在体内和体外均具有高Fe螯合效率的PIH类配体的高潜力,本发明的发明者合成了许多芳酰腙以鉴定Fe比去铁敏(DFO)更有效并且比PIH类螯合剂溶解性更好的螯合剂。这些化合物属于被称为2-吡啶甲醛异烟酰腙(PCIH)类似物的一系列新的三齿螯合剂。已经研究了这些螯合剂的Fe螯合功效和抗增殖活性,包括它们对基因(WAF1和GADD45)表达的影响,已知所述基因在介导G1/S细胞周期停滞方面重要。在所合成的螯合剂中,三种类似物,即2-吡啶甲醛苯甲酰腙(PCBH)、2-吡啶甲醛间溴苯甲酰腙(PCBBH)和2-吡啶甲醛2-噻吩羧基腙(PCTH)显示高于PIH的Fe螯合活性。这些配体在移动细胞59Fe和阻止从59Fe-运铁蛋白摄取59Fe方面非常有效,并导致铁调节蛋白(IRP)的RNA结合活性显著增加。与细胞毒性Fe螯合剂2-羟基-1-萘甲醛异烟酰腙(311)相比,这些配体对细胞生长和3H-胸腺嘧啶脱氧核苷、3H-亮氨酸或3H-尿嘧啶核苷掺入的影响小得多。另外,与显著增加WAF1和GADD45 mRNA表达的311相比,PCBH和PCTH没有任何影响,而PCBBH增加GADD45 mRNA的表达。总而言之,本结果证明了这些配体中的几种作为用于治疗Fe超载疾病的药物的潜力。
在这些特定的化合物中,已发现PCTH、PCBH和PCBBH具有用作治疗Fe超载的药物的潜力。
如果需要,该组合物还应含有适当的缓冲剂以将患者或个体胃部pH调节至使酸水解最小化的水平。对于本文的活性化合物,包括游离碱和盐酸盐而言,该pH应为约6-8(更优选为约7)。
众所周知,这种缓冲剂包括一种或多种成分,列于UAPharmacopoeia XXII中的那些,具体地举例,如磷酸的铵盐、钾盐和/或钠盐,连同柠檬酸。使用药学可接受的抗酸剂,如氢氧化铝和/或氢氧化镁或碳酸钙或甘氨酸USP/NF,足以中和200-600ml胃液中正常存在的0.1M HCl(20至60meq碱)。磷酸-柠檬酸缓冲剂的pH6.8的具体实例是9.1ml 0.1M柠檬酸与40.9ml0.2M磷酸氢二钠溶液混合。
测定本发明的螯合剂的生物效率可以根据Brittenham,1990年4月2日,Seminar in haematology 27 112-116或US5834492中所描述的方法进行,这两篇文献均引入本文做参考。
用US 5834492中描述的配方可以将本发明的活性化合物制成肠溶包衣颗粒剂配方。例如,将药物与充足的乙醇混合,使之成为微湿稠的糊状物,将其进一步与providone混合,并以层状包衣机械施加于规定筛目大小的球形载体上。如果需要,载体本身通常是药理学惰性的,但是也可以使用活性载体。球形基质可以是耐酸的生物相容的聚合物。其实例是聚碳酸酯、聚乙烯、聚四氟乙烯、微晶纤维素或其它塑料。也可以使用其它生物相容的聚合物。
将肠溶聚合物和增塑剂在乙醇中混合形成溶液,将该溶液小心喷到载体上形成膜,该膜覆盖在活性药物上并使之免于在不利于最佳吸收的环境pH中过早溶解。产品随后机械干燥同时保持肠溶包衣的均一性。
在整个说明书中,除非上下文另外需要,词语“包括”或者其变体“包含”被理解为意指包括所述元素、整数或步骤,或元素组、整数组或步骤组,但不排除任何其它元素、整数或步骤,或元素组、整数组或步骤组。
本文中已有技术的任何描述并非认可该文献是在澳大利亚内相关技术的共有一般知识的一部分。
为了使本发明能更清楚地被理解,参考以下实施例和附图对优选形式进行描述。
图2.DFO、311、PIH或PCIH类似物对(A)从预标记的SK-N-MC细胞释放59Fe,和(B)SK-N-MC细胞从59Fe-运铁蛋白(59Fe-Tf)摄取59Fe的影响。(A)用59Fe-Tf(0.75μM)将SK-N-MC神经上皮瘤细胞在37℃标记3小时,洗涤,并接着在只存在培养基(对照)或存在含有DFO(100μM)或其它螯合剂(50μM)的培养基中在37℃再培养3小时。(B)将SK-N-MC细胞在含有59Fe-Tf(0.75μM)和DFO(100μM)或其它螯合剂(50μM)的培养基中培养3小时,洗涤,并接着在4℃与链霉蛋白酶(1mg/ml)一起培养30分钟。结果表示为所进行的两次试验中的典型试验的3次平行测定的平均值±SD。
图3.螯合剂浓度对(A)从预标记的SK-N-MC细胞释放铁,和(B)SK-N-MC细胞从59Fe-运铁蛋白(59Fe-Tf)摄取59Fe的影响。(A)用59Fe-Tf(0.75μM)将SK-N-MC神经上皮瘤细胞在37℃标记3小时,洗涤,并接着在螯合剂(0.5-50μM)的存在下在37℃再培养3小时。(B)将SK-N-MC细胞在含有59Fe-Tf(0.75μM)和螯合剂(0.5-50μM)的培养基中培养3小时,洗涤,并接着在4℃与链霉蛋白酶(1mq/ml)一起培养30分钟。结果表达为所进行的两次试验中的典型试验的3次平行测定的平均值。
图4.螯合剂浓度对SK-N-MC神经上皮瘤细胞增殖的影响。将细胞在37℃在存在和不存在螯合剂(0-50μM)的情况下培养90小时。该培养后,通过MTT分析测定细胞密度。数据点代表所进行的两次试验中的典型试验的4次平行测定的平均值。
图5.螯合剂对SK-N-MC神经上皮瘤细胞中铁调节蛋白(IRP)RNA结合活性的影响。将细胞仅和培养基(对照),或者和柠檬酸铁铵(FAC100μg/ml)、DFO(100μM)或其它螯合剂(25μM)一起培养20小时。所示结果是所进行的两次试验中的典型试验。
图6.螯合剂对SK-N-MC神经上皮瘤细胞中GADD45、WAF1和β-肌动蛋白的mRNA水平的影响。在将细胞仅和培养基(对照),或者和含有柠檬酸铁铵(FAC100μg/ml)、DFO(100μM)或其它螯合剂(25μM)的培养基一起培养20小时后,从细胞中萃取出所有的RNA。接着将分离的RNA在1.2%琼脂糖-甲醛凝胶上电泳,转移到杂交膜上,并在高度严格的条件下用探针探测。所示结果是所进行的三次试验的典型试验。
图7.和Fe螯合剂一起再培养的时间对负载59Fe的网织红细胞的Fe移动的影响。在血红素合成抑制剂,琥珀酰丙酮(1mM)的存在下用59Fe-运铁蛋白(3.75μM)标记细胞,所述抑制剂在37℃和细胞一起培养1小时。接着将59Fe标记的网织红细胞和螯合剂(200μM)一起在37℃培养15-240分钟。结果是所进行的三次试验的典型试验的平均值±SD(3次测定)。
