用于经腔输送血管内器件的方法和装置的制作方法

文档序号:908685阅读:210来源:国知局
专利名称:用于经腔输送血管内器件的方法和装置的制作方法
用于经腔输送血管内器件的方法和装置技术领域
一个或多个本发明的实施例总体上涉及外科手术方法和装置,更具体地说,涉及用于将血管内器件经腔输送至身体内某一部位的外科手术方法和装置。
为了说明而不限制的目的,下面将在将经皮心脏瓣膜输送至位于心脏内的瓣膜座的背景中讨论一个或多个本发明的实施例,然而,应当理解的是,一个或多个本发明的至少一个实施例也适用于其它经腔输送应用。
背景技术
经皮主动脉瓣膜,比如可从Edwards Lifesciences LLC(Irvine, CA)在商标SAPIEN 下获得的那些,通常采用附接有瓣膜小叶的可膨胀框架。该可膨胀框架本质上包括支架,瓣膜小叶(优选为组织膜形式)附接至支架的一部分。为此,这些经皮主动脉瓣膜一般被称为“支架瓣膜”。通常,经皮主动脉支架瓣膜被压缩在收缩的气囊导管上,然后,结合的组件经由覆盖鞘套插入股动脉,接着,结合的组件经由髂动脉和主动脉经腔输送到瓣膜座。在瓣膜座处,气囊用于使支架膨胀,以便支架瓣膜设置在瓣膜座处,然后,气囊放气,最后,气囊导管被撤回,从而支架瓣膜的小叶代替病变的主动脉瓣膜的原生小叶而发挥作用。
上面所述类型的经皮心脏瓣膜目前显示出巨大潜力,尤其对于老年人和/或其它不能忍受常规开放式心脏瓣膜置换术的损伤的虚弱病人而言。
不幸地,现有的经皮心脏瓣膜系统要求使用比较大的输送/部署(employment)装置。更具体地说,由于内部气囊必须能够使支架瓣膜的支架部分膨胀至原生瓣膜座的完整尺寸,并且由于具有该完全膨胀能力的气囊的收缩态尺寸比较大,并且由于支架瓣膜必须周向地布置在气囊的外侧,所以输送/部署装置的总体尺寸必然大。通过示例而不是限制,Edwards SAPIEN 输送/部署装置的直径通常为约7至8_。
临床上,这给外科医师提出了重大难题,因为进入病人的脉管系统的优选路径是经由股动脉,并随后经由髂动脉和主动脉输送至主动脉瓣膜座。然而,股动脉的直径通常仅为约5至8_,而该5至8_的范围是作为整体对一般人群而言的,占需要进行经皮主动脉瓣膜置换的候选人群的相当大比例的老年女性病人处于该范围的下限端(例如,直径可能为5-6mm)。由此,将7_8mm(直径)的SAPIEN' 器件穿过老年女性病人的5_6mm(直径)股动脉是困难的或甚至是不 可能的,尤其是股动脉是弯曲的、狭窄的和/或闭塞的老年女性病人。有时需要手术切口来进入大到足以容纳支架瓣膜组件的髂股动脉的较高水平(例如,骨盆内)。然而,该途径通常是更具侵略性,常常导致并发症,比如大出血和动脉阻塞等。
现在参见图1,其中示出了现有技术中已知的可导管输送器件(catheter-deliverable device)或支架瓣膜的示意性侧视图。支架瓣膜可具有约25mm的膨胀直径。然而,支架瓣膜的直径可被压缩至约4_。如图2所示,为了实现支架瓣膜的膨胀,支架瓣膜可安装在典型的现有技术大直径输送气囊导管上,该气囊导管可胀大至25mm的直径。然而,安装到大直径输送气囊导管上的支架瓣膜的组合直径可能为ISFr或6mm,该直径太大以至于不能插入某些病人的股动脉中。
由于上述原因,十分需要一种新的且改进了的方法和装置,以将血管内器件经腔输送至身体内的某部位。发明内容
应当理解的是,一个或多个本发明的实施例包括各种不同的变型或实施方式,并且该发明内容并非旨在是限制性的或包括一切的。该发明内容提供了部分实施例的一些概述,但也可包括对其它实施例的一些更具体的描述。
在初一考虑时,与将支架瓣膜放置在比较小的股动脉中的困难相关联的解决方案似乎是使用小型输送器件。因此,小直径输送气囊最初看上去可以解决该问题。然而,现在参考图3,如果使用了小直径输送气囊导管,那么虽然支架瓣膜能够被压缩至比较小的直径,但是小直径输送气囊不能使支架瓣膜完全膨胀至25mm,即,小直径输送气囊仅能够使支架瓣膜的直径膨胀至例如约10mm。
