具有延伸流体管腔的柔性尖端导管的制作方法

文档序号:1201746阅读:170来源:国知局
专利名称:具有延伸流体管腔的柔性尖端导管的制作方法
具有延伸流体管腔的柔性尖端导管相关串请的交叉引用本申请要求2009年12月31日提交的第12/651,074号美国正式申请(’ 074申请)的优先权并享有其利益。本申请还是2007年4月4日提交的第11/696,657号美国申请(’657申请)的部分继续申请;并且本申请是2007年9月11日提交的第11/853,759号美国正式申请(’ 759申请)。’ 074申请、’ 657申请、’ 759申请于此处合并引入作为参考,就如同在此完全阐述了一样。
背景技术
此处披露的主题总体上涉及导管装置,并且更具体地,涉及包括延伸流体管腔的消融导管。导管是柔性、管状装置,其由执行医疗程序的内科医生们广泛使用以获得进入身体内部区域的入口。在手术领域,具有一个或多个电极的导管通常是公知的。例如,电极导管被用于和/或可以被用于电映射身体部位和/或将治疗提供至身体部位。公知的消融导管包括具有远端的导管主体以及耦接至导管主体远端的消融电极。一些公知的消融导管包括灌注系统,其提供灌注流体以使消融电极冷却。在至少一些已知的导管配置中,灌注流体并没有基本上均匀地冷却消融电极,并且灌注流体并不能完全围绕消融电极。此外,已知的灌注消融导管没有为与正被消融的组织材料接触的消融电极部分提供较多的灌注流体,并且没有为不与组织材料接触的部分消融电极提供较少的灌注流体。

发明内容
披露了包含电极的导管的有益实施例,其中,特别提供了基本上均匀的沿电极纵向长度径向导引的灌注流体。一方面,为具有导管主体和细长电极的导管提供了管腔延伸构件。该管腔延伸构件包括耦接至导管主体且定位于细长电极内的管状构件。该管状构件包括侧壁和延伸通过侧壁的至少一个开口。另一方面,提供了包括具有远端部分的主体的导管。导管包括尖端组件和管腔延伸构件。该尖端组件限定了穿过其中延伸的尖端管腔,并耦接至导管主体的远端部分。管腔延伸构件定位在尖端管腔内并耦接至导管主体的远端部分。又一方面,提供了消融导管。该消融导管包括具有远端部分的导管主体和耦接至导管主体远端部分的细长电极。细长电极限定了穿过其中延伸的电极管腔。管腔延伸构件定位在电极管腔内并耦接至导管主体的远端部分。在本发明的灌注导管装置的一些形式中,细长电极可以是和/或由相对不可弯曲的材料构成,并被制造为当以锐角撞击表面时由此提供流体出口的弯曲性和方向性。例如,电极可由相对薄的金属杯构成,其被激光切割为燕尾榫接头,燕尾榫接头朝向表面变宽或更开放,并且远离表面则倾向于变得更接近,或者不那么开放。当这样一种本发明的灌注导管的柔性细长电极撞击表面时,由于当电极处于弯曲位置时,由接头形成的开口或裂缝的尺寸在变化,灌注流体的流动沿细长电极的纵向长度发生变化。例如,由于朝向表面的接头变得更加开放,而远离表面的接头不那么开放,朝向表面流动的流体比远离表面流动的流体更多。


图I是示例性导管的透视图。图2是图I中所示的导管的横截面图。图3是与图I中所示的导管一起使用的示例性尖端组件的透视图。图4是与图I中所示的导管一起使用的另一示例性尖端组件的透视图。图5是图3中所示的尖端组件的横截面图。图6是图4中所示的尖端组件的横截面图。图7是与图3中所示的尖端组件一起使用的示例性管腔延伸构件的横截面图。图8是图7中所示的管腔延伸组件的侧视图。图9是图7中所示的管腔延伸组件的俯视图。图10是图7中所示的管腔延伸组件的近端视图。图11是图7中所示的管腔延伸组件的远端视图。