图8.和Fe螯合剂一起再培养的时间对网织红细胞中醇溶性59Fe百分比的影响。如图7所述处理细胞,用冰冷的水溶解59Fe标记的网织红细胞来测定醇溶性59Fe的百分比。用冰冷的95%乙醇沉淀蛋白,并通过离心分离可溶和不可溶部分(详见方法)。结果是所进行的三次试验的典型试验的平均值±SD(3次测定)。
图9.螯合剂浓度对负载59Fe的网织红细胞的59Fe移动的影响。将细胞在血红素合成抑制剂,琥珀酰丙酮(1mM)的存在下用59Fe-运铁蛋白(3.75μM)标记,所述抑制剂和细胞一起在37℃培养1小时。接着将59Fe标记的网织红细胞和螯合剂(10-200μM)一起在37℃培养15-240分钟。结果是所进行的三次试验的典型试验的平均值±SD(3次测定)。
具体实施例方式
试验铁螯合剂的合成及其用于在培养物中筛选的制剂通过2-吡啶甲醛和相应的酸酰肼间的席夫碱缩合合成本发明的PCIH类似物。通过元素分析、红外光谱、1H-NMR光谱和X-射线晶体学的组合表征螯合剂。根据以前在Richardson等,1995中描述的方法合成并表征PIH和PIH类似物2-羟基-1-萘甲醛异烟酰腙(311)。去铁敏(去铁敏甲磺酸盐;DFO)购自CibaGeigyPharmaceutical Co.,Summit,NJ。在试验前将所有的芳酰腙螯合剂溶于二甲亚砜(DMSO)中形成10mM贮备液,接着在10%胎牛血清(FCS;Commonwealth Serum Laboratories,墨尔本,澳大利亚)中稀释使DMSO的终浓度等于或小于0.5%(v/v)。稀释后,剧烈混合溶液以确保全部溶解。本发明的发明者以前的研究已经证明该浓度的DMSO对细胞增殖、预标记细胞的59Fe释放或细胞从Tf转移59Fe的能力均没有影响(Richardson等,1995)。游离碱的合成所有螯合剂都是通过将10mmol酸酰肼和2-吡啶甲醛(或者为获得FIH而用2-糠醛和异烟酸酰肼)在50%乙醇水溶液(40ml)中回流30分钟而制备的。冷却后,通过过滤收集产品,用乙醚洗涤并在真空保干器中干燥。收率通常为70-80%。盐酸盐的合成将各游离碱样品(0.25g)溶解在乙醇(15ml)中。搅拌下加入浓盐酸(1ml),接着加入乙醚(40ml)以获得盐酸盐沉淀。过滤化合物并在真空保干器中干燥。细胞培养物人SK-N-MC神经上皮瘤细胞和SK-Mel-28恶性黑素瘤细胞系来自美国典型培养物保藏中心(ATCC),罗克韦尔,马里兰州,美国。SK-N-MC细胞系最初被分类为成神经细胞瘤,但是最近被重新分类为神经上皮瘤,一种紧密相关的神经外胚层恶性肿瘤。BE-2成神经细胞瘤细胞是昆士兰州的Queensland Institute ofMedical Research的Greg Anderson博士赠送的。SK-N-MC和SK-Mel-28细胞系在Eagle′s修饰的最小必须培养基(minimum essential medium,MEM;Gibco BRL,悉尼,澳大利亚)中生长,所述培养基含有10%FCS、1%(v/v)非必需氨基酸(Gibco)、2mM L-谷氨酸(Sigma Chemical Co.,圣路易斯,密苏里州,美国)、10μg/ml链霉素(Gibco)、100U/ml青霉素(Gibco)和0.28μg/ml 两性霉素B(SquibbPharmaceuticals,蒙特利尔,加拿大)。这种生长培养基以后被称为完全培养基。BE-2细胞系在Rosewall Park MemorialInstitute(RPMI)培养基中生长,该培养基有以上MEM的所有添加物。细胞在37℃,5%CO2/95%空气的潮湿气氛中在培养箱(FormaScientific,俄亥俄州,美国)中生长,并且如以前所描述(Richardson等,1990.Biochim.Biophys.Acta 1053 1-12)进行传代培养。用相稳定显微镜(phase-constant microscopy)和锥虫蓝染色监测细胞生长和活力。螯合剂对细胞增殖的影响用MTT(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑鎓)分析通过基本上与以前描述的方法(Richardson等,1995)相同的方法检测螯合剂对SK-N-MC神经上皮瘤细胞增殖的影响。通过将细胞以15000细胞/孔接种在96孔微量滴定板上检测细胞增殖,每孔有0.1ml含有人二铁Tf(1.25μM)的完全培养基。该接种密度导致在整个分析过程中细胞的指数生长。使细胞生长过夜,接着加入在0.1ml含有二铁运铁蛋白(1.25μM)的完全培养基中的螯合剂。螯合剂的终浓度为0.39-50μM。对照样品含有完全培养基和二铁Tf(1.25μM)。细胞与螯合剂一起在37℃在含有95%空气和5%CO2的潮湿气氛中培养90小时。在此培养后,向各孔中加入0.01ml MTT,将板在37℃培养2小时。通过加入0.1ml在0.01M HCl中的10%SDS-50%异丁醇溶解细胞,接着在扫描多孔分光光度计(Titertek Multiscan;Beckman InstrumentsInc.,加利福尼亚)上在570nm处对该板读数。如以前所证明的,对于SK-N-MC细胞,MTT颜色形成与可成活细胞数目成正比(Richardson等,1995)。MTT分析的结果以对照值的百分比表示。59Fe运铁蛋白的制备用以前描述的标准过程(Richardson等,1990)制备脱铁运铁蛋白(Sigma Chemical CO.,圣路易斯,美国)并用59Fe(在0.1M HCl中的氯化铁,Dupont NEN,明尼苏达州,美国)标记以产生59Fe2-运铁蛋白(59Fe-Tf)。通过紫外可见分光光度法用280nm(蛋白)处的吸光度与在456nm(铁结合处)处的吸光度比较而监测Tf的Fe饱和度。在所有试验中,使用充分饱和的二铁Tf。螯合剂对3H-胸腺嘧啶脱氧核苷、3H-亮氨酸和3H-尿嘧啶核苷掺入的影响用三氯乙酸(TCA)沉淀后,评估细胞的3H-胸腺嘧啶脱氧核苷(20Ci/mmol;Dupont NEN,明尼苏达州,美国)、3H-尿嘧啶核苷(42.7Ci/mmol/Dupont NEN,明尼苏达州,美国)和3H-亮氨酸(52Ci/mmol;Dupont NEN)标记。在和螯合剂一起培养20小时后,接着加入3H-亮氨酸、3H-尿嘧啶核苷或3H-胸腺嘧啶脱氧核苷(1μCi/ml),在37℃培养2小时。