一个或多个本发明的至少一个实施例通过提供一种用于将血管内器件经腔输送至身体内的某部位的新型方法和装置来解决与现有技术相关联的上述问题,一个或多个本发明的至少一个实施例利用这样的原理:将支架瓣膜输送装置的体积分割成多个较小直径部分,以分别插入病人的脉管系统(例如,插入较小直径入口的血管,比如股动脉),然后在病人脉管系统的能够容纳组装好部件的完整尺寸的另一部位内(例如,在比如主动脉等较大直径血管中)重新组装这些部分。通过将气囊膨胀任务分成两个顺次部署的气囊,以分段方式启动,能够以较小的轮廓来输送支架瓣膜,并仍能确保支架瓣膜在瓣膜座处的完全膨胀。相应地,提出了新颖的器件和方法,其包含:在插入身体后将比如支架瓣膜等可输送器件从其“承载区段”转移至另一可能位于相同或者分离导管上的“输送区段”,以及从能够膨胀至支架瓣膜的适当直径的“输送区段”部署支架瓣膜。
在一个或多个本发明的至少一个实施例中,支架瓣膜可预安装在包装好的预组装输送系统内,以备运输和临床使用。
在一个或多个本发明的第一优选形式中,第一 “承载”气囊和第二 “输送”气囊安装在不同的插入元件上,以独立地输送至较大血管,比如主动脉,在此,第二“输送”气囊与当时已部分膨胀的支架瓣膜联合,在该形式中,每个气囊经由其自身的插入元件独立地前进至主动脉。
在一个或多个本发明的第二优选形式中,第一和第二气囊顺次地布置在单个插入元件上,第一 “承载”气囊在插入元件上安装在第二 “输送”气囊的远侧(或者,可选地,更靠近侧),在该形式中,单个插入元件用于相对于支架瓣膜顺次地定位第一“承载”气囊和第二“输送”气囊。在一个或多个本发明的第三优选形式中,第一“承载”气囊和第二“输送”气囊安装在不同的插入元件上,但是这些插入元件以同轴方式布置,以允许两个插入元件之间的伸缩作用(以及因此的第一“承载”气囊与第二“输送”气囊之间的伸缩作用)。在该形式中,同轴地安装在一在先引导线上的第一“承载”气囊轴能够用作第二“输送”气囊的更坚固的引导线。
除了上述内容外,在经由第一“承载”气囊使支架瓣膜初始膨胀之后,可移除第一“承载”气囊导管,并用成形导管元件替代,以引导和帮助穿过中央动脉并横越(可选地,准备)原生瓣膜座的平面。必要时,该成形导管元件可在插入元件上布置于第二“输送”气囊或第一承载气囊的远侧。
必要时,第一“承载”气囊也可以是另一种可膨胀器件,例如,第一“承载”气囊(其构成支架瓣膜的安装区段)可以是可膨胀的心轴(mandrel)。替代地,支架瓣膜可最初安装在非膨胀元件上,即,仅仅安装在输送导管的小轮廓心轴或其它区段上。
应当理解的是,虽然一个或多个本发明的至少一个实施例有时是在向主动脉瓣膜座输送支架瓣膜的背景中论述的,但是也可以用于向其它瓣膜座输送其它瓣膜,和/或用于将其它血管内器件输送至身体内的其它部位。
还应当理解的是,虽然一个或多个本发明的至少一个实施例有时是在使支架瓣膜前进通过身体的动脉系统的背景中讨论的,但是也可以用于使支架瓣膜前进通过身体的静脉系统,或者用于使器件经腔前进通过身体的一些其它管腔系统。
在一个或多个本发明的至少一个实施例中,覆盖鞘套(各部件经其前进到血管中)可以是柔性的和可膨胀的,以允许支架瓣膜的初始膨胀,以及第一“承载”气囊和第二“输送”气囊在覆盖鞘套内的交换,因此该装置受到持续地保护。
可看出,一个或多个本发明的至少一个实施例提供一种新颖方法和装置,以将血管内器件经腔输送至身体内的某部位。
相应地,本文所述的至少一个实施例涉及支架瓣膜和输送系统,该支架瓣膜和输送系统分别地插入股 动脉,然后在主动脉中组装起来,之后前进以在瓣膜平面处部署。这意味着,动脉(或静脉,对于肺动脉瓣)入口直径的极限尺寸由系统的最大单个部件确定,实际上由支架/瓣膜本身确定。当支架/瓣膜在没有气囊导管的情况下被压缩时,能够在小如14弗伦奇的鞘套中,而不是在18-24弗伦奇(如先前实现的)的鞘套中,将瓣膜输送到循环中。
