用于肠产毒性大肠杆菌导致的猪断奶后腹泻的疫苗的制作方法

文档序号:1178297阅读:288来源:国知局

专利名称::用于肠产毒性大肠杆菌导致的猪断奶后腹泻的疫苗的制作方法
技术领域
:本发明涉及疫苗。更具体地,本发明涉及用于猪中肠产毒性大肠杆菌(enterotoxigenicEscherichiacoli)(ETEC)导致的断奶后腹泻的疫苗。背景大肠杆菌是细菌中的常见物种,尤其以导致包括腹泻的肠道问题而著称。与肠道疾病和/或腹泻相关的一类大肠杆菌是所谓的肠产毒性大肠杆菌(ETEC)。ETEC可能最著名的是导致旅行者腹泻。食物和/或水供给的污染通常是ETEC的来源。ETEC导致的疾病是由于细菌粘附到肠壁上和毒素(例如,肠毒素)释放进入宿主系统中这两者造成的。与肠壁的粘附是经由排列于细菌外表并使使细菌附着的一种或多种“菌毛”(即,菌体附器)而实现的。特定的ETEC菌株的菌毛往往具有宿主特异性。例如,感染猪的ETEC携带K-88菌毛而感染人的菌株携带CFAI和CFAII菌毛。ETEC产生两种毒素热不稳定性“LT”毒素和热稳定性“ST”毒素。LT毒素包含一个活性亚基或“A”亚基和五个结合亚基或“B”亚基。LT以类似于霍乱毒素的方式作用,因为其提高肠细胞中cAMP的水平,并且这导致电解质和水的排泄(腹泻)的增加。ST毒素可以是“a型”(S卩,STa)或“b型”(S卩,STb)。ST刺激cGMP的产生,还导致增加的液体排泄和腹泻。由于肠产毒性大肠杆菌菌株是非侵入性的,它们不会导致炎症,血性腹泻或系统性症状比如发烧。在北美的(和世界范围的)养猪业中,ETEC导致的新生儿和断奶后腹泻是经济上最重要的猪疾病之一。例如,据认为ETEC菌株是造成10.8%的所有断奶前猪死亡和多达3%以上的所有断奶的猪死亡的原因。(Tubb等人,1993,PreweaningmorbidityandmortalityintheUnitedStatesswineheed(美国猪群中断奶前发病率和死亡率),SwineHealthProd.1:21-28;Hampson,1994;PostweaningEscherichiacolidiarrheainpigs(猪的断奶后大肠杆菌腹泻),第171-191页,出版中;C.L.Gyle,Escherichiacoliindomesticanimalsandhumans(家畜禾口人中的大肠杆菌),CABInternational,Oxon,UK;Dewey等人,2000,Theimpactofdiseaseonnurserypigproduction(疾病对幼猪词养的影口向),Amer.Assoc.SwinePractictionsers,第3-11页,Indianapolis;它们的全部公开内容在此通过引用并入)。长期以来需要治疗和/或预防猪的新生儿和断奶后腹泻的方法。简述本发明提供疫苗的设计、材料、制造方法,以及使用替代物。示例性疫苗可以是抗肠产毒性大肠杆菌的疫苗。所述疫苗可包含大肠杆菌菌株。所述大肠杆菌菌株可产生K88菌毛和包含与STb肠毒素连接的突变体LT肠毒素的融合蛋白。生产用于猪断奶后腹泻的疫苗的示例性方法可包括提供第一种大肠杆菌菌株。该菌株可包含eltAB基因和estB基因。该方法还可包括扩增eltAB基因,使eltAB基因突变,生成突变体eltAB基因与estB基因的基因融合体,并利用该基因融合体转化第二种大肠杆菌菌株。另一种示例性疫苗可以是用于猪断奶后腹泻的活疫苗。该疫苗可包含大肠杆菌菌株。该大肠杆菌菌株可产生K88菌毛和包含与STb肠毒素连接的突变体LT肠毒素的融合蛋白。以上对一些实施方式的概述并不意在描述本发明的每个公开的实施方式或每个实现。下面的附图和详述将更加具体的阐述这些实施方式。详述对于以下所定义的术语,除非在权利要求书或本说明书中的其它地方给出有不同的定义,否则将采用这些定义。不论是否明确指出,认为本文的所有数值都被术语“约,,修饰。术语“约,,一般指本领域普通技术人员认为与所列数值等价的数字的范围(即,具有同样的功能或结果)。在很多情况中,术语“约”可包含最近的有效数字周围的数字。通过端点列举的数值范围包括在此范围内的所有数字(例如,1至5包括1、1.5、2,2.75,3,3.80、4和5)。除非内容中另外清楚地指出,否则如本说明书和所附的权利要求书中所使用的,单数形式“一”、“一个”和“所述”包括复数的指示物。除非内容中另外清楚地明确指出,否则如本说明书和所附的权利要求书中所使用的,术语“或”通常以包括“和/或”的含义使用。以下的详述应该根据附图进行理解,其中相同的元件在不同的附图中编号相同。附图不必按比例绘制,它描绘例证性的实施方式并且不意在限制本发明的范围。