具体实施例方式描述了包括尖端组件和延伸管腔的消融导管的实施例。延伸管腔有助于提供一种沿径向导向的灌注模式,当尖端组件处于非弯曲或松弛状态时,该灌注模式沿尖端组件的纵向长度基本上均匀。此外,由于当电极处于弯曲位置时,由接头形成的开口或裂缝的尺寸发生变化,延伸管腔提供了沿细长电极的纵向长度变化的流体流。例如,由于朝向表面的开口接头变得更加开放,而远离表面的接头变得不那么开放,朝向表面流动的流体比远离表面流动的流体更多。如下面详细描述的那样,提供的导管包括尖端组件和管腔延伸构件,后者限定了一个穿过其中的延伸管腔。管腔延伸构件位于尖端组件内并且包括侧壁,所述侧壁具有多个延伸穿过该侧壁的开口。多个开口可以具有各种不同的尺寸、形状和方向,使得导管沿尖端组件的纵向长度形成用于基本上均匀的流体流的通道。如下面解释的那样,在多个示例性实施例中,对于相对传统的非柔性和新型的柔性细长电极,管腔延伸构件可以都具有多种配置。图I是示例性导管100的透视图,其包括柔性外管或管材102。虽然很明显的是,示例性导管100的多个方面可应用于多种医疗程序和终端应用中,但是,将主要从消融导管的一个特定实例的内容来描述示例性实施例。然而,这里披露的主题并不是要限制为任何特定实例。管材102可以包括任意合适数量的部分。在示例性实施例中,管材102包括近端部分104和远端部分106。在示例性实施例中,尖端组件108耦接至管材102,并且更具体地,耦接至远端部分106的远端。管材102可以具有变化的或恒定的刚度,并且可以如现有技术中公知的那样是预弯曲或可挠曲的。
管材102可以利用任何合适的工艺(例如挤出工艺)由任何合适的管材材料来制造,该材料例如为工程尼龙树脂和塑料,包括但不限于法国Ato Fina Chemicals公司的PEBAX 管材。在示例性实施例中,近端部分104由第一管材材料制造,远端部分106由不同于第一管材材料的第二管材材料制造。管材材料可以包括不同的材料和/或材料的不同等级,用于增强用于导管100中的管材102的性能。由于部分104和106具有变化的柔性特性,管材102有时可被称作多柔性管。在示例性实施例中,第一材料是相对坚硬且耐弯的编织材料。更具体地,在示例性实施例中,近端部分104由编织材料、半软性材料和软性材料的不同部分彼此熔合而形成,以使近端部分104沿管材102的纵向长度变得越来越柔韧。此外,限定了远端部分106的第二材料由一种软性且具有柔性特性的柔性的材料形成。虽然在其它实施例中,部分104和106具有变化的直径,但是,在示例性实施例中,部分104和106具有共同的外径,例如7French。在示例性实施例中,近端部分104在管材102的大部分纵向长度上延伸,远端部分106延伸的长度小于近端部分104的长度。更具体地,在示例性实施例中,近端部分104延 伸大约126. 3cm的纵向长度,远端部分106延伸大约0. 8cm的纵向长度,虽然在其它实施例中可以类似地采用其他相对长度的管部分104和106。部分104和106的不同的相对长度,以及部分104和106的不同的柔性特性,使尖端组件108更加精确地定位在患者体内,同时还避免了在使用和操作过程中管材102沿其长度主体的扭结和过度挠度问题。在操作中,包括尖端组件108的导管100的远端部分106被操纵以在体内某处定位,在该处将要进行医疗程序,例如心房映射、起搏和/或消融。例如,远端部分106可以延伸到患者心脏腔室内。图2是导管100的横截面图。在示例性实施例中,导管100包括内管110,其限定了在其中延伸的中央管腔112。应该理解的是,以同心或同轴配置或偏离导管100的中轴的方式,可以实现多于一个内管110,或管腔。在示例性实施例中,内管110具有小于管材102内径的外径,以使得在内管110的外表面和管材102的内表面之间有延伸的间隙。在一个实施例中,内管110可以是编织的聚酰亚胺管,其保持尖端组件108的所有方向的流体通道穿过中央管腔112,而不影响管材102的柔性。图3是尖端组件108的透视图。在示例性实施例中,尖端组件108为柔性尖端电极,其包括通常为圆柱形的侧壁114和圆顶状尖端116。在示例性实施例中,尖端组件108限定了在其内延伸的尖端管腔118。在示例性实施例中,侧壁114包括多个环形表面通道120,其被切割或者以其他方式形成在侧壁114中。在示例性实施例中,通道120限定了侧壁114的具有减小的壁厚和减小的横截面积的延伸区域。