接着,将含有细胞培养物的培养皿放在冰上并用冰冷的Hanks′平衡盐溶液(BSS)洗涤四次,用无Ca/Mg的盐水中的1mM EDTA将细胞从板上脱附下来。接着通过离心将细胞形成粒状沉淀,除去上清液,在-70℃冷却粒状沉淀。在冰上解冻细胞后,加入1ml冰冷的20%TCA,搅动溶液并在冰上放置1小时,其间周期性混合。接着将该溶液在15000rpm,4℃下离心15分钟,除去上清液。接着用1ml冰冷的10%TCA将粒状沉淀洗涤两次。将粒状沉淀溶于0.5ml 1M NaOH中,并转移到含3ml闪烁体的闪烁管中。在β-闪烁计数器(LKBWallace,芬兰)上测定放射性活度。铁摄取和铁流出试验用以前报道的标准过程(Richardson等,1994,J.Lab Clin.Med.124 660-71)研究螯合剂对从59Fe-Tf摄取59Fe和从预标记的细胞释放59Fe的影响。通过和一般蛋白酶霉链蛋白酶(1mg/ml)一起在4℃培养30分钟以除去膜结合的59Fe和Tf来测定被细胞内化的59Fe的量(Richardson等,1990;Baker等,1998,Biochim.Biophys.Acta,1380 21-30)。在以前的研究中报道的对照试验已发现该技术对细胞的59Fe内化评估有效(Richardson等,1990;Baker等,1998)。铁调节蛋白凝胶阻滞分析用已建立的技术(Leibold等,1988.Proc.Natl.Acad.Sci.USA,85 2171-5;Mullner等,1989,Cell 58 373-82)将凝胶阻滞分析用于测定IRP和IRE间的相互作用。简单地说,在仅与培养基一起(对照)或与含有柠檬酸铁铵(100μg/mlAldrich Ltd.,悉尼,澳大利亚)或螯合剂的培养基一起培养后,将2-5×106个细胞用冰冷的磷酸盐缓冲盐水(PBS)洗涤并且在4℃在40μl冰冷的Munro萃取缓冲溶液(10mM HEPES,pH7.6,3mM MgCl2,40mM KCl,5%甘油,1MM二硫苏糖醇和0.5%NonidetP-40)中溶解细胞。细胞溶解后,接着将样品在10000rpm,4℃离心3分钟以除去细胞核并将上清液在-70℃贮存。将冷冻的细胞质萃取物在冰上解冻并且在15000rpm,4℃离心10分钟。用BioRad蛋白质分析(BioRad Ltd.,美国)测定可溶的上清液的蛋白质浓度。在不含Nonidet P-40的Munro缓冲液中将细胞质萃取物样品稀释到蛋白质浓度为100μg/ml,并且通过将1μg等分试样和0.1ng(约1×105cpm)32P-标记的pGL66 RNA转录物一起培养来分析其IRP(Leibold等,1988)。用SP6 RNA聚合酶在α-32P UTP(Dupont,NEN)的存在下,从线性质粒模板体外转录核探针(riboprobe)。用Promega Riboprobe In VitroTranscription Kit(Promega核探针体外转录试剂盒,Promega,Maison,WI,美国)进行后一反应。接着在6%尿素/PAGE凝胶上纯化探针。为了形成RNA-蛋白复合物,将含有1μg蛋白的细胞质萃取物在室温下和32P-标记的核探针一起培养10分钟。通过在室温下和1U RNAse T1一起培养10分钟而将未保护的探针降解。接着加入终浓度为5mg/ml的肝素(Sigma),并且和萃取物一起在室温下再培养10分钟以排除非特异性结合。如Konarska等,1986,Cell,46 845-55所述,在4℃,6%非变性聚丙烯酰胺凝胶上分析RNA-蛋白复合物。干燥凝胶,用塑料膜覆盖并在-70℃曝光于有增感屏的Kodak XAR胶片上。诺慎印迹分析通过用得自Advanced Biotechnologies Ltd(Surrey,英国)的Total RNA IsolationReagent(完全RNA分离试剂)分离所有的RNA而进行诺慎印迹分析。将RNA(15μg)在RNA负载缓冲液中在90℃加热变性2分钟,并且接着装载至1.2%琼脂糖-甲醛凝胶上。电泳后,用毛细管点样法将RNA在10×SSC中转移到尼龙膜(GeneScreen,New England Nuclear,波士顿,美国)上。接着用UV-交联剂(UV Stratalinker 1800,StrageneLtd.,美国)将RNA交联到膜上。
用对人WAF1、GADD-45和β-肌动蛋白特异性的探针杂交膜。WAF1探针由来自pSXV(ATTC;Cat.No.79928)的1kb片段组成。GADD45探针由来自克隆到pHu145B2(由NIH,马里兰的National Cancer Institute的Albert Fornace博士提供)中的人GADD45 cDNA的760bp片段组成。β-肌动蛋白探针由克隆到pBluescript SK-(ATCC;at.No37997)中的人β-肌动蛋白cDNA的1.4kb片段组成。
如Mahmoudi和Lin,1989,Biotechniques 7,331-2所述,用Hybaid Shake和Stack hybridization oven(HybaidLtd.,米德尔克斯郡,英国)将探针杂交到膜上并进行它们的后续洗涤。接着在-70℃将膜曝光于有增感屏Kodak XAR胶片上。如膜制造商所述,通过在含有10mM Tris-HCl(pH7.0)、1mMEDTA(pH8.0)和1%SDS的溶液中煮沸15-30分钟而将探针剥离。用Laser Densitometer(激光密度计)采集密度数据,并通过Kodak Biomax软件(Kodak Ltd,美国)分析该数据。网织红细胞用标准过程(Richardson,D.R.,Ponka,P.和Vyoral,D.(1996)Blood,87,3477-3488),用经McGill UniversityAnimal Care Committee批准的方案通过心穿刺反复静脉切开放血术在新西兰白兔中诱导网织红细胞。在用新亚甲基蓝染色的基础上鉴别网织红细胞,用增强的Neubauer计数室测定细胞数。运铁蛋白的标记用已建立的方法(Richardson,D.R.和Baker,E.(1992)J.Biol.Chem.267,13972-13979)制备并用59Fe(在0.1MHCl中的氯化铁,Dupont NEN,明尼苏达州,美国)标记脱铁运铁蛋白(Sigma Chemical Co)以产生59Fe2-运铁蛋白(59Fe-Tf)。来自负载59Fe的网织红细胞的59Fe的移动已证明59Fe标记的兔网织红细胞是研究Fe螯合剂穿透细胞膜并螯合细胞内Fe库的能力的有用模型。如上所述,从长期出血的兔中获得网织红细胞,并且将它们与1mM琥珀酰丙酮(SA;Sigma)一起培养以抑制血红素合成。在SA的存在下进行15分钟预培养后,加入59Fe-Tf(3.75μM)并和细胞一起在振荡下于37℃培养1小时。此培养后,用冰冷的PBS将网织红细胞洗涤三次以除去非特异性结合的59Fe-Tf。将经洗涤的59Fe-标记的网织红细胞(30-35μL)在缓冲盐溶液(终体积为250μL)中和去铁螯合剂(apochelator)一起培养。SA在所有的培养液中和螯合剂一起存在以阻止用非血红素59Fe合成血红素。培养后,测定经洗涤的网织红细胞和培养基中的59Fe,然后计算从网织红细胞移动的59Fe的百分比。