本文所描述的示例性疫苗可被设计成对防止肠产毒性大肠杆菌(ETEC)导致的腹泻是有效的。该疫苗可对防止猪中ETEC导致的断奶后腹泻有效。涵盖了可利用相同或相似的设计理念来设计的其他疫苗,这些疫苗可对防止在包含人的其它动物中由ETEC导致的腹泻有效。此外,可将该疫苗设计为易于生产且安全生产的,并且基本上使饲养、处理、运输、繁殖或以其它方式与猪工作的任何人能够使用这种疫苗防止猪的断奶后腹泻。可设计该疫苗使其可用方便的方式递送给猪。例如,疫苗可通过食物供给(例如,利用饲料、牛奶或代乳品和/或水)口服施用给猪。这种施用途径可能是期望的,例如,因为这种途径可以使猪所经受的操作量最少化。选择性地,可用其它适宜方式施用该疫苗,包括胃肠外、静脉内、肌内、局部或皮下。当然,施用途径可以是被指定的或另外由疫苗的形式所决定的。疫苗的设计可考虑猪腹泻中的ETEC的关键毒力因子,关键毒力因子可包括1)介导细菌附着于宿主肠细胞的表面并开始群集的细菌粘附分子;和2)造成流体分泌的肠毒素。例如,最近研究显示断奶后腹泻所涉及的大肠杆菌菌株的50-70%以上产生K88型菌毛。在K88菌毛中,K88ac是在北美发现的仅有的K88变体,是迄今世界上最常见的。K88ac菌毛也已在猪的ETEC大肠杆菌病中被确认为必要的毒力决定簇(参见,例如,Francis等人,1998,Expressionofmuncin-typeglycoproteinK88receptorsstronglycorrelateswithpigletsusceptibilitytoK88+enterotoxigenieEscherichiacoli,butadhesionsofthisbacteriumtobrushbordersdoesnot(粘蛋白型糖蛋白K88受体的表达与小猪对K88+肠产毒性大肠杆菌的易感性强相关,但此细菌对刷状缘的粘附与之不相关),Infect.Immun.66,4050-4055,其公开内容在此通过引用方式并入)。因此,以K88菌毛和/或K88ac菌毛为目标作为抗原的疫苗可能是期望的。所有K88+菌株产生LT和STb(参见,例如,Francis,D.H.,2002,EnterotoxigenicEscherichiacoliinfectioninpigsanditsdiagnosis(肠产毒j"生大肠杆菌在猪中白勺感染及其诊断),J.SwineHealthProd.10,171-175;Frydendahl,K.,2002,PrevalenceofserogroupsandvirulencegenesinEscherichiacoliassociatedwitypostweaningdiarrheaandedemadiseaseinpigsandacomparisonofdiagnosticapproaches(%猪的断奶后腹泻和水肿病相关的大肠杆菌血清群和毒力基因的流行以及诊断方法的比较),Vet.Microbiol.85,169-182;禾口Zhang等人,2007,PrevalenceofvirulencegenesinEscherichiacolistrainsisolatedfromyoungpigswithdiarrheainNorthCentralU.S.(美国中北部由患有腹泻的幼猪中分离的大肠杆菌菌株中的毒力基因的流行),Vet.Microbiol.123,145-152;它们全部的整体公开内容在此通过引用并入)。大体上断奶后腹泻所涉及的所有大肠杆菌菌株都产生STb。一些研究已证实LT和STb肠毒素是造成与ETEC感染相关的腹泻的原因(参见,例如,Berberov等人,2004,Relativeimportanceofheat-labileenterotoxininthecausationofseverediarrhealdiseaseinthegnotobioticpigletmodelbyastrainofentertoxigenicEscherichiacolithatproducesmultipleenterotoxins(在悉生小猪模型中由产生多种肠毒素的肠产毒性大肠杆菌的菌株导致的严重腹泻疾病中热不稳定性肠毒素的相对重要性),Infect.Immun.72,3914-3924禾口Zhang等人,2006,Significanceofheat-stabileandheat-labileenterotoxinsinporcinecolibacillosisinanadditivemodelforpathogenicitystudies(在用于病原性研究的加性模型中热稳定性肠毒素和热不稳定性肠毒素在猪的大肠杆菌病中的重要性),Infect.Immun.74,3107-3114;它们的整个公开内容全部在此通过引用并入)。