在至少一个实施例中,串联双气囊输送导管系统包括承载区段,所述承载区段是位于导管的远端部的引导/承载气囊或心轴,所述承载区段在导管轴上与一起处于导管轴的远端部的更靠近侧定位的输送区段串联排列。实际上,由于第一“承载”气囊仅需使支架瓣膜膨胀达足以接收收缩的第二 “输送”气囊的量即可,所以第一 “承载”气囊在收缩状态下能够相当小。此外,支架瓣膜(不受安装在单一的比较大的部署气囊上的传统需求的限制)能够被压缩至其最小的结构直径,以安装在比较小的第一“承载”气囊上。结果,在进入病人的脉管系统时,组合好的组件(即,承载气囊导管和支架瓣膜)在直径上能够远小于先前的输送器件。同时,通过随后使支架瓣膜与第二较大“输送”气囊结合,能够提供足够的支架膨胀,以确保牢固的瓣膜固定。
在至少一个实施例中,提供了具有或不具有鞘套覆盖件的编织线“支架”,其中,该编织线支架的长度与直径偶联。镍钛记忆合金或另外的合金线形成为膨胀的鞘套形状,并通过尾线端上的牵引力而得到压缩。在程序中要求远端鞘套膨胀之时,释放牵引力以允许膨胀至机械偏置的开放位置。替代地,牵引线可附接至鞘套内的线织物的远端,并且在此施加的牵引力引起鞘套的远端的同时膨胀和缩短,由此,有利地释放出下方安装的支架瓣膜,并使之暴露以便部署。
在至少一个实施例中,提供了一种机构来通过磁性或电磁性构件将支架瓣膜框架保持在输送气囊上。该框架优选地由黑色金属元件构成或包含黑色金属元件。通过这样的构件,支架瓣膜能够牢固地前进通过脉管系统,而不需要覆盖鞘套,由此简化了输送过程和系统。支架瓣膜通过磁力而保持在气囊区段上。
在至少一个实施例中,提供了这样一种器件,其利用磁力来部署以及必要时在以后取回支架瓣膜,使用被设定在某一水平的磁力的器件允许支架瓣膜在病变的原生瓣膜平面处的轻松气囊膨胀。当支架瓣膜的框架被推离磁体时,保持力减弱,由此允许器件不受阻碍地最终膨胀。安装在一单独导管上的较强的磁体/电磁体可用于取回或重新定位支架瓣膜。此外,安装在取回导管上的强磁体可用于从原生瓣膜座取回支架瓣膜。
为了说明而不是限制的目的,下面在将假体支架瓣膜输送至主动脉瓣膜座的背景中讨论一个或多个本发明的实施例,然而,应当理解的是,一个或多个本发明的至少一个实施例也适用于其它经腔输送应用。
相应地,在至少一个实施例中,提供了用于实现在病人体内穿过病人的脉管系统将可输送器件经腔输送至输送部位的系统,该系统包括:
外侧输送鞘套,包括远端部分,其中所述外侧输送鞘套的至少一部分的尺寸做成便于插入病人的脉管系统中;
承载区段,位于导管轴的远端部,所述承载区段的外表面的尺寸做成暂时保持所述可输送器件在所述外侧输送鞘套的远端部分中,其中所述导管轴的至少一部分位于所述外侧输送鞘套内,并与所述外侧输送鞘套同轴;以及
输送区段,定位成与所述外侧输送鞘套同轴,所述输送区段的外表面的尺寸做成当所述可输送器件停留在所述外侧输送鞘套的远端部分内时,在使所述可输送器件与所述承载区段分离后,沿径向嵌入所述可输送器件内,其中所述输送区段构造成将所述可输送器件部署在输送部位处。
除了上述内容外,在至少一个实施例中,所述外侧输送鞘套的远端部分的至少一部分是可膨胀的。在至少一个实施例中,所述外侧输送鞘套的远端部分的至少一部分包括一个或多个电启动元件。在至少一个实施例中,所述外侧输送鞘套的远端部分的至少一部分包括一个或多个压电陶瓷元件。在至少一个实施例中,所述外侧输送鞘套的远端部分的至少一部分包括可被动地膨胀的材料,所述可被动地膨胀的材料可通过所述承载区段和所述输送区段中至少一者施加的沿径向向外的作用力而膨胀。在至少一个实施例中,所述外侧输送鞘套的远端部分的至少一部分在所述远端部分的至少一部分被施加拉力时膨胀。
在至少一个实施例中,所述远端部`分包括从所述远端部分的内表面沿径向向内延伸的变窄区域和内部突起中的至少一者。
在至少一个实施例中,所述外侧输送鞘套的内表面的一部分还包括用于保持纵向延伸元件的至少一部分的引导件,所述纵向延伸元件构造成选择性地控制与所述外侧输送鞘套同轴的结构或者所述外侧输送鞘套的至少一部分。在至少一个实施例中,所述外侧输送鞘套的内表面的一部分还包括这样的引导件,所述引导件包括以下中的至少一者:
(a)管腔;以及
(b)索环(grommet);
其中,所述引导件保持至少一根控制线,以选择性地保持所述可输送器件。