在一些试验中,用200μL冰冷的蒸馏水溶解经洗涤的59Fe-标记的网织红细胞,用1ml冰冷的95%乙醇沉淀蛋白质。接着在IEC Micromax微型离心机(IEC,加拿大)上离心混合物(13000rpm/30min/4℃)以获得含有结合于低MT螯合剂的59Fe的醇溶性部分,以及含有蛋白结合的59Fe的醇沉淀部分。以前的研究已经证明该方法导致铁蛋白和运铁蛋白中的59Fe的沉淀,而结合于螯合剂的59Fe仍保持可溶状态。在醇溶部分中59Fe的增加证明螯合剂可以穿透细胞膜并形成以有限效率释放的细胞内Fe复合物。结果2-吡啶甲醛异烟酰腙(PCIH)类似物的制备PCIH-H2OC12H12N4O2的元素分析计算值C,59.0;H,5.0;N,22.9。试验值C,59.2;H,4.9;N,22.9%。1H NMR(MeOH-d4)δ(对TMS的ppm)7.44(m,1H);7.90(m,3H);8.26(d,1H);8.41(s,1H);8.57(d,1H)8.74(dd,2H)。
PCBH-H2OC13H12N3O2的元素分析计算值C,64.2;H,5.4;N,17.3。试验值C,64.1;H,5.4;N,17.3%。1H NMR(MeOH-d4)δ(对TMS的ppm)7.41(m,1H);7.51(m,3H);7.92(d,1H);7.95(m,2H);8.28(d,1H);8.39(s,1H);8.55(d,1H)。
PCBBH-H2OC13H12BrN3O2的元素分析计算值C,48.5;H,3.8;N,13.0。式验值C,47.8;H,3.6;N,12.7%。1H NMR(MeOH-d4)δ(对TMS的ppm)7.44(m,2H);7.76(d,1H);7.91(m,2H);8.12(s,1H);8.27(d,1H);8.39(s,1H);8.55(d,1H)。
PCTHC11H9N3OS的元素分析计算值C,57.1;H,3.9;N,18.2。试验值C,57.2;H,4.0;N,17.3%。1H NMR(MeOH-d4)δ(对TMS的ppm)7.20(m,1H);7.43(m,1H);7.85(m,3H);8.26(d,1H);8.37(s,1H);8.56(d,1H)。
PCHH-H2OC13H11.5N3O2.25的元素分析计算值C,63.8;H,4.3;N,17.2。试验值C,63.6;H,4.8;N,16.4%。1H NMR(MeOH-d4)δ(对TMS的ppm)6.88(dd,2H);7.43(m,1H);7.86(m,3H);8.29(d,1H);8.36(s,1H);8.55(d,1H)。
PCAH-H2OC13H14N4O2的元素分析计算值C,60.5;H,5.5;N,21.7。试验值C,60.3;H,5.5;N,21.4%。1H NMR(MeOH-d4)δ(对TMS的ppm)6.69(dd,2H);7.39(m,1H);7.74(dd,2H);7.85(td,1H);8.26(d,1H);8.33(s,1H);8.52(d,1H)。
FIHC11H9N3O2的元素分析计算值C,61.4;H,4.2;N,19.5。试验值C,61.6;H,4.2;N,19.4%。1H NMR(MeOH-d4)δ(对TMS的ppm)6.59(dd,1H);7.00(d,1H);7.69(d,1H);7.86(dd,2H);8.26(s,1H);8.73(dd,2H)。
PCIH-2HCl-2.5H2OC12H17Cl2N4O3.5的元素分析计算值C,41.9;H,5.0;N,16.3。试验值C,41.6;H,4.5;N,16.0%。1H NMR(D2O)δ(对TMS的ppm)8.17(t,1H),8.40(d,1H),8.59(d,2H),8.70(s,1H),8.75(t,1H),8.94(d,1H),9.12(d,2H)。
PCBH-HCl-1.5H2OC13H15ClN3O2.5的元素分析计算值C,54.1;H,5.2;N,14.6。试验值C,53.9;H,4.8;N,14.1%。1H NMR(D2O)δ(对TMS的ppm)7.39-7.53(m,3H),7.80(d,2H),7.97(t,1H),8.12(d,1H),8.32(s,1H),8.55(t,1H),8.69(d,1H)。
PCBBH-HClC13H11ClN3O的元素分析计算值C,45.8;H,3.3;N,12.3。试验值C,45.2;H,4.1;N,13.3%。1H NMR(D2O)δ(对TMS的ppm)7.25(m,2H),7.50(d,1H),7.7-8.0(m,4H),8.5(s,1H),8.70(d,1H)。
PCTH-HCl-H2OC11H12ClN32S的元素分析计算值C,46.2;H,4.2;N,14.7。试验值C,45.6;H,4.1;N,14.3%。1H NMR(D2O)δ(对TMS的ppm)7.2(m,2H),7.7-8.0(m,3H),8.4-8.6(m,2H),8.50(d,1H)。
PCHH-HClC13H15ClN3O4的元素分析计算值C,49.8;H,5.1;N,13.4。试验值C,50.2;H,4.9;N,13.1%。1H NMR(D2O)δ(对TMS的ppm)6.60(d,2H),7.60(d,2H),7.91(t,1H),8.01(s,1H),8.48(t,1H),8.59(d,1H)。