因此,靶向LT和/或STb作为抗原的疫苗可能是期望的。此外,含有K88ac、LT和STb的抗原的疫苗可能是期望的,因为其将覆盖主要猪病原的所有必要的毒力决定簇。应用该设计策略的疫苗的独特性在于可产生出表达ETEC的所有主要毒力因子的抗原的疫苗。这些疫苗中的至少一些在小猪中似乎是基本上无毒的。本文所描述的疫苗的另一个独特方面在于疫苗既可作为竞争性排斥益生菌又可作为疫苗行使功能(例如,在至少一些实施方式中,本文所描述的疫苗可具有益生菌功效)。微生物有机体中的竞争性排斥益生菌与病原竞争由所述病原导致疾病所需的在宿主内的生态位。在养猪业中猪断奶时可能改变饲养者,且对不久之后发生的ETEC疾病具有易患病性,而双重目的的益生菌/疫苗菌株的极大好处是能够迅速防止该疾病。此外,因为有机体可能是活疫苗,可经饮水系统递送,并不需要单独动物操作,这是养猪业所关注的问题。疫苗在至少一些实施方式中,本文所描述的疫苗是设计为保护幼猪避免肠产毒性大肠杆菌导致的腹泻疾病的活疫苗。疫苗可包含表达来自K88ac菌毛的抗原和基因工程融合蛋白的大肠杆菌的活菌株。融合蛋白可包含突变体和/或无毒性的热不稳定性(LT)肠毒素和热稳定性B型(STb)肠毒素。在其他实施方式中,疫苗可包含表达来自K88ac菌毛的抗原及突变体和/或无毒性热不稳定性(LT)肠毒素的大肠杆菌的活菌株。在又一些实施方式中,疫苗可包含表达来自K88ac菌毛的抗原及突变体和/或无毒性热稳定性B型(STb)肠毒素的大肠杆菌的活菌株。在又一些实施方式中,疫苗可包含产生突变体和/或无毒性热不稳定性(LT)肠毒素、无毒性热稳定性B型(STb)肠毒素、或两者(例如以融合蛋白连接)的大肠杆菌的活菌株。在又一些实施方式中,疫苗可包含表达除K88ac外的菌毛的抗原的大肠杆菌的活菌株,所述菌毛例如与ETEC相关的其它菌毛。这些疫苗还可表达突变体和/或无毒性热不稳定性(LT)肠毒素、突变体和/或无毒性热稳定性B型(STb)肠毒素或两者。本文所描述的疫苗可以通过接种猪的食物供给来递送给猪。例如,可将疫苗加入到猪的饲料、牛奶(或代乳品)、水或全部这些之中。本文所描述的疫苗可通过以下步骤制造和/或生产提供包含eltAB基因和estB基因的第一种大肠杆菌菌株,扩增eltAB基因,使eltAB基因突变,生成突变体eltAB基因与estB基因的基因融合体,并利用所述基因融合体转化第二种大肠杆菌菌株。实施例本发明可通过参考以下的实施例进一步阐明,这些实施例用于例示一些优选的实施方式,而并不以任何方式限制本发明。实施例1eltAB基因的分离和克隆用于eltAB基因(编码LT肠毒素)和estB基因(编码STb肠毒素)的来源是来自被指定为“野外分离株3030-2”的猪肠产毒性大肠杆菌(ETEC)野外分离株的全基因组DNA0野外分离株3030-2根据布达佩斯条约的条款于2008年6月6日保藏在美国典型培养物保藏中心,10801UniversityBlvd.,Manassas,Va.20110-2209,USA(ATCC),并被给予ATCC专利保藏编号PTA-拟62。本专利一经授权,除37C.F.R.§1.808(b)中所规定的要求外,保藏材料可被公众得到的所有限制将会不可撤回地取消,并且保藏期限将遵照37C.F.R.§1.806。利用DNeasy组织试剂盒(可从QIAGEN,CA公司商业上购得)从野外分离株3030-2中分离基因组DNA。所得到的分离的基因组DNA保存为或稀释为0.1μg/μ1的贮存液。该贮存液用作扩增eltAB(编码LT肠毒素)基因和estB(编码STb肠毒素)基因的DNA来源和/或模板。eltAB基因主要由编码SEQIDNO2所列的氨基酸序列的SEQIDNO:1所列的核苷酸序列组成。estB基因主要由编码SEQIDNO:4所列的氨基酸序列的SEQIDNO3所列的核苷酸序列组成。利用聚合酶链式反应(PCR)扩增eltAB基因。合成用于此反应的两种引物指定为“LT-F”的合成的DNA寡核苷酸,主要由SEQIDNO:5所列的核苷酸序列组成,和指定为“LT-R”的合成的DNA弓丨物,主要由SEQIDNO:6所列的核苷酸序列组成。PCR在BIORADPTC-100热循环仪(BI0RAD,CA)中以含有下列物质的50μ1的反应体积进行1XpfuDNA聚合酶缓冲液(含Μ++)、0·2mMdNTP、各0.5μM的LT-F和LT-R、来自野外分离株3030-2的基因组DNA的1μ1贮存液和1单位的pfuDNA聚合酶(Strategene,CA)。PCR程序包括94°C下2分钟的1个循环;94°C下30秒、55°C下30秒和72°C下2分钟的30个循环;然后72°C下6分钟的延伸。