在示例性实施例中,通道被配置为使灌注流体从尖端组件108的内部向尖端组件108的外部流通。在示例性实施例中,延伸通道120以松弛状态在结构上开放,并且能够根据给予尖端组件108的力向量的特性而开放地更大或更小。在示例性实施例中,未被延伸通道120占据的侧壁114的区域并不像被延伸通道120占据的侧壁114的区域那样变形。更具体地,在示例性实施例中,被延伸通道120占据的侧壁114的区域比未被延伸通道120占据的侧壁114的区域更加柔韧,并且因而,延伸电极侧壁被配置为弯曲的并且在所述通道的开口尺寸上发生变化。通道120可以具有任意合适的尺寸和/或形状。虽然延伸通道120的长度可以是通道120的宽度的至少约5倍或者就此而言至少约10倍或者更多,但是,在示例性实施例中,延伸通道120的长度是通道120的宽度的至少约3倍。此外,在示例性实施例中,延伸通道120围绕尖端组件108定向并且基本上彼此平行地延伸。至少一个环形通道120在基本上垂直于尖端组件108的纵向长度的平面内延伸。在一个实施例中,各个通道120可以沿尖端组件108的纵向长度彼此等距地间隔开来。至少一个环形通道120可以形成连续的360度无尽环,也就是圆形。在一个实施例中,尖端组件108包括在尖端组件108的至少一部分上延伸的薄膜(未示出),以促使目标(未示出)与通道120分离。更具体地,在该 实施例中,薄膜在侧壁114被通道120占据的区域上延伸,以当尖端组件108挠曲和/或弯曲时,帮助阻止组织在通道120内收到挤压。在该实施例中,薄膜为适当地多孔的,以使流体能够穿过薄膜通过。此外,在该实施例中,薄膜为适当导电的,以使尖端组件108能够起到如此处所描述的作用。在一个实施例中,尖端组件108特别适合于消融过程,其中电极被施加能量以在体内的非正常电路的位点上传输射频(RF)波。因此,RF能量可以施加到靠近尖端组件108的生物组织。例如,消融过程通常被用在心脏的内部腔室中以热消融心脏组织。可以额外地操作电极以记录心内信号并在单电极配置或双电极配置中提供起搏信号,该信号具有耦接至轴杆102的邻近电极(即,与尖端组件108分隔开的环形电极)的传感向量。图4是尖端组件108的替换实施例的透视图。在示例性实施例中,圆顶形尖端116包括延伸穿过尖端组件108的侧壁114的至少一个灌注端口或开口 124。更具体地,在示例性实施例中,圆顶形尖端116包括中央开口 124a和四个卫星开口 124b,其围绕中央开口124a圆周形地定位。如图4中所示,中央开口 124a具有第一尺寸,每个卫星开口 124b具有小于第一尺寸的第二尺寸。在示例性实施例中,通道120具有绕尖端组件108的圆周延伸的模式。在示例性实施例中,该模式是互锁燕尾榫模式。可替换的是,在一个实施例中,该模式可以是任何模式的互锁配置,其提供了相对于尖端组件108的全部或部分的近端和远端方向的相对运动。例如,在一个实施例中,互锁配置的可替换模式可以是形成互锁式配合的球形、梯形、三角形、长方形和任意其它形状。图5是耦接至管材102的远端部分106的尖端组件108的横截面图。在示例性实施例中,尖端组件108在连接部分122通过合适的耦接机制,例如热熔合、粘合、和/或激光焊接来耦接至管材102。在示例性实施例中,导管100被配置以输送灌注流体,例如盐水至尖端组件108的外部。更具体地,在示例性实施例中,内管110被配置以输送流体至尖端组件108,其中流体被输送至开口 124。如图5中所示,导管100包括管腔延伸构件126,如下文中进一步详细描述的那样,其延伸越过内管110并进入尖端组件108。在示例性实施例中,管腔延伸构件126通过合适的耦接机制,例如热熔合、粘合、和/或激光焊接耦接至内管110。可替换地,管腔延伸构件126与内管110 —体地形成。管腔延伸构件126限定了一个在其内延伸的流体管腔128(图7中示出)。管腔延伸构件126使流体能够从内管110沿尖端组件108的纵向长度130输送。