PCAH-HClC13H16Cl2N4O3的元素分析计算值C,44.7;H,5.2;N,16.0。试验值C,44.7;H,5.2;N,15.9%。1H NMR(D2O)δ(对TMS的ppm)7.28(d,2H),7.90(d,2H),8.20(t,1H),8.40(s,1H),8.60(t,1H),8.80(d,1H)。
FIH-2HCl-H2OC11H13Cl2N3O3的元素分析计算值C,49.0;H,4.5;N,15.6。试验值C,49.2;H,4.5;N,15.6%。1H NMR(D2O)δ(对TMS的ppm)6.64(m,1H),7.01(d,1H),7.71(s,1H),8.26(s,1H),8.42(d,2H),8.99(d,2H)。
游离碱形式的螯合剂微溶于水,但极易溶于甲醇,在乙醇中的溶解度稍差。一旦它们的碱性基团质子化,所有螯合剂的水溶性均显著提高。PCBBH-HCl和PCTH-HCl盐酸盐表现出该系列化合物中最低的水溶性,而溶解性最好的螯合剂是PCIH-2HCl和PCAH-2HCl(均是二质子酸)。
盐酸盐在水中的1H NMR谱图与相应的游离碱的谱图(在甲醇中)非常相似。最重要的是,在所有情况中都观察到了亚胺单峰共振,这表明亚胺官能团在形成盐酸盐时保持完整。而且,在一周内,质子化的螯合剂在水溶液中没有表现出显著的亚胺水解,这由NMR谱图显示。
质子化程度取决于所存在的碱性基团数目。异烟酰基、对氨基苯基和2-吡啶基都经历质子化。亚胺N-原子(潜在的碱性位点)并没有质子化,除非邻近的杂环本身为非碱性的(即FIH中的呋喃基)。亚胺N-原子与质子化的吡啶鎓基之间的内氢键似乎可解释这些配体中亚胺对质子化作用的耐受。螯合剂对预标记的细胞释放铁和运铁蛋白摄取铁的影响对PCIH类似物增加SK-N-MC细胞释放59Fe的能力与“标准螯合剂”(DFO、PIH和311)进行比较,后者的活性以前已在这种细胞系中得到证明。在用59Fe-Tf(0.75μM)标记3小时后,在存在或不存在DFO(100μM)或浓度为50μM的其它配体的情况下再培养3小时,而后测定SK-N-MC细胞的59Fe流出(图2A)。应注意,在所有试验中,均在100μM考查DFO,这是因为其在SK-N-MC细胞中Fe螯合效率低的缘故。螯合剂311、PIH、PCTH、PCBH和PCBBH显示相似的活性,导致40-42%的细胞59Fe释放。通过PCIH移动的59Fe与通过DFO移动的59Fe相似,后者释放19%的细胞59Fe。相反,与对照培养基的观察结果相比,FIH、PCAH和PCHH并不可观地增加59Fe移动(图2A)。
为了测定螯合剂抑制从59Fe-Tf(0.75μM)摄取59Fe的能力,将SK-N-MC细胞与59Fe和DFO(100μM)或其它螯合剂(50μM)一起在37℃培养3小时(图2B)。在阻止从59Fe-Tf摄取59Fe方面,配体311、PIH、PCTH、PCBH和PCBBH比DFO显示高得多的功效(图2B),分别将其降低到对照值的13-30%,而DFO将其降低到对照值的91%(图2B)。对于其它螯合剂,PCIH比DFO略微更有效,而FIH、PCAH和PCHH对从59Fe-Tf摄取59Fe没有影响。考虑这些数据,在59Fe摄取和59Fe流出研究中,PCIH类似物中的三种,即PCTH、PCBH和PCBBH,表现出高于DFO而与PIH和311相似的活性(图2A和2B)。
为了进一步研究在以上的筛选研究中鉴定的最有效的PCIH类似物的功效,在一系列配体浓度下,对PIH、PCIH、PCTH、PCBH和PCBBH在移动SK-N-MC细胞的59Fe方面的功效进行比较(0.5-50μM;图3A)。在用59Fe-TF(0.75μM)标记3小时并接着在存在或不存在有效螯合剂(0.5-50μM;图3A)的情况下再培养3小时后,测定SK-N-MC细胞59Fe的移动。由所有螯合剂介导的59Fe释放作为螯合剂浓度的函数是双相的,当配体浓度为25μM时,59Fe释放开始达到稳定状态。显然,在达10μM的螯合剂浓度下,在移动59Fe方面最有效的螯合剂是PCTH和PCBBH(图3A)。然而,随着配体浓度增加到25和50μM,PCTH和PCBBH的活性与PIH和PCBH相似。PCIH在所有浓度下是效率最低的螯合剂(图3A)。
进一步的研究测定了在3小时的培养期间,螯合剂浓度(0.5-50μM)对从59Fe-Tf(0.75μM)摄取59Fe的影响(图3B)。与以上流出研究中发现的结果相似,在配体浓度达10μM时,在阻止从59Fe-Tf摄取59Fe方面,PCTH和PCBBH是最有效的螯合剂,而在25-50μM的浓度下,PIH、PCBH、PCTH和PCBBH的活性相似(图3B)。同样,在测试的所有浓度下,PCIH是效率最低的螯合剂。为了确定在不同的细胞类型之间,配体的Fe螯合效率是否存在差异,对在BE-2成神经细胞瘤细胞、SK-N-MC神经上皮瘤细胞和SK-Mel-28恶性黑素瘤细胞中,三种最有效的PCIH类似物(PCTH、PCBH和PCBBH)的活性与DFO和311的活性进行比较(表1和2)。考察螯合剂移动用59Fe-Tf(0.75μM)预标记3小时并接着再培养3小时的细胞中的59Fe的能力,在移动BE-2细胞的59Fe方面,DFO(100μM)具有与311和3种PCIH类似物(50μM)相似的活性(表1)。相反,在移动SK-N-MC或SK-Mel-28细胞的59Fe方面,DFO的效率远低于311或PCIH类似物(表1)。表1.DFO、311、PCTH、PCBH或PCBHH对从BE-2成神经细胞瘤细胞、SK-N-MC神经上皮瘤细胞和SK-Mel-28恶性黑素瘤细胞中释放59Fe的影响。用59Fe-运铁蛋白(0.75μM)将细胞在37℃标记3小时,洗涤,并接着和螯合剂一起在37℃下再培养3小时。在50μM筛选螯合剂311、PCTH、PCBH和PCBBH,而在100μM考察DFO。结果是典型试验的三次测定的平均值±SD。

表2.DFO、311、PCTH、PCBH或PCBBH对BE-2成神经细胞瘤细胞、SK-N-MC神经上皮瘤细胞和SK-Mel-28恶性黑素瘤细胞从59Fe-运铁蛋白摄取内化59Fe的影响。将细胞和螯合剂及59Fe-运铁蛋白(0.75μM)一起在37℃培养3小时,洗涤,在4℃和链霉蛋白酶(1mg/ml)一起培养30分钟,以将内化的59Fe和膜结合的59Fe分离。除了在100μM的浓度下筛选DFO之外,在50μM的浓度下筛选其它所有螯合剂。结果是典型试验的平均值(三次测定)±SD。