利用琼脂糖凝胶电泳验证扩增的eltAB基因(即来自PCR的反应产物)具有正确大小,且然后将其从凝胶中切下并利用QIAquick凝胶提取试剂盒(可从QIAGEN,CA商业上购得)进行纯化。然后将所纯化的eltAB基因PCR产物洗脱到35μ1的ddH20中。将eltAB基因克隆到pBR322质粒载体(可从!Iomega,WI商业上购得)中。首先利用限制性酶EcoRV(可从NewEnglandBiolab,MA商业上购得)在37°C下在含有IX缓冲液(用于EcoRV的缓冲液3)、1XBSA和20单位的酶的25μ1反应体系中消化pBR322载体1小时。消化后,利用QIAquick凝胶提取试剂盒0!IAGEN,CA)通过琼脂糖凝胶电泳纯化所消化的PBR322质粒。随后将所消化的PBR322质粒稀释到35μ1ddH20中。将eltAB基因克隆到载体pBR322中包括利用T4DNA连接酶(由NewEnglandBiolabs,MA商业上购得)在含有2μ1的IOX缓冲液、1μ1的Τ4连接酶、7μ1的消化的PBR322贮存液和10μ1的eltAB贮存液的20μ1反应体系中在16°C下过夜进行的连接反应。利用ECM630(BTX,CA)电穿孔仪在0.Icm间距的电击杯(Sigma,M0)中将2微升的T4连接产物引入来自指定为“野外分离株1836-2”的猪野外分离株的100μ1大肠杆菌感受态细胞中,电穿孔仪设置为2.5kV、25uF电容、200欧电阻。野外分离株1836-2是缺少eltAB基因和estB基因的非病原性的猪大肠杆菌野外分离株。野外分离株1836-2根据布达佩斯条约的条款于2008年6月6日保藏在美国典型培养物保藏中心,10801UniversityBlvd.,Manassas,Va.20110-2209,USA(ATCC),并被给予ATCC专利保藏编号PTA-拟60。本专利一经授权,除37C.F.R.§1.808(b)中所规定的要求外,保藏材料可被公众得到的所有限制将会不可撤回地取消,并且保藏期限将遵照37C.F.R.§1.806。菌株1836-2表达K88ac菌毛并群集在K88受体阳性猪的肠上皮中。单独的1836-2菌株在幼猪中并不导致疾病(Zhang等人,2006,Significanceofheat-stableandheat-labileenterotoxinsinporcinecolibacillosisinanadditivemodelforpathogenicitystudies(在用于病原性研究的加性模型中热稳定性肠毒素和热不稳定性肠毒素在猪的大肠杆菌病中的重要性),Infect.Immun.74:3107_3114,其整体公开内容在此通过引用并入)。将50μ1转化的1836-2细胞铺展到含有50μg/ml氨苄西林的琼脂板上。将板在37°C下孵育过夜。在板上观察到阳性菌落(选择氨苄青霉素抗性)。利用试剂盒QIApr印SpinMiniprep试剂盒QIAGEN,CA)从阳性菌落中提取质粒DNA,然后先用PCR进行筛选,再利用BigDyeTerminator试剂盒(可从AppliedBiosystem,CA商业上购得)进行测序以确保eltAB基因插入到pBR322中且保持在正确的阅读框中。将所得的含有eltAB基因的质粒载体指定为pLT,并进行纯化(QIApr印SpinMiniprep试剂盒,QIAGEN,CA),并稀释为0.1μg/μ1贮存液。实施例2eltAB基因的突变利用定点诱变将pLT中的eltAB基因进行突变以将对应于eltAB基因的第192位氨基酸残基的核苷酸由“AGA”变为“GGA”。利用质粒pLT作为模板生产含有该突变体的序列的质粒,并将其指定为pLTW2。为了生产pLTW2突变体,在PCR反应中使用两种内部PCR引物指定为“LT192-F”的合成的DNA寡核苷酸,主要由SEQIDNO7所列的核苷酸序列组成,和指定为“LT192-R”的合成的DNA寡核苷酸,主要由SEQIDNO8所列的核苷酸序列组成。PCR在BIORADPTC-100热循环仪(BIORAD,CA)中以含有下列物质的50μ1的反应体积进行1μ1的PLT贮存液、IXpfuDNA聚合酶缓冲液(含Mg++)、0.2mMdNTP、各0.5μM的LT192-F和LT192-R,1μ1的pBR322贮存液(IOOng/μ1)和1单位的pfuDNA聚合酶(Strategene,CA)。PCR程序包括94°C下2分钟的1个循环;94°C下30秒、55°C下30秒和72°C下2分钟的30个循环;然后72°C下6分钟的延伸。利用琼脂糖凝胶电泳验证扩增的突变的eltAB基因(即来自PCR的反应产物)具有正确大小,且然后将其从凝胶中切下并利用QIAquick凝胶提取试剂盒(可从QIAGEN,CA商业上购得)进行纯化。