正是如此,延伸的流体管腔128与中央管腔112和/或尖端管腔118流体连通,以在尖端组件108内提供基本上均匀的灌注模式或流体流。在一个实施例中,管腔延伸构件126延伸至至少一个开口 124,以使管腔延伸构件被配置为输送专门配送的流体至至少一个开口 124。在该实施例中,专门配送的流体的输送通过管腔延伸构件126能够便于对通过该至少一个开口 124输送的流体进行控制。额外地或可选择地,管腔延伸构件126耦接至歧管(未示出),其被配置为从延伸的流体管腔128向该至少一个开口 124输送流体。更具体地,在该实施例中,歧管将管腔延伸构件126耦接至尖端组件108的远端,并且更具体地,耦接至远端开口 124。在该实施例中,歧管定位于尖端组件108内,并且可以由不牺牲尖端组件108的柔性的任意合适的材料制造。此外或者作为选择地,管腔延伸构件126包括侧壁(未示出),其限定了与延伸的流体管腔128分离开来的第二延伸流体管腔(未示出)。在该实施例中,侧壁定位在管腔延伸构件126内,以使延伸流体管腔128和第二延伸流体管腔基本上同心。在该实施例中,侧 壁延伸至至少一个开口 124,以使第二延伸流体管腔被配置为向至少一个开口 124输送专门配送的流体。在该实施例中,输送专门配送的流体通过侧壁有助于控制通过该至少一个开口 124输送的流体。在该实施例中,侧壁可以由不牺牲尖端组件108的柔性的任意合适的材料制造。在示例性实施例中,尖端组件108包括偏压元件,例如弹簧线圈132,其围绕管腔延伸构件126定位于尖端管腔118内。线圈132为侧壁114提供了结构完整性,并且当没有压力施加在尖端组件108上时有弹性地使尖端组件108保持为预定配置。在示例性实施例中,预定配置使尖端组件108的纵向长度130沿直线定向。可选择地是,预定配置使尖端组件108的纵向长度沿曲线或弧形路径定向。在示例性实施例中,线圈132有弹性地挤压尖端组件108至在纵向方向上轴向伸展。当在施加压力作用下从预定配置偏转时,当施加的压力减轻时,尖端组件108有弹性地返回预定配置。在示例性实施例中,尖端组件108和/或线圈132在一个实施例中由形状记忆材料制造,这有助于以预定配置定位尖端组件108和/或线圈132。在一个实施例中,尖端组件108由顺应(compliant)材料制造,其具有类似气球的特性,包括被配置为当流体传送通过时膨胀、收缩、和/或调整。在另一实施例中,尖端组件108由非顺应材料制造,其被配置为当流体被传送通过它时保持刚性的整体形状,同时仍然可选择地允许柔韧性和灌注流体朝向接触表面的方向性。在示例性实施例中,在一个实施例中,尖端组件108可以由适于消融温度的生物相容材料制成。这样的材料包括,并不限于,自然和合成聚合物、各种金属和金属合金、镍钛合金、自然生成材料、织物纤维,和它们的组合。在示例性实施例中,尖端组件108,和其它导管组件(包括但不限于,管腔延伸构件126和线圈132),由非磁性、非电导性、和非RF反应材料制造,以能够利用MRI系统(未示出)进行尖端组件的磁共振成像(MRI)从而用于定位和/或定向尖端组件108。虽然导管100与MRI系统一起使用是有优势的,但是能够预期的是,如果需要的话,用于生成尖端组件108的图像的磁场和梯度可以可选择地由其它系统和技术来生成。例如,在一个实施例中,尖端组件108由90%的钼和10%的铱制造,或者其它本领域公知的材料,以使尖端组件108在荧光暴露中是可视的。
作为选择地,尖端组件108由导电材料制造,以允许引导尖端组件108至将进行医疗程序的体内某处,该医疗程序例如为,心房映射、起搏和/或消融。在可选择的实施例中,当远端部分106延伸进入患者的心脏腔室时,施加磁场,以使尖端组件108的导电材料响应施加的磁场以在某个具体位置精确定位尖端组件108。在可选择的实施例中,用于定向尖端组件108的磁场由磁场立体定位系统(未示出)生成。这样的立体定位系统是公知的并且在商业上是可用的,例如,来自Stereotaxis of St. Louis, Missouri的系统。