在至少一个实施例中,所述承载区段和所述输送区段都位于所述导管轴上。在至少一个实施例中,所述承载区段位于所述导管轴上,并且其中所述输送区段与输送区段轴相关联,所述输送区段轴与所述导管轴同轴,并相对于所述导管轴沿轴向可移动。在至少一个实施例中,所述承载区段是可膨胀的气囊,其具有的膨胀直径小于所述输送区段的膨胀直径。在至少一个实施例中,所述输送区段是可膨胀的气囊,其具有的膨胀直径大于所述承载区段的膨胀直径。在至少一个实施例中,所述承载区段和所述输送区段中的至少一者是心轴。在至少一个实施例中,所述心轴可通过机械或者机电构件膨胀。在至少一个实施例中,所述心轴是不可膨胀的。
在至少一个实施例中,所述输送区段沿轴向位于所述承载区段的近侧。在至少一个实施例中,所述输送区段沿轴向位于所述承载区段的远侧。
在至少一个实施例中,所述承载区段和所述输送区段中的一者或两者包括至少一个磁体或电磁体,以帮助控制所述可输送器件。
在至少一个实施例 中,提供了一种用于将可输送器件经血管输送至病人体内的某一输送部位的组件,该组件包括:
第一导管,包括第一导管轴;
承载区段,沿所述第一导管轴布置,所述承载区段构造成在将所述第一导管插入病人体内之前接收所述可输送器件;以及
输送区段,相对于所述承载区段在轴向方向上顺次地定位,其中所述输送区段构造成在所述可输送器件与所述第一导管的至少一部分同轴时在病人体内接合所述可输送器件,并且其中所述输送区段构造成随后将所述可输送器件部署在输送部位处。
在至少一个实施例中,所述输送区段也沿所述第一导管布置。在至少一个实施例中,所述输送区段沿第二导管布置,所述第二导管包括供所述第一导管穿过的同轴管腔。在至少一个实施例中,所述第一导管和所述第二导管中的至少一者包括弯曲的远端部。
—个或多个本发明的一个或多个实施例还涉及在病人体内输送比如支架瓣膜等器件的方法。相应地,在至少一个实施例中,提供了在病人体内穿过病人的脉管系统将可输送器件输送至目标部位的方法,该方法包括:
将所述可输送器件安装在沿导管轴布置的可选择性地膨胀的承载区段上,其中所述导管轴的至少一部分位于外侧输送鞘套内,并与所述外侧输送鞘套同轴;
将所述外侧输送鞘套和所述导管轴插入病人体内;
在病人体内移动所述外侧输送鞘套,以将所述可选择性地膨胀的承载区段和所述可输送器件定位在目标部位附近;
在所述可输送器件至少部分地保持在所述外侧输送鞘套内的同时,使用所述可选择性地膨胀的承载区段来使所述可输送器件部分地膨胀;
将输送区段径向地定位在所述可输送器件内,并使所述输送区段部分地膨胀,以促进所述输送区段与所述可输送器件的接合;
将所述输送区段和所述可输送器件移动至目标部位;以及
通过使所述输送区段进一步膨胀来将所述可输送器件部署在目标部位处。
各种部件在本文被称为“可操作地相关联”。如本文所使用的,“可操作地相关联”是指部件以可操作的方式连结在一起,并且包含部件是直接连结的实施例,以及在两个连结的部件之间设置附加部件的实施例。
如本文所使用的,“至少一个”、“一个或多个”以及“和/或”是开放式的表述,其在操作中既是连接性的也是分离性的。例如,“A、B和C中的至少一者”、“A、B或C中的至少一者”、“A、B和C中的一个或多个”、“A、B或C中的一个或多个”以及“A、B和/或C”这些表达中的每一个是指单独的A、单独的B、单独的C、一起的A和B、一起的A和C、一起的B和C、或者一起的A、B和C。
本发明的各种实施例在如本文提供的以及如权利要求所体现的具体实施方式
中以及附图中给出。然而,应当理解的是,该发明内容并不包含一个或多个本发明的所有方面和实施例,并非旨在以任何方式进行限制或限定,并且本领域普通技术人员应明白的是如本文中所公开的发明应包括明显的改进和变型。
从下面的讨论中,尤其是在与附图一起理解时,一个或多个本发明的至少一个实施例的其它优点将变得显而易见。


为了进一步阐明一个或多个本发明的上述和其它优点及特征,通过参考在附图中所示的特定实施例来对一个或多个本发明进行更详细的描述。应当理解的是,这些附图仅示出了一个或多个本发明的典型实施例,因此并不应认为是限制本发明的范围。通过使用附图以附加的特定情形和细节来描述和说明一个或多个本发明,附图中:
图1是现有技术中已知的可导管输送器件框架(或支架瓣膜)的示意性侧视图2是处于收缩状态的一典型现有技术大直径输送气囊导管的示意性侧视图3是处于收缩状态的小直径输送气囊导管的示意性侧视图4A是一个或多个本发明的至少一个实施例的串联双气囊输送系统的侧视图4B是图4A所示系统的侧视图,其中承载气囊被胀大以使支架瓣膜部分地膨胀,来容纳较大的输送气囊(为简明起见,未示出导管充气口、管腔、线腔);
图4C是图4B所示系统的侧视图,其中,当输送气囊前进到支架瓣膜中以“捕获”或“驳接”支架瓣膜时,收缩的承载气囊前进到部分膨胀的瓣膜器件外;
图4D是图4C所示系统的侧视图,其中,承载气囊被可选地充气以促进输送系统穿过病变心脏瓣膜的平 面,并且其中输送气囊定位成横跨支架瓣膜以捕获和随后部署支架瓣膜;
图4E是图4D所示系统的侧视图,其中,在支架瓣膜定位在心脏瓣膜的平面中后,鞘套被撤回以使支架瓣膜在心脏瓣膜座的位置处暴露,并允许通过膨胀来部署支架瓣膜;
图4F是图4E所示系统的侧视图,其中支架瓣膜定位在瓣膜座处且鞘套被撤回,并且其中输送气囊随后膨胀以部署支架瓣膜;
图5A是一个或多个本发明的另一实施例的导管输送系统的侧视图,其中承载气囊轴穿过输送气囊的中心同轴管腔(其中,为简明起见,省略了中心管腔的壁);
图5B是图5A所示系统的侧视图,其中,先导承载气囊的部分胀大可用作“头锥”,以便将输送导管插入病人的动脉中;
图5C是图5B所示系统的侧视图,其中,先导承载气囊的完全胀大使支架瓣膜在可膨胀鞘套区段内部分地膨胀;
图是图5C所示系统的侧视图,其中,在“(I) ”处,先导承载气囊收缩并前进到支架瓣膜外,并且其中在“ (2) ”处,输送气囊前进到支架瓣膜内就位,以“驳接”或“捕获”支架瓣膜;
图5E是图所示系统的侧视图,其中,先导承载气囊和引导线首先前进到左心室中(在植入原生主动脉瓣膜座中的情况下),并且其中先导承载气囊轴接着用作用于输送气囊导管的引导轨道;
图6A是鞘套的实施例的侧视图,其中,牵引力拉长鞘套织物并减小鞘套织物的直径,并且其中牵引力的释放使鞘套织物缩短/缩回,并扩大其直径;
图6B是位于鞘套壁覆盖件内的切割形状记忆合金支架(镍钛记忆合金)的实施例的侧视图,所述鞘套壁覆盖件在内含气囊和/或支架瓣膜(省略了为简明起见)在其中膨胀时发生膨胀,并在气囊收缩时自我收缩;
图6C是被动地膨胀的塑料材料鞘套的实施例的侧视图6D是密封在弹性鞘套壁内的电致动压电陶瓷(p-c)元件的实施例的侧视图,其中,每个压电陶瓷元件通过导体对连接到一电压受控电源,其中开关接合电源,并且其中压电陶瓷元件在通电时使鞘套膨胀;
图6E是利用差动合金层压体的致动器元件的实施例的透视图,其中施加电流致使致动器弯曲;
图7是用于通过磁 性或电磁性构件将支架瓣膜保持在输送气囊上的器件的实施例的侧视图(对于图7-8B,未示出用于电磁体的电源和导体;未示出瓣膜或其它瓣膜机构;为简明起见省略了气囊充气管腔和可选的控制线/线束);
图8A是采用磁力来取回支架瓣膜的取回导管器件的实施例的侧视图SB是支架瓣膜的侧视图,其中,支架瓣膜通过磁力收缩,之后,可通过可选的控制线或线束从原生瓣膜座撤回;
图8C是多极磁性取回导管系统的实施例的侧方透视图;而
图8D是沿径向定位在支架瓣膜内的图8C所示系统的端视图。
对于本文所提供的附图,处于塌缩状态的气囊显示为部分膨胀以强调尺寸的差异。此外,为简明起见,省略了气囊导管线腔和充气管腔。
这些附图并不一定按比例绘制。
具体实施方式
概述