然后将所纯化的eltAB基因PCR产物洗脱到35μ1的ddH20中。实施例3突变的e11AB基因的克隆利用pLT质粒作为DNA模板,利用PCR引物扩增质粒pBR322的一部分和eltAB基因的5'端以加上含有SfcI限制性位点的5'突出端。该反应的引物包括指定为“pBREcoRI-F”的合成的DNA寡核苷酸,主要由SEQIDNO9所列的核苷酸序列所组成,和LT撤-R。PCR在BIORADPTC-100热循环仪(BI0RAD,CA)中以含有下列物质的50μ1的反应体积进行:1μ1的pLT贮存液、IXpfuDNA聚合酶缓冲液(含Mg++)、200nMdNTP、各0·5μΜ的pBREcoRI-F和LT192-R以及1单位的pfuDNA聚合酶(Strategene,CA)。PCR程序包括94°C下2分钟的1个循环;94°C下30秒、55°C下30秒和72°C下2分钟的30个循环;然后72°C下6分钟的延伸。还利用PCR引物扩增eltAB基因的3'端和质粒pBR322的一部分以加上具有fegl限制性位点的3'突出端。该反应的引物包括指定为“pBREagl-R”的合成的DNA寡核苷酸,主要由SEQIDNO10所列的核苷酸序列组成,和LT撤-F。PCR在BIORADPTC-100热循环仪(BI0RAD,CA)中以含有下列物质的50μ1的反应体积进行1μ1的pLT贮存液、1XpfuDNA聚合酶缓冲液(含Mg++)、0.2mMdNTP、各0.5μM8的LT192-F和pBREagl-R以及1单位的pfuDNA聚合酶(Strategene,CA)。PCR程序包括94°C下2分钟的1个循环;94°C下30秒、55°C下30秒和72°C下2分钟的30个循环;然后72°C下6分钟的延伸。将所扩增的突变的eltAB基因的5'端和3'端片段进行纯化(利用试剂盒QIAquickGelExtraction,QIAGEN),且然后在SOE(剪接重叠延伸)PCR中连接成突变的猪eltAB基因(编码LTw2蛋白)。SOEPCR在1XpfuDNA聚合酶缓冲液(含Mg++)、0·2mMdNTP、纯化的5'端和3'端PCR产物各20μ1、1单位的pfu聚合酶和0.5单位的taqDNA聚合酶(AppliedBiosystem,CA)的反应体系中进行。SOEPCR程序包括94°C下2分钟的1个循环;94°C下30秒、45°C下30秒和72°C下3分钟的10个循环;然后72°C下10分钟的延伸。利用限制性酶SfcI和fegl消化该突变的eltAB基因(LT192),用同样方法处理载体PBR322。利用SfcI和fegl限制性酶(NewEnglandBiolab,MA)的限制性酶消化在37°C下在含有1X缓冲液(用于fegl的缓冲液3和用于SfcI的缓冲液4)、1XBSA和20单位的酶的25μ1反应体系中进行1小时。利用QIAquick凝胶提取试剂盒0)IAGEN,CA)通过琼脂糖凝胶电泳纯化所消化的产物,并利用T4DNA连接酶(NewEnglandBiolab,MA)在16°C下在含有2μ1的IOX缓冲液、1μ1的Τ4连接酶、7μ1的载体和10μ1的插入片段的20μ1反应体系中连接过夜。使用2.5kV、25uF电容、200欧电阻通过电穿孔将2微升的T4连接产物引入到100μ1的1836-2大肠杆菌感受态细胞中。将50μ1的转化的1836-2细胞铺展到含有50μg/ml氨苄西林的琼脂板上。将板在37°C下孵育过夜。在板上观察到阳性菌落(选择氨苄西林抗性)。利用试剂盒QIApr印SpinMinipr印试剂盒QIAGEN,CA)从阳性菌落中提取质粒DNA,然后先用PCR进行筛选,再利用BigDyeTerminator试剂盒(可从AppliedBiosystem,CA商业上购得)进行测序。所得的含有突变的eltAB基因的质粒载体被指定为pLT192,并对其进行纯化(QIApr印SpinMiniprep试剂盒,QIAGEN,CA),然后稀释为0.1μg/μ1的贮存液。实施例4突变的eltAB基因与estB基因的基因融合体的生成为了生成突变的eltAB基因与estB基因的基因融合体,利用两次PCR反应。对于第一次PCR反应,我们指定了两种附加的PCR引物指定为“STb:LT_F5”的合成的DNA寡核苷酸,主要由SEQIDN0:11所列的核苷酸序列组成,和指定为“LT:STb_R4”的合成的DNA寡核苷酸,主要由SEQIDN0:12所列的核苷酸序列组成。“STb:LT_F5”正向引物包含突变的eltAB基因的3‘端的核苷酸、Gly-Pro-Gly-Pro接头和estB基因的5‘端的核苷酸。"