还在同样的细胞系中考察了螯合剂阻止从培养3小时后的59Fe-运铁蛋白(0.75μM)摄取59Fe的影响(表2)。在抑制从59Fe-Tf摄取59Fe方面,最有效的螯合剂是311,它在所有3个细胞系中将59Fe摄取类似地降低到对照值的8-10%。三种PCIH类似物显示低于311的活性,但是它们远比DFO有效(表2)。有趣地注意到,DFO在抑制SK-N-MC神经上皮瘤细胞和SK-Mel-28恶性黑素瘤细胞摄取59Fe方面几乎没有作用(分别是对照值的100和98%),而在BE-2细胞系中,它将从59Fe-Tf摄取的内化59Fe降低到对照值的42%(表2)。相反,3种PCIH类似物的活性在3个细胞系中有些相似,它们将从59Fe-Tf摄取的59Fe降低到对照值的15-38%。对此唯一的例外是PCBBH,其降低SK-Mel-28细胞摄取59Fe的效率方面比降低SK-N-MC或BE-2细胞中的低得多(表2)。PCIH类似物对细胞增殖的影响以上研究已经清楚地证明,PCBH、PCBBH和PCTH具有与PIH或311相似的且高于DFO的Fe螯合功效。因此,决定测定与活性在以前已被表征的DFO、PIH及311相比,PCIH类似物的抗增殖作用。从图4可见,显然所有的PCIH类似物对增殖的影响均远小于螯合剂311,在以前的研究中已证明螯合剂311在抑制多种肿瘤细胞系生长的方面有效。如以前所证明的,DFO抑制SK-N-MC细胞生长的能力远低于311的(IC50DFO=47μM;IC50311=2μM)。在PCIH类似物中,PCBBH和PCBH具有与DFO相似的抗增殖活性(IC50PCBBH=42μM;IC50PCBH=50μM)。其余PCIH类似物在抑制生长方面几乎没有作用。有趣地注意到,尽管在SK-N-MC细胞中PIH、PCTH、PCBH和PCBBH具有与311相似的Fe螯合活性(图2、表1和2),但它们抑制增殖的能力却低得多。这些结果与以前的研究一致,以前的研究证明Fe螯合功效并不总是与配体抑制增殖的能力相关。螯合剂对3H-胸腺嘧啶脱氧核苷、3H-亮氨酸或3H-尿嘧啶核苷掺入的影响为了进一步获得有关这些配体可能的作用机理的信息,研究了螯合剂对3H-胸腺嘧啶脱氧核苷、3H-亮氨酸或3H-尿嘧啶核苷掺入SK-N-MC细胞的影响(表3)。在这些试验中,由于DFO和311的抗增殖活性在以前已经用SK-N-MC细胞表征过,因此将PCIH类似物的作用与DFO和311进行比较。具有最强Fe螯合功效的PCIH类似物,即PCBBH、PCTH和PCBH,分别将3H-胸腺嘧啶脱氧核苷掺入降低到对照值的33%、64%和72%,这远低于所观察到的311的抑制作用(对照值的0.1%),并且与所发现的PIH的抑制作用(对照值的52%)相似。有趣的是,几乎不显示Fe螯合功效的三种螯合剂,即FIH、PCAH和PCHH(图2)引起3H-胸腺嘧啶脱氧核苷掺入显著下降至对照值的11-17%(表3)。表3.螯合剂对3H-胸腺嘧啶脱氧核苷、3H-亮氨酸或3H-尿嘧啶核苷掺入SK-N-MC神经上皮瘤细胞的影响。将细胞和DFO(100μM)或其它螯合剂(50μM)一起在37℃培养20小时。此后,加入3H-胸腺嘧啶脱氧核苷、3H-亮氨酸或3H-尿嘧啶核苷(1μCi/ml),并且将细胞在37℃另外培养2小时(详见方法)。结果是所进行的2-4次试验的典型试验的平均值±SD(4-5次测定)。

考察螯合剂在抑制3H-亮氨酸和3H-尿嘧啶核苷掺入方面的影响(表3),同样,最有效的螯合剂是311,它分别将它们的掺入降低到对照值的2%和5%。相反,在抑制3H-亮氨酸和3H-尿嘧啶核苷掺入方面,PCBH、PCBBH和PCTH的活性远低于311的,它们将掺入降低到对照值的16-47%(表3)。在抑制3H-亮氨酸和3H-尿嘧啶核苷掺入方面,DFO的效率也低于311的,它将掺入分别降低到对照值的9%和34%。引起3H-胸腺嘧啶脱氧核苷掺入显著下降的3种PCIH类似物(FIH、PCAH和PCHH)并不以相同程度抑制3H-亮氨酸和3H-尿嘧啶核苷掺入,它们将其降低到对照值的40-80%(表3)。螯合剂对铁调节蛋白(IRP)的RNA结合活性的影响使用DFO的细胞内Fe消耗的重要作用是铁调节蛋白(IRP)的RNA结合活性的激活(Hentze等,1996,Proc.Natl.Acad.Sci.USA 93 8175-82)。尽管已经很好地表征了DFO对这种蛋白的RNA结合活性的影响,但是有关其它Fe螯合剂如PCIH类似物的作用却知之甚少。本发明的发明者考察了在SK-N-MC细胞中,与311、PIH和PCIH类似物(25μM)一起培养20小时对IRP-RNA结合活性的影响。在所有的试验中,将DFO(100μM)用作阳性对照以消耗细胞的Fe并提高IRP-RNA结合活性。相反,将柠檬酸铁铵(FAC100μg/ml)用以给细胞提供Fe并降低IRP-RNA结合。观察图5,显然仅存在唯一的主IRP-IRE带,这归因于以下事实,即人IRP1-IRE和IRP2-IRE复合物在非变性聚丙烯酰胺凝胶中共同迁移(Chitambar等,1995,Cancer Res.55 4361-66)。如所预期的,对照相比,与DFO一起培养20小时后,IRP-RNA结合活性增加,而与Fe供体FAC一起培养20小时后,IRP-RNA结合活性明显下降(图5)。与对照相比,用311、PCTH、PCBH和PCBBH处理细胞后,IRP-RNA结合活性显著增加(图5),这最有可能反映出它们的高Fe螯合功效(图2和3)。令人惊奇的是,对照相比,PIH和PCIH对IRP-RNA结合活性几乎没有影响,而FIH、PCAH和PCHH使IRP-RNA结合降低(图5)。与螯合剂一起培养后,将β-巯基乙醇加入细胞溶解物中显示,IRP-RNA结合活性总量没有变化(数据未给出)。PCIH类似物对细胞周期中涉及的基因表达的影响用高浓度DFO(150μM)或浓度低得多(2.5-5μM)的311处理细胞导致p53-反应基因WAF1(野生型激活基因1)和GADD45(生长停滞和DNA损伤基因)的表达增加(Darnell等,1994,Blood 94781-792)。WAF-1是有效的细胞周期蛋白依赖性激酶的通用抑制剂,它能诱导G1/S停滞以及可能的G2/M停滞。在DNA损伤时诱导GADD45,其能使细胞周期停滞,并且DNA核苷酸切除修复中也涉及其。尽管已知DFO、311和其它Fe螯合剂可能引起细胞停滞,但对可能在抑制细胞周期中起作用的基因表达的变化却了解很少。在本项研究中,与311(25μM)一起培养和在更低程度上与DFO(100μM)一起培养,引起SK-N-MC细胞中WAF1和GADD45 mRNA水平增加(图6)。在PCIH类似物中,只有PCBBH显著增加GADD45 mRNA水平而不增加WAF1 mRNA水平。后一作用相应于PCBBH相对于其它PCIH类似物的更高抗增殖活性。PCIH类似物对网织红细胞中线粒体铁移动的影响在该研究中,用唯一的得到很好表征的线粒体Fe超载模型研究PCIH类似物的Fe螯合功效,该模型是负载线粒体非血红素59Fe的网织红细胞。在所有研究中,将PIH用作参照化合物,因为该螯合剂在以前的研究中已被表征为能有效消耗非血红素线粒体Fe库。