虽然导管100与立体定位系统一起使用是有优势的,但是,能够预期的是,如果需要的话,使尖端组件108偏转的磁场和梯度可以可选择地由其它系统或技术来生成。此外或可选择地,尖端组件108可以包括和/或由导电材料涂覆,包括但不限于,金和/或钼,以增强电极的热传导性。此外,在一个实施例中,尖端组件108可以是并且由肝素涂覆,以提供抗凝效果。此外,尖端组件108可以是并且在ー个实施例中,是电解抛光的以减少锋利的边缘。图6是图4中所示的尖端组件108的横截面图。在示例性实施例中,尖端组件108具有柔性特性并被配置为以合适的方向弯曲。在示例性实施例中,尖端组件108被配置为从尖端组件108的纵轴弯曲大约20°。 在示例性实施例中,尖端组件108包括温度传感器135,以便于检测尖端组件108的操作温度。更具体地,在示例性实施例中,温度传感器135为热电偶类型的温度传感器,其靠近圆顶形尖端116定位,以确保在尖端组件108和/或围绕尖端组件108的组织中不会产生过热。图7是管腔延伸构件126的横截面图,图6-9提供了管腔延伸构件126的正交视图。在示例性实施例中,管腔延伸构件126包括侧壁134,其具有穿过其延伸的多个开ロ136。根据本申请,开ロ 136在不同的设计中、以及从近端138到远端140都具有不同的直径、形状、数量和/或分布,这将在下文中进ー步详述。在一个实施例中,内管110和/或管腔延伸构件126可以由合适的生物相容材料制造,包括聚酰亚胺材料、聚醚嵌段酰胺(Polyether block amide)材料、娃树脂材料、和聚氨酯材料中的至少ー种。在示例性实施例中,管腔延伸构件126由与用于制造内管110的材料基本上类似的材料制造。作为选择地,在一个实施例中,管腔延伸构件126可以由与用于制造内管110的生物相容材料不同的生物相容材料制造。在示例性实施例中,管腔延伸构件126由聚酰亚胺材料制造。管腔延伸构件126可以具有任意合适的横截面形状,以使传送流体通过。在示例性实施例中,管腔延伸构件126具有基本上圆形的横截面形状,例如圆形、椭圆形和卵形中的ー种。此外,管腔延伸构件126可以具有任意合适数量的部分,每个部分具有沿管腔延伸构件126的纵向长度142延伸的任意合适的几何形状。例如,管腔延伸构件126可以具有沿管腔延伸构件126的纵向长度142延伸的基本上均匀的几何形状。此外,管腔延伸构件126可以具有沿管腔延伸构件126的纵向长度142延伸的漏斗形几何形状。例如,漏斗形管腔延伸构件126具有沿管腔延伸构件126的纵向长度142从近端138到远端140逐渐增加的直径。在示例性实施例中,管腔延伸构件126包括具有第一几何形状的近端部分144和具有第二几何形状的远端部分146。管腔延伸构件126可以具有任意合适的不牺牲尖端组件108的柔性好长度。管腔延伸构件126可以由热传导材料构成,或者部分或整体地由热传导材料涂敷或填衬,以使灌注流体、化学物质、治疗物质、凝胶、冷却或加热溶液等等与身体或电极能量进行隔离。在示例性实施例中,管腔延伸构件126的长度可达尖端组件108的长度的接近90%。例如,在示例性实施例中,尖端组件108具有约2. Omm至约8. Omm的纵向长度,而管腔延伸构件126具有约I. 8mm至约7. 2mm的纵向长度142。更具体地,在示例性实施例中,近端部分144具有约O. 13mm至约O. 55mm地纵向长度148,远端部分具有约I. 67mm至约6. 65mm地纵向长度150。侧壁134可以具有任意合适的配置。在示例性实施例中,侧壁134具有与内管110的配置不同的配置。此外,在示例性实施例中,近端部分144的侧壁具有与远端部分146的侧壁配置不同的配置。在示例性实施例中,开ロ 136延伸穿过侧壁134,以使流体流能够沿尖端组件108的纵向长度130传送。每个开ロ 136可以具有任意合适的配置。在示例性实施例中,每个开ロ 136具有基本上圆形的形状,例如圆形、椭圆形和卵形。此外,在示例性实施例中,至少 一个开ロ 136具有基本上垂直于管腔延伸构件126的纵向长度142的轴。