LTSTb_R4”反向引物包含estB基因的5'端、接头和突变的eltAB基因的3'端。利用来自质粒pLTli32的DNA模板和引物pBREcoRI-F和LT:STb_R4进行的PCR扩增pBR322载体的一部分、全部的突变的eltAB基因(其终止子被缺失)、Gly-Pro接头和estB基因的5'端的部分。9第一次PCR在BIORADPTC-100热循环仪(BI0RAD,CA)中在含有下列物质的50μ1的反应体积中进行1μ1的PLTli32贮存液、IXpfuDNA聚合酶缓冲液(含Mg++)、0.2mMdNTP、各0.5μM的STbLT-F5和LTSTb_R4和1单位的pfuDNA聚合酶(Strategene,CA)。PCR程序包括94°C下2分钟的1个循环;94°C下30秒、55°C下30秒和72°C下2分钟的30个循环;然后72°C下6分钟的延伸。第二次PCR利用来自野外分离株3030-2的基因组DNA和PCR引物STbLT-F5和指定为“STbEagl-R”的合成的DNA寡核苷酸,该合成的DNA寡核苷酸主要由SEQIDNO13所列出的核苷酸序列组成,第二次PCR扩增突变的eltAB基因的3'端的部分、接头和estB基因。PCR在BI0RADPTC-100热循环仪(BI0RAD,CA)中在含有下列物质的50μ1的反应体积中进行1μ1的野外分离株3030-2的DNA贮存液、1XpfuDNA聚合酶缓冲液(含Mg++)、0.2mMdNTP、各0.5μM的STbLT-F5和STbEagl-R、和1单位的pfuDNA聚合酶(Strategene,CA)。PCR程序包括94°C下2分钟的1个循环;94°C下30秒、55°C下30秒和72°C下2分钟的30个循环;然后72°C下6分钟的延伸。利用SOEPCR连接扩增的产物,得到LT192-Gly-Pr0-接头-estB的融合产物。SOEPCR程序由94°C下2分钟的1个循环;94°C下30秒、45°C下30秒和72°C下3分钟的10个循环;然后72°C下10分钟的延伸组成。利用限制性酶SfcI和EagI消化扩增的产物。利用SfcI和EagI限制性酶(NewEnglandBiolab,ΜΑ)的限制性酶消化在37°C下在含有IX缓冲液(用于fegl的缓冲液3和用于SfcI的缓冲液4)、1XBSA和20单位的酶的25μ1反应体系中进行1小时。利用QIAquick凝胶提取试剂盒OlIAGEN,CA)通过琼脂糖凝胶电泳纯化所消化的产物,并利用T4DNA连接酶(NewEnglandBiolab,ΜΑ)在16°C下在含有2μ1的IOX缓冲液、1μ1的Τ4连接酶、7μ1的消化的载体(pBR322)和10μ1的消化的插入片段(扩增的产物)的20μ1的反应体系中连接过夜。使用2.5kV、25uF电容和200欧电阻通过电穿孔将2微升的T4连接产物引入到100μ1的1836-2大肠杆菌感受态细胞中。将50μ1的转化的1836-2细胞铺展到含有50μg/ml氨苄西林的琼脂板上。将板在37°C下孵育过夜。在板上观察到阳性菌落(选择氨苄西林抗性)。利用试剂盒QIApr印SpinMinipr印试剂盒0!IAGEN,CA)从阳性菌落中提取质粒DNA,然后先用PCR进行筛选,再利用BigDyeTerminator试剂盒(可从AppliedBiosystem,CA商业上购得)进行测序。所得的含有突变的eltAB基因与estB基因的融合体的质粒载体被指定为“pLT192:STb”,并对其进行纯化(QIAprepSpinMiniprep试剂盒,QIAGEN,CA),然后稀释为0.1μg/μ1的贮存液。将利用质粒LT192=STb(例如,阳性菌落的培养物)转化的1836-2的贮存物保持在30%的甘油溶液中。该贮存物被指定为疫苗菌株“8488”。疫苗菌株8488根据布达佩斯条约的条款于2008年6月6日保藏在美国典型培养物保藏中心,10801UniversityBlvd.,Manassas,Va.20110-2209,USA(ATCC),并被给予ATCC专利保藏编号PTA-汜61。本专利一经授权,除37C.F.R.§1.808(b)中所规定的要求外,保藏材料可被公众得到的所有限制将会不可撤回地取消,并且保藏期限将遵照37C.F.R.§1.806。实施例5选择性地,用以下来替换第一次PCR反应以改变“L-接头”。