在最初的研究中,评估了再培养时间对从负载Fe的网织红细胞释放59Fe的影响(图7)。在这些试验中,用59Fe-Tf将细胞在37℃标记1小时,洗涤,并接着在存在或不存在螯合剂(200μM)的情况下再培养240分钟。在所考察的八种化合物中,作为培养时间的函数,PCIH在增加细胞59Fe释放方面最为有效(图7)。事实上,在15-120分钟的培养时间内,PCIH比PIH更有效,但是在240分钟的再培养后,二者活性相似。在仅15分钟和负载59Fe的网织红细胞一起培养后,PCIH的高活性明显,在该时间点,该化合物已将细胞59Fe的21±1%(3次测定)移动(图7)。15分钟后,由PCIH释放的59Fe的量多于经240分钟培养后由PCBBH、PCAH、PCHH和FIH移动的量,后四个化合物移动的量分别是17%、15%、6%和4%。与螯合剂一起培养后,考察醇溶性细胞内59Fe,结果显示它仅在FIH的存在下增加(图8),表明在细胞内其59Fe复合物的可能累积。
在进一步的研究中,评估了螯合剂浓度对负载59Fe的网织红细胞的59Fe移动的影响。在这些试验中,用59Fe-Tf将细胞在37℃标记1小时,洗涤,并接着在存在或不存在螯合剂的情况下在37℃再培养1小时(图9)。同样,PCIH是活性最高的化合物。在浓度为200μM时,PCIH释放细胞59Fe的31±1%(3次测定),而PIH移动了18±1%(3次测定)。化合物PCTH具有与PIH相似的Fe螯合功效,而其余配体实质上效率更低。如前所述,DFO即使在浓度高达5mM时,对移动59Fe也几乎没有影响,其活性与对照培养基的相似。如所报道,使用SK-N-MC神经上皮瘤细胞系,FIH和PCHH在移动细胞内59Fe方面均显示极低活性(图9)。如图8所示,仅在用FIH时观察到醇溶性细胞内59Fe的增加,并且其随浓度增加至200μM而增加。结论本发明的发明者已经合成并筛选了多种基于2-吡啶甲醛异烟酰腙(PCIH)的芳酰腙配体。这些螯合剂中的三种,即PCBH、PCBBH和PCTH,显示出高于DFO且与PIH和311相似的Fe螯合活性。另外,这些螯合剂的抗增殖活性远低于类似物311的,311是已经证明拥有高细胞毒性活性的芳酰腙配体。这些性质表明,这三种PCIH类似物更适用于治疗Fe负载疾病,而不是作为对抗癌症的抗增殖药。
试图通过将2-吡啶甲醛和多种以前用于合成PIH类似物的酸酰肼缩合而合成具有高抗增殖活性的配体。考察了2-吡啶甲醛部分,因为当它和氨基硫脲缩合形成相应的缩氨基硫脲时,该配体具有有效的抗增殖活性。事实上,α-N-杂环甲醛缩氨基硫脲的后一基团已经被描述为迄今鉴定的最有效的核苷酸还原酶抑制剂。本发明的结果证明,PCIH类似物几乎不显示抗增殖活性,比311的活性小得多。这些数据可以表明,与2-吡啶甲醛部分相反,2-吡啶甲醛缩氨基硫脲的氨基硫脲成分可能对抗增殖活性是重要的。
本项研究中所考察的所有PCIH类似物,除了FIH,均具有相同的潜在Fe配位部位,即羰基氧、醛亚胺氮和2-吡啶基氮(

图1)。然而有趣的是,这些配体的生物学活性可能受到置于Fe结合位点远端的取代基的性质显著影响。例如,PCHH和PCAH都表现出很低的Fe螯合活性,而PCTH、PCBBH和PCBH则表现出很高的功效(图2A、2B)。由于亲脂性是配体的膜穿透性和Fe螯合功效的重要标准,因此可能是PCHH和PCAH增加的亲水性(由于分别存在羟基和氨基)可以阻止这些螯合剂进入细胞内Fe库。尽管PCAH、PCHH和FIH几乎没有移动59Fe和抑制从59Fe-Tf摄取59Fe的活性,有趣的是,这些螯合剂在抑制3H-胸腺嘧啶脱氧核苷掺入方面比其它PCIH类似物更有效(表3)。考虑到这一点,有可能FIH、PCAH和PCHH在抑制核苷酸还原酶方面相对更有效,核苷酸还原酶是在DNA合成中将核苷酸转化成脱氧核苷酸中涉及的关键的含Fe酶。
本发明的PCIH类似物与PIH类似物相比的一个优点是,它们在水溶液中更高的溶解性。尽管亲脂性是膜穿透性的重要性质,但在螯合剂的实际和临床使用方面,螯合剂在水中的溶解性也是重要的因素。因此,对于可以用作有用的治疗药的螯合剂,必须达到在水溶液中的溶解性和穿透生物膜的能力间的适当平衡。对于几种PCIH类似物,这似乎已经实现。
DFO在增加IRP的RNA结合活性方面的作用已经得到很好的表征。然而,对于其它Fe螯合剂的作用却了解很少。311、PCTH、PCBH和PCBBH都能以与DFO相似的方式增加IRP-RNA结合活性的事实(图5)可能表示这些配体作用于相同或相似的细胞内Fe库。与预期相反,PIH和PCIH在提高IRP-RNA结合活性方面没有作用,尽管这些螯合剂在移动细胞59Fe和阻止从59Fe-Tf摄取59Fe方面高度有效(图2和3)。然而,更高浓度的PIH的确提高IRP-RNA结合活性,表明可能涉及浓度效应。还有趣地注意到,FIH、PCAH和PCHH抑制IRP-RNA结合活性的水平与和FAC一起培养后的抑制水平相似(图5)。考虑这些结果,可以推测,PCAH、PCHH和FIH可能干扰细胞内Fe的分布,这样增加了IRP感知的Fe库。
尽管对于Fe螯合剂在G1/S抑制细胞周期的能力了解很多,但是对于可能在该过程中起作用的基因表达的变化却知之甚少。在以前用成神经细胞瘤细胞系和K562细胞进行的研究中,本发明的发明者证明了,和DFO(150μM)或311(2.5-5μM)一起培养导致WAF1和GADD45表达的显著增加,这两种分子在诱导G1/S细胞周期停滞方面起作用。在本项研究中,已经确证,用DFO和311得到的这些结果显示,在PCIH类似物中,只有PCBBH增加GADD45 RNA的表达(图6)。螯合剂增加在抑制细胞周期中涉及的分子的表达的能力并不是用于治疗Fe超载的的化合物适当特性。