此外,在不例性实施例中,至少ー个开ロ 136具有约O. 05mm至约O. 20mm的直径160。在图6中所示的实施例中,开ロ 136包括邻近管腔延伸构件126的近端138的第一开ロ,其具有第一直径,以及邻近管腔延伸构件126的远端140的第二开ロ,其具有小于第一直径的第二直径。在示例性实施例中,多个开ロ 136包括多个第一开ロ 136a和多个第二开ロ 136b。多个第一和第二开ロ 136a和136b中的每ー个可以包括任意合适数量的开ロ。例如,多个第一开ロ 136a可以包括第一数量的开ロ,多个第二开ロ 136b可以包括第二数量的开ロ。在示例性实施例中,第一数量等于第二数量。作为选择地,在一个实施例中,第一数量可以不同于第二数量。在示例性实施例中,多个第一和第二开ロ 136a和136b中的每ー个沿管腔延伸构件126的纵向长度142定位。在示例性实施例中,多个第一和第二开ロ 136a和136b中的每ー个包括开ロ 136,其在纵向方向上相距大约O. 51mm的距离而定位。此外,在示例性实施例中,多个第一开ロ 136a与多个第二开ロ 136b纵向地间隔开。在示例性实施例中,多个第一开ロ 136a与多个第二开ロ 136b径向地间隔开。更具体地,在示例性实施例中,多个第一开ロ 136a与多个第二开ロ 136b成约90度定位。在示例性实施例中,多个第一开ロ 136a包括第一对径向相向的开ロ,多个第二开ロ 136b包括第二对径向相向的开ロ。更具体地,在示例性实施例中,多个第一开ロ 136a定位在第一平面上,多个第二开ロ 136b定位在基本上垂直于第一平面的第二平面上。消融导管的诸多实施例有助于实施下面的示例性方法,其提供了径向导向的灌注流体模式,该灌注流体模式沿耦接至导管的尖端组件的纵向长度基本上是均匀的。流体通过内管110传送至管腔延伸构件126。随后,流体通过延伸管腔128被传送,以使流体流能够沿尖端组件108的纵向长度传送。更具体地,流体被传送通过沿管腔延伸构件126地纵向长度定位的至少ー个开ロ 136。开ロ 136的配置有助于提供沿径向导向的灌注流体模式,当尖端组件108处于非弯曲位置时,该灌注流体模式沿尖端组件108的纵向长度基本上是均匀的。当尖端组件108位于弯曲位置时,例如当以ー个角度撞击表面吋,由于通道120的开ロ尺寸发生变化,灌注流体的流动就会沿尖端组件108的纵向长度改变。由于朝向表面的通道120变得更加开放,而远离表面的通道120变得不那么开放,朝向表面流动的流体比远离表面流动的流体更多。因而,已经描述了柔性尖端电极的具体实施例和应用。然而,本领域技术人员应当清楚的是,除了已经描述的这些以外,在不背离此处本发明的内容的基础上做的许多修改都是可能的。因此,除了所附权利要求书的精神之外,本发明的主题并不是起限定作用。虽然之前本发明的几个实施例已经在一定程度上描述了本发明的特性,但是,本领域技术人员能够在不背离本发明的精神或范围的基础上对披露的实施例作出许多改变。例如,连接关系(例如,附接、耦接、连接,等等)都可以进行最广义的解释,并且在元件连接之间可能包括中间元件和元件之间的相对运动。正是如此,连接关系未必指的是两个元件直接连接并且之间相互关系固定。其意图在 于,上面描述中包含或附图中示出的所有内容应当被解释为仅仅是说明性的而不是限制性的。在不背离本发明的精神的情况下所做的细节或结构上的改变都包含在所附权利要求中中。
权利要求
1.一种用于导管的管腔延伸构件,该导管具有导管主体和细长电极,所述管腔延伸构件包括管状构件,其耦接至导管主体且位于细长电极内,所述管状构件包括侧壁和延伸通过所述侧壁的至少一个开口。
2.根据权利要求I的管腔延伸构件,其中所述侧壁具有沿所述管腔延伸构件的纵向长度延伸的基本上不变的几何形状。
3.根据权利要求I的管腔延伸构件,其中所述侧壁包括具有第一内径的近端部分和具有第二内径的远端部分,第二内径与第一内径不同。