对于本实施例,设计了含有“L-接头”的两种附加的PCR引物(5,-cgagetcggtaccggggatc-‘3,Clements和Cardenas,1990,"VaccinesagainstenterotoxigenicbacterialpathogensbasedonhybridSalmonellathatexpressheterologousantigens,,(■于^达异源Jjt原白勺杂☆沙门氏菌的抗产肠毒素细菌病原的疫苗),Res.Microbiol.141:981_993,其整个公开内容在此通过引用并入)以试图提高两种蛋白间的柔性指定为“LT:STb-R5”的合成的DNA寡核苷酸,主要由SEQIDNO14所列的核苷酸序列组成,和指定为“STb:LTB-F”的合成的DNA寡核苷酸,主要由SEQIDNO:15所列的核苷酸序列组成。在与实施例4中所描述的相似的反应中,利用pBREcoRI-F和LTSTb_R5和PLT192:STb质粒DNA进行的PCR扩增突变的eltAB基因、L-接头和estB基因的5'端,然后利用STb=LTB-F和STbfegI-R进行第二次PCR(与实施例4中PCR部分相似)扩增突变的eltAB基因的3'端、L-接头和estB基因。在SOEPCR中连接两种片段,利用SfcI和fegl酶消化,且然后连接到载体PBR322中。实施例6疫苗的生产和施用通过将25μ1的菌株8488贮存物在37°C下在含50μg/ml氨苄西林的IOmlLB(Luria-Bertani)肉汤中孵育过夜而生产疫苗。将3毫升(3XIO9菌落形成单位或CFU)菌株8488的过夜生长培养物混合到219ml的Esbilac代乳品(PetAg,Inc.,ΙΑ)中以口服施用给猪。疫苗研究所用的小猪由剖腹产所生产,将其随机分成三个组,在悉生设施(无菌环境)中养殖。在7天龄时,用含有包括多形类杆菌(Bacteroidesthetaiotaaomicron)、梭状梭菌(chlostridiumclostridioforme)lif(Lactobacillusbrevis)禾口大肠杆菌菌株G58-1的正常菌群口服接种小猪,以激活这些悉生小猪的原初免疫系统。这些非病原细菌正常存在于猪的肠内,并且是正常菌群的一部分。在14天龄时,将猪分为三组,一个疫苗组和两个阴性对照组。第一组的四只猪(在此处和此后其它实施例中均被称为是“疫苗菌株”组)摄入疫苗菌株8488(在代乳品中),第二组的四只猪(在此处和此后其它实施例中被称为是"1836-2(-)”组)摄入菌株1836-2019毫升代乳品中的3毫升或3XIO9CFU的菌株1836-2),并且第三组的四只猪(在此处和此后其它实施例中均被称为是“阴性对照”组)仅摄入代乳品。一周以后,用387毫升代乳品中的3ml过夜生长的8488培养物的口服消化进行第二次免疫而对疫苗菌株组的猪进行加强。再一周以后,用混合在387毫升代乳品中的野生型病原ETEC菌株3030-2的3ml过夜生长培养物对全部三个组中的猪进行攻击。密切观察猪的包括腹泻和脱水的临床症状的发生。48小时后,对所有的猪尸体剖检以进行组织检查。在每次免疫前后和攻击前后从每只猪中收集血液样品,以监测免疫源应答(结果参见实施例11)。观察所有猪对接种物的消耗,并监测随之的临床体征,包括呕吐、腹泻、脱水和嗜睡。尸体剖检时,从每只猪中收集小肠样品用于细菌群集研究。在接种后48小时之后的安乐死处理后对小猪进行尸体剖检,收集回肠(I)(回盲瓣附近3-5cm)、下部空肠(LJ)(幽门瓣和回盲瓣之间的三分之一到一半的距离)、上部空肠(UJ)(幽门瓣和回盲瓣之间的一半到三分之二的距离)、和十二指肠(D)(距幽门瓣3-5cm)的样品,用于细菌学和组织病理学研究。实施例8小猪脱水的评估通过测量血液红细胞压积(PCV)和血浆总蛋白(TP)的改变来测定攻击后脱水的水平。在接种前和接种18小时后从每只猪中取得血液样品,然后如其它处所描述的检测血液红细胞压积和血浆总蛋白。简要地说,将血液样品置于75mm毛细管中,并离心以进行TP和PCV的分析。利用标准血细胞比容总百分比图表测定PCV。利用标准医疗折光计测定血浆TP含量。接种前样品收集物到接种样后样品收集物中的PCV和血浆TP的增高用作脱水的指示。实施例9细菌肠内群集的评价小肠的细菌群集的量和位置的测定是通过定量培养和免疫组化染色的小猪小肠切片的图像分析来实现的。以每克回肠组织的CFU测定细菌浓度。简要地说,称重回肠组织,在PBS中洗涤并置于PBS中(比例为Ng组织在9XNml的PBS中),连续稀释,置于血液琼脂(脑心基质)或LB琼脂板上,然后在37°C下孵育过夜,然后计数细菌菌落。实施例10用于评价K88受体表达的小猪刷状缘粘附测定按照标准方法使用在剖检时从每只小猪中收集的回肠样品制备刷状缘囊泡。对从每只小猪中收集的小肠刷状缘囊泡检测表达K88ab、K88ac和K88ad菌毛的大肠杆菌的粘附。在相差显微镜下检查混合有刷状缘的细菌悬浮液中细菌对刷状缘的粘附。计数粘附在单个刷状缘囊泡上的细菌数目,细菌计算包括来自每个刷状缘样品的10个囊泡。如果在刷状缘囊泡上有2个以上的细菌粘附则认为单个刷状缘是粘附的。