总的来说,一个或多个本发明的至少一个实施例使用串行途径来将经皮主动脉瓣膜输送和部署在瓣膜座处。该串行途径允许将组合组件的各部件(即,气囊导管和支架瓣膜的各部件)以其自身最小的轮廓单独地引入病人的脉管系统中,以便将系统部件以小轮廓经腔输送进中央大血管中(例如主动脉),在此,在一优选的顺序中,这些部件在前进至目标瓣膜座前被同轴地重新组装。结果,一个或多个本发明的至少一个实施例促进经股动脉进入主动脉瓣膜座,甚至对于具有小股动脉直径的病人(例如,老年女性病人)也可行。换句话说,由于系统的各部件在插入病人的脉管系统时并未完全组装,而仅在插入之后的某一位置处完全组装(例如,在插入部位上游(更靠内)的较大直径血管内),所以不再需要比较大的入口脉管,由此使得经皮心脏瓣膜疗法适用于较大的病人群体,并且入口部位和血管发生并发症的风险较低。通过示例而不是限制,在血管内器件包括主动脉支架瓣膜的情况下,系统的各部件能够被轻松地引入比较窄的股动脉中,然后在前进到并就位于原生主动脉瓣膜座之前,在较大的上游(更靠内的)脉管(例如,在比较宽的主动脉中)中组装起来。
更具体地说,一个或多个本发明的至少一个实施例优选地采用两个单独的气囊,来分阶段部署支架瓣膜:第一较小直径的“承载”气囊用于使支架初始膨胀(例如,当支架瓣膜布置在降主动脉中时,用于使支架初步膨胀),第二较大直径的“输送”气囊用于使支架最终就位在原生瓣膜座上。在一个或多个本发明的至少一个实施例的一个优选形式中,支架瓣膜安装在收缩的第一较小直径“承载”气囊上,然后该比较小的组件被引入(在覆盖鞘套内)比较小的股动脉中,并前进通过股动脉,向上通过髂动脉,然后进入比较大的降主动脉中。然后,第一较小直径的“承载”气囊被充气,以使支架瓣膜膨胀为中间直径构造,该中间直径构造的直径足够大以接收收缩的第二较大直径的“输送”气囊。接着,第一“承载”气囊被放气,第一 “承载”气囊被撤回,并被收缩的第二 “输送”气囊替换,该第二 “输送”气囊通过部分充气或其它手段捕获支架瓣膜,然后该组件前进过降主动脉、升主动脉等,而到达原生瓣膜座。之后,该第二“输送”气囊被充气,以将支架瓣膜设定在瓣膜座处。最后,该第二 “输送”气囊被放气,并从手术部位抽回。
串联双气囊导管输送系统
现在参考图4A-4F,支架瓣膜120可通过第一较小直径“承载”气囊前进到主动脉,并初始部署(使用第一较小直径“承载”气囊)为中间尺寸,随后通过同轴替换为第二较大直径“输送”气囊以前进到瓣膜座,然后,支架瓣膜120在瓣膜座处进一步膨胀。替代地,支架瓣膜120可在承载气囊上一致前进到目标瓣膜座,并在同轴替换为输送气囊和随后的最终膨胀之前初始部署。
现在参见图4A,示出串联双气囊输送导管系统100形式的一体系统,该串联双气囊输送导管系统的特征包括串联双气囊导管构造。图4A所示构造示出正朝向比如主动脉瓣膜等目标瓣膜座而平移通过病人身体时的串联双气囊输送导管系统100。对于本文所述的串联双气囊输送导管系统100,承载区段112是位于导管的远端部的引导/承载气囊或心轴,承载区段112在导管轴上与一起处于导管轴的远端部的更靠近侧定位的输送区段111串联排列。替代地,输送区段可定位在承载区段的远侧。对于该讨论中的气囊可膨胀支架瓣膜120的示例的情况而言,承载区段112和输送区段111是例如可膨胀的气囊,但也可以是心轴或可膨胀的心轴。
在此,注意的是,在至少一个实施例中(包括串联双气囊输送导管系统100和伸缩输送系统200两者),包括输送心轴的输送区段可以是非膨胀的。通过示例且非限制性地,输送区段保持支架瓣膜的手段可以改变。例如,除了摩擦力,输送区段还可通过使用磁力来保持支架瓣膜。对于这样的组件,如果支架瓣膜(或其它可输送器件)是自膨胀或致动膨胀的,并保持在输送区段上,以通过一些其它手段(例如,电、热)释放,那么输送心轴可以是非膨胀的。
对于图4A所示的构造,具有例如内直径为14弗伦奇(French)的纵向本体104的外侧输送鞘套101同轴地位于引导线131之上,所述引导线例如是直径为0.035英寸的线,这对一体的可膨胀气囊位于该引导线上。 注意的是,本文所给出的所有尺寸和材料类型都是示例性的,并不意在是限制性的,也不应当解释为限制性的,除非另有说明。尽管不是必需的,可选的头锥113可定位在承载区段112的远侧,以帮助将导管插入动脉以及随后穿过动脉。在输送区段设置在承载区段的远侧的实施例中,所述头锥定位成在远侧紧邻输送区段,并接近鞘套的尖端。承载区段112用于将支架瓣膜120在外侧输送鞘套101内保持到位,并提供支架瓣膜120的初始膨胀。之后,输送区段111用于提供支架瓣膜120的最终膨胀,以在瓣膜座处部署支架瓣膜120。