4.根据权利要求I的管腔延伸构件,其中所述至少一个开口包括具有第一配置的第一开口和具有第二配置的第二开口,第二配置与第一配置不同。
5.根据权利要求I的管腔延伸构件,其中所述至少一个开口包括沿所述管腔延伸构件的纵向长度延伸的多个第一开口,以及沿所述管腔延伸构件的纵向长度延伸的多个第二开 口,所述多个第一开口与所述多个第二开口为径向分隔开和纵向分隔开中的至少一种。
6.一种导管,包括具有远端部分的导管主体,所述导管包括尖端组件,其限定了延伸穿过其内部的尖端管腔,所述尖端组件耦接至导管主体的远端部分;以及 管腔延伸构件,位于尖端管腔内,所述管腔延伸构件耦接至导管主体的远端部分。
7.根据权利要求6的导管,其中所述尖端组件和所述管腔延伸构件的至少一个由生物相容材料、非磁性材料、非电导性材料、和非RF反应材料中的至少一种制造。
8.根据权利要求6的导管,其中所述管腔延伸构件包括具有第一内径的近端部分和具有第二内径的远端部分,第二内径与第一内径不同。
9.根据权利要求6的导管,其中所述管腔延伸构件包括侧壁,其具有延伸通过其内部的多个开口,所述多个开口沿所述管腔延伸构件的纵向长度延伸。
10.一种消融导管,包括 导管主体,具有远端部分; 细长电极,其限定了延伸通过其内的电极管腔,所述细长电极耦接至所述导管主体的所述远端部分;以及 管腔延伸构件,位于所述电极管腔内,所述管腔延伸构件耦接至所述导管主体的所述远端部分。
11.根据权利要求10的消融导管,其中所述导管主体包括具有远端的内管,并且所述管腔延伸构件具有近端,该近端为耦接至所述远端以及与所述远端一体地形成中的至少一种。
12.根据权利要求10的消融导管,其中所述导管主体包括具有第一内径的内管,所述管腔延伸构件具有第二内径,第二内径基本上与第一内径相等。
13.根据权利要求10的消融导管,其中所述细长电极具有第一长度且被配置为具有柔性特性,并且所述管腔延伸构件具有比第一长度短的第二长度且被配置为不牺牲所述细长电极的柔性特性。
14.根据权利要求10的消融导管,还包括偏压元件,其围绕所述管腔延伸构件位于所述电极管腔内,所述偏压元件为所述电极管腔提供结构上的完整性。
15.根据权利要求10的消融导管,其中所述细长电极包括侧壁,其包括在其中限定的多个通道,所述消融导管还包括在所述侧壁的一部分上延伸的薄膜,所述侧壁的一部分包括所述多个通道中的至少一个。
16.根据权利要求10的消融导管,其中所述细长电极包括侧壁,其包括在其中限定的多个通道,所述细长电极侧壁配置为可以弯曲,并且在所述通道的开口尺寸上具有变化。
17.根据权利要求10的消融导管,其中所述管腔延伸构件具有沿所述管腔延伸构件的纵向长度延伸的基本上不变的几何形状。
18.根据权利要求10的消融导管,其中所述导管主体、所述细长电极、和所述管腔延伸构件的每一个都由生物相容材料、非磁性材料、非电导性材料、和非RF反应材料中的至少一种制造。
19.根据权利要求10的消融导管,其中所述管腔延伸构件包括具有第一内径的近端部分和具有第二内径的远端部分,第二内径与第一内径不同。
20.根据权利要求10的消融导管,其中所述管腔延伸构件包括侧壁,其具有延伸穿过其的多个开口,所述多个开口沿所述管腔延伸构件的纵向长度延伸。
全文摘要
为导管(100)提供了管腔延伸构件(126),该导管(100)具有导管主体(100)和耦接至导管主体(100)的细长电极。细长电极限定了延伸穿过其内的电极管腔。管腔延伸构件(126)位于电极管腔内并耦接至导管主体(100)。管腔延伸构件(126)包括管状构件,其包括侧壁(134)和延伸穿过侧壁(134)的至少一个开口(136)。
文档编号A61B18/18GK102665586SQ201080038703
公开日2012年9月12日 申请日期2010年9月22日 优先权日2009年12月31日
发明者A·得拉拉马, C·哈塔, W·杜, Y·张 申请人:圣犹达医疗用品电生理部门有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1