考虑到这一点,以及PCBBH在抑制增殖方面是最有效的配体的事实,PCTH和PCBH似乎是治疗Fe-负载疾病的优选的候选螯合剂。
在本项研究中,所有PCIH类似物均显示远低于311的抗增殖活性(见图4),尽管这些化合物中有些具有高Fe螯合功效,例如PCBBH、PCBH和PCTH(图2和3)。本发明的发明者已经证明,当制备311的Fe复合物时,其阻止它的抗增殖活性和增加GADD45和WAF1 mRNA表达的能力。这些结果与它的高Fe螯合功效一起,表明311可以通过消耗细胞内Fe库而抑制生长。
几项研究已经表明,遗传性共济失调可能是由Fe在线粒体内累积引起的。如果该疾病由线粒体Fe超载引起,可能的治疗方案可以包括Fe螯合治疗。DFO有效地消耗胞质Fe库,但是不知道它能否螯合线粒体Fe。相反,以前的研究已经表明,芳酰腙螯合剂,如PIH,可以从线粒体中除去Fe。
显然,本发明的PCIH类似物可以包括游离碱和它们的盐酸盐形式的这些化合物,本文以下讨论碱和盐的合成。
目前还没有治疗FA的方法,FA是一种严重的致残神经症状。线粒体Fe累积在其发病机理中起重要作用这一令人激动的发现表明,可能的治疗介入可能是Fe螯合治疗。该研究鉴定了PCIH类螯合剂中的一些是用以移动网织红细胞线粒体非血红素Fe的高度有效的配体。采用网织红细胞模型,因为它是细胞中线粒体Fe超载的唯一很好表征的系统。PCIH和PCTH移动线粒体Fe库的能力克服了DFO不能有效从该室消耗Fe的缺点。这些研究对证明PCIH类配体在SK-N-MC神经上皮瘤细胞系中的高螯合功效和低毒性的工作进行了补充。事实上,这些化合物中的一些在增加细胞Fe移动和阻止从Tf摄取Fe方面远比DFO有效。
基于对多种PIH类化合物的研究而具体设计PCIH类螯合剂。根据这些研究,选择高Fe螯合功效和低毒性所必须的结构特征以优化这些配体作为治疗Fe超载疾病的药物的用途。事实上,设计方案非常成功,因为通过它获得了比母体化合物PIH更高活性的螯合剂。
设计衍生自PIH的新螯合剂的方案是建立在这种化合物的有利性质基础上的。它们是(a)口服有效;(b)接近最优的亲水-亲脂平衡;(c)对Fe的高特异性和选择性;(d)在生理pH下主要是中性的;(e)合成经济并且简单;(f)高的体内体外螯合功效。
PCIH配体中的一些具有移动线粒体Fe的能力的原因可能是它们远高于DFO的亲脂性。事实上,要穿透线粒体并螯合Fe,需要穿越三层脂质膜,即原生质膜和内外线粒体膜。因此,快速穿透膜并靶向线粒体Fe的亲脂性螯合剂将远比亲水性化合物如DFO有效。这可能是类似物的重要性质,因为FA中的Fe负载不如在未治疗的β-地中海贫血症中发现的那样显著。因此为了阻止全部机体Fe消耗,可能仅很短的治疗时间是可能或必须的。在这些条件下,特异性靶向线粒体Fe库可能是重要性质。
本领域技术人员将会理解,在不背离广泛描述的本发明的实质和范围的前提下,可以对在特定实施方案中显示的本发明进行各种改变和/或修饰。因此这些实施方案在所有方面,仅被视为说明性的而非限制性的。
权利要求
1.适于用作体内铁螯合剂的2-吡啶甲醛异烟酰腙(PCIH)类似物,它们的异构体或它们的盐,该PCIH类似物具有分子式1 其中R1为除未取代的吡啶之外的芳基或杂环基,且R2是H或OH。
2.根据权利要求1的PCIH类似物,其中芳基或杂环基是疏水性的。
3.根据权利要求1的PCIH类似物,其中R1是苯基、吡啶、呋喃或噻吩环,它们任选地具有连接于环上任何空位的烷基、卤素、硝基、胺或羟基。
4.根据权利要求1的PCIH类似物,其选自2-吡啶甲醛间溴苯甲酰腙(PCBBH)、2-吡啶甲醛对氨基苯甲酰腙(PCAH)、2-吡啶甲醛对羟基苯甲酰腙(PCHH),它们的盐和它们的异构体。
5.适于用作铁螯合剂的药物组合物,其包含治疗有效量的至少一种具有分子式1的2-吡啶甲醛异烟酰腙(PCIH)类似物,它们的异构体或它们的盐,以及药学适用的载体或稀释剂 其中R1为芳基或杂环基,且R2是H或OH。
6.根据权利要求5的药物组合物,其中芳基或杂环基是疏水性的。
7.根据权利要求5的药物组合物,其中R1是苯基、吡啶、呋喃或噻吩环,它们任选地具有连接于环上任何空位的烷基、卤素、硝基、胺或羟基。
8.根据权利要求5的药物组合物,其中2-吡啶甲醛异烟酰腙(PCIH)类似物选自2-吡啶甲醛异烟酰腙(PCIH)、2-吡啶甲醛2-噻吩羧基腙(PCTH)、2-吡啶甲醛苯甲酰腙(PCBH)、2-吡啶甲醛间溴苯甲酰腙(PCBBH),它们的盐和它们的异构体。
10.根据权利要求5至8中的任一权利要求的药物组合物,其被配方以皮下或静脉内注射、口服给予、吸入、经皮施用或直肠给予。
11.铁螯合治疗方法,其包括给予患者权利要求5至10中的任一权利要求的药物组合物。
12.治疗个体中铁超载疾病的方法,该方法包括给予个体权利要求5至10中的任一权利要求的药物组合物。
13.根据权利要求11或12的方法,其中药物组合物的给药剂量方案是30-500mg/kg患者体重。
14.根据权利要求13的方法,其中剂量方案是50-100mg/kg体重。
15.根据权利要求11至14中的任一权利要求的方法,其中患者患有β-地中海贫血或遗传性共济失调。
16.具有分子式1的2-吡啶甲醛异烟酰腙(PCIH)类似物,它们的异构体或它们的盐在生产用于治疗铁超载疾病的药物中的用途
全文摘要
本发明提供适于用作体内铁螯合剂的2-吡啶甲醛异烟酰腙(2-pyridylcar boxaldehyde isonicotinoyl hydrazone,PCIH)类似物,它们的异构体或它们的盐,含有该类似物的药物组合物,以及该类似物在治疗铁超载(iron-overload)疾病中的用途,该PCIH类似物通式如(1)所示,其中R
文档编号A61K31/4436GK1378449SQ00812399
公开日2002年11月6日 申请日期2000年9月4日 优先权日1999年9月2日
发明者德斯·理查森, 保罗·文森特·伯恩哈特, 埃丽卡·米歇尔·贝克尔 申请人:昆士兰大学, 心脏研究所有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1