从数据分析中排除非粘附的猪。实施例11结果利用8488疫苗菌株(疫苗菌株组)免疫的所有的猪都保持健康,在利用猪致泻ETEC菌株3030-2攻击后没有发生任何腹泻或脱水。小肠中的粪便水层平均为35.5%(紧实粪便,正常的,健康的)。观察到100%的预防。阴性对照组(1832-3(-)和阴性对照组两者)中的猪在利用猪致泻ETEC菌株3030-2攻击后发生腹泻。小肠中的粪便水层高于90%(水在小肠中积累,腹泻)。观察到在疫苗组(疫苗菌株组)中的猪中具有高水平的抗K88和抗LT抗体,而在对照组(1832-3(-)和阴性对照组两者)中没有检测到这些抗体,或检测到极低的这些抗体(参见以下的表1-6)。来自疫苗组(疫苗菌株组)中的猪的小肠被疫苗菌株大量群集(6.7X108CFU/g),这预防了3030-2的群集(0-6X104CFU/g);而来自阴性对照组(1832-3(-)和阴性对照组两者)中的猪的小肠主要被攻击的3030-2菌株所群集(1.03X108CFU/g的3030-2),这是发生腹泻疾病的前提。利用蛋白质印迹分析测量抗K88抗体和抗LT抗体的存在。在每组猪的血清中所检测的抗K88抗体的效价列于表1-3中。表1在血清中检测的抗K88抗体(IgG效价)。权利要求1.一种抗肠产毒性大肠杆菌(enterotoxigenicEscherichiacoli)的疫苗,所述疫苗包含产生K88菌毛和包含与STb肠毒素连接的突变体LT肠毒素的融合蛋白的大肠杆菌菌株。2.如权利要求1所述的疫苗,其中所述疫苗是活的大肠杆菌疫苗。3.如权利要求1-2任一项所述的疫苗,其中所述疫苗是抗猪断奶后腹泻的疫苗。4.如权利要求1-3任一项所述的疫苗,其中所述大肠杆菌菌株是以ATCC专利保藏编号PTA-9261保藏在美国典型培养物保藏中心的菌株。5.一种生产用于猪断奶后腹泻的疫苗的方法,所述方法包括以下的步骤提供第一种大肠杆菌菌株,所述菌株包含eltAB基因和estB基因;扩增所述eltAB基因;使所述eltAB基因突变;生成突变体eltAB基因与所述estB基因的基因融合体;和利用所述基因融合体转化第二种大肠杆菌菌株。6.如权利要求5所述的方法,其中所述第一种大肠杆菌菌株表达K88菌毛。7.如权利要求5-6任一项所述的方法,其中所述第一种大肠杆菌菌株表达K88ac菌毛。8.如权利要求5-7任一项所述的方法,其中所述第一种大肠杆菌菌株是以ATCC专利保藏编号PTA-9262保藏在美国典型培养物保藏中心的菌株。9.如权利要求5-8任一项所述的方法,其中生成突变体eltAB基因与estB基因的基因融合体的所述步骤包括将接头置于所述eltAB基因和所述estB基因之间。10.如权利要求5-9任一项所述的方法,其中所述第二种大肠杆菌菌株缺少所述eltAB基因。11.如权利要求5-10任一项所述的方法,其中所述第二种大肠杆菌菌株缺少所述estB基因。12.如权利要求5-11任一项所述的方法,其中所述第二种大肠杆菌菌株是以ATCC专利保藏编号PTA-9260保藏在美国典型培养物保藏中心的菌株。13.如权利要求5-12任一项所述的方法,所述方法还包括以下步骤将利用所述基因融合体转化的所述第二种大肠杆菌菌株加入到水、牛奶、代乳品或食物中并施用所述水、牛奶、代乳品或食物给哺乳动物。14.如权利要求13所述的方法,其中所述哺乳动物是猪。15.一种用于猪断奶后腹泻的活疫苗,所述疫苗包含产生K88菌毛和包含与STb肠毒素连接的突变体LT肠毒素的融合蛋白的大肠杆菌菌株。16.如权利要求15所述的疫苗,其中所述大肠杆菌菌株是以ATCC专利保藏编号PTA-9261保藏在美国典型培养物保藏中心的菌株。17.一种抗肠产毒性大肠杆菌的疫苗,所述疫苗包含以ATCC专利保藏编号PTA-9261保藏在美国典型培养物保藏中心的大肠杆菌菌株。全文摘要疫苗及制备和使用其的方法。示例性疫苗可以是抗肠产毒性大肠杆菌的疫苗。疫苗可包含大肠杆菌菌株。所述大肠杆菌菌株可产生K88菌毛和包含与STb肠毒素连接的突变体LT肠毒素的融合蛋白。生产用于猪断奶后腹泻的疫苗的示例性方法可包括提供第一种大肠杆菌菌株。该菌株可包含eltAB基因和estB基因。该方法还可包括扩增eltAB基因,使eltAB基因突变,生成突变体eltAB基因与estB基因的基因融合体,以及利用该基因融合体转化第二种大肠杆菌菌株。文档编号A61K39/108GK102281895SQ200980134890公开日2011年12月14日申请日期2009年7月2日优先权日2008年7月8日发明者卫平·张,大卫·弗朗西斯申请人:南达科他州立大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1