串联双气囊输送导管系统100在身体外组装,方法是通过使输送导管及其线性排列的承载区段112和输送区段111穿入输送鞘套101的中心同轴管腔内,使得导管的承载区段112延伸超出并完全暴露在输送鞘套101的远端开口外。然后,可导管输送器件,比如该示例中的支架瓣膜120,通过塌缩并压缩到承载区段112上而同轴地安装在承载区段112上,使得两者间的摩擦力将器 件120保持在承载区段112上。然后,在其上安装有可导管输送器件(支架瓣膜120)的承载区段112缩回(沿近向)输送鞘套101的远端部,使得该器件被完全覆盖在鞘套101内。在一些情况下,承载区段112的尖端可延伸超出鞘套的端部。在这样的情况下,承载区段112 (气囊或可膨胀的心轴)的引导尖端113的部分膨胀可用于形成如上指出的锥形“头锥”,以便输送系统前进到或插入血管中。替代地,为此目的承载区段可制造有软质塑料锥形尖端。
在带有可导管输送器件的输送系统的逆行(相对于血液流动)穿入的示例中,通过引导线131穿过心脏瓣膜座141前进到比如左心室等上游解剖室中,在这里用作输送系统导管的同轴前进的引导轨道,来对于输送系统的穿入建立初始引导。然后,在身体外部的某处,通过将引导线131插入输送导管的承载区段112的远侧尖端中,带有鞘套101的组装好的串联双气囊输送导管系统100于是在引导线131之上同轴地前进到身体中,至一邻近但未完全到达目标解剖部位的位置,在该情况下,目标解剖部位是病变的心脏瓣膜座141。
现在参见图4B,当在主动脉中时,引导承载区段112例如通过气囊吹胀而膨胀,由此使可导管输送器件(支架瓣膜120)在输送鞘套101的可膨胀远侧区段103内部分地膨胀。即,承载区段112用于使支架瓣膜120预胀大,使得当输送区段111被至少部分地放气或未完全膨胀时,支架瓣膜120的直径足以接受输送区段111。外侧输送鞘套可包括可膨胀的柔性远侧区段,以容纳部分膨胀的支架瓣膜120,并使部分膨胀的支架瓣膜120保持就位。然后,承载区段112通过气囊放气而收缩,并通过从被保持在鞘套101的膨胀了的远侧区段103内的可导管输送器件(支架瓣膜120)移出输送导管而前进。在近端和/或远端紧邻器件120的安装位置的、位于鞘套101的内表面上的可选浅凸缘102可用于在与通过输送导管的前进将承载区段112替换为输送区段111有关的运动期间帮助保持所述器件。替代地,由丝线或缝合材料形成的保持线或控制线123、124可附接到器件120,如附接到支架瓣膜120的框架121上。可有利地使用其它形式的保持力,比如通过将磁性或电磁性元件并入输送导管轴内或鞘套壁内。
现在参见图4C,随着输送导管110如此前进了,结合在其上的输送区段111因此也在鞘套101内前进到一横跨输送鞘套101内的可导管输送器件(支架瓣膜120)的位置处,并且输送导管的尖端延伸超出输送鞘套101的尖端。更具体地说,输送区段111轴向地前进到一沿径向位于支架瓣膜120内部的位置。然后,输送区段111部分地膨胀,以接触支架瓣膜120。
参见图4D,在输送区段111定位在支架瓣膜120内的状态下,在至少一个实施例中,承载区段112定位在瓣膜座处,并可进一步膨胀以便支架瓣膜120在主动脉瓣膜的平面内前进。即,如果外科医师认为需要,则承载区段112在瓣膜座的平面内暂时地膨胀然后收缩或放气,以便带有支架瓣膜120的输送区段111随后的轴向前进。
随输送区段的突出尖端,以及在它之前的承载区段,输送导管、可导管输送器件(支架瓣膜120)和输送鞘套101作为整体一起前进穿过目标解剖平面(例如,原生心脏瓣膜座141),至一被认为适合于可导管输送器件(支架瓣膜120)的部署的横跨目标平面的位置。在承载区段布置在输送区段的近侧的实施例中,该前进在输送区段的尖端引导导管组件的状态下进行,并且承载区段进一步在近侧处于鞘套内。现在参见图4E,在输送区段111定位在目标瓣膜座的平面中后,抽回输送系统的外侧输送鞘套(如图4E中箭头所示),以暴露支架瓣膜120,然而,支架瓣膜120仍保持未部署,因为它继续保持附接于输送区段111。即,在输送导管保持就位的情况下,输送鞘套101同轴地缩回,以在部署部位处暴露出保持在输送区段111上的可导管输送器件(支架瓣膜120)。然后,可导管输送器件(支架瓣膜120)通过输送区段111的膨胀而部署,比如通过气囊充气。相应地,并且现在参见图4F,在支架瓣膜120在主动脉瓣膜的平面处暴露后,输送区段111膨胀以部署支架瓣膜120。在可导管输送器件(支架瓣膜120)完全膨胀和部署到位的情况下,该器件被保持在目标解剖平面(原生心脏瓣膜座141)内。然后,通过气囊放气来收缩输送区段111,确认已部署器件的功能,并将输送导管、输送鞘套101和引导线131从解剖目标区域抽回而从身体移除以完成过程。
在至少一个实施例中,在确认成功部署了支架瓣膜120后,从瓣膜框架121释放出可选的保持/控制线123、124。然后,从瓣膜座141移除气囊导管110和引导线131,并使它们缩回鞘套101中以从身体移除。
在至少一个实施例中,承载区段112沿轴向位于输送区段111的近侧。对于这样的构造,输送区段111 前进到鞘套101外,并引导组件,直到替换完成之时。然后,在支架瓣膜120通过承载区段112部分地膨胀之后,将输送区段111拉回保持有支架瓣膜120的鞘套101中,而输送区段111接着捕获支架瓣膜120。在该情况下,位于鞘套101的尖端处的输送区段111的尖端将引导进一步的前进,而承载区段112更沿近端退缩在鞘套101中。
伸缩导管输送系统
现在参见图5A-5E,在一替代实施例中,提供了用于支架瓣膜120的伸缩输送系统200,其中,输送气囊导管210同轴地位于或“螺接”在与承载区段221关联的承载气囊导管轴224上。因此,承载区段221能够独立于输送气囊211的轴向位置而轴向地前进。结果,承载区段轴224用作输送气囊导管210和支架瓣膜120的引导轨道,支架瓣膜120沿径向位于输送气囊211的外部。逐步说明被提供在附图中,并在下面段落中得到描述。
现在参见图5A,具有例如内直径为14弗伦奇的近侧轴体的外侧输送鞘套101同轴地位于引导线131之上,而承载区段轴224和输送气囊轴214也同轴地位于引导线上。对于所描述的伸缩输送系统200的实施例,承载区段221是位于承载导管220的远端部处的承载气囊或心轴,承载导管穿入较大输送导管210的中心管腔内,该较大输送导管在其远端部处具有输送区段211。通过示例而不是限制,承载区段轴具有0.035英寸的外直径,并连接到承载区段221,承载区段221在直径上可膨胀至5-10mm。对于可气囊膨胀支架瓣膜120的示例的情况,输送区段211是例如可膨胀的输送气囊。相应地,输送气囊在未充气时可具有例如约12-14弗伦奇的外直径,并且在独立的实施例中沿轴向位于承载区段221的近侧或者远侧。
该系统在身体外组装,方法是通过使承载导管220穿入较大输送导管210的中心同轴管腔内,使得承载区段221延伸超出并完全暴露在输送导管的尖端212外。然后,如此结合的这两个导管一起穿过输送鞘套101,使得承载导管220的承载区段221再次延伸超出并完全暴露在输送鞘套101的尖端外。然后,可导管输送器件,比如该示例中的支架瓣膜120,通过塌缩并压缩在承载区段221上而同轴地安装在承载区段221上,使得两者之间的摩擦力将器件120保持在承载区段221上。在其上安装有可导管输送器件(支架瓣膜120)的承载区段221接着缩回(沿近向)输送鞘套101中,使得该器件被完全覆盖在鞘套101内。
现在参见图5B,引导承载区段气囊221可选地可以部分膨胀以将支架瓣膜120保持在外侧输送鞘套101内。此外,在一些情况下,承载区段221和承载导管的尖端222可延伸超出鞘套101的端部。在这样的情况下,承载区段221 (气囊或可膨胀的心轴)的引导尖端223的部分膨胀可用于形成锥形“头锥”,以促进输送系统向血管中的前进或插入。替代地,如在先对于串联双气囊输送导管系统100所指出的,用于伸缩输送系统200的承载导管220为此目的可制造有软质塑料锥形尖端。
在带有可导管输送器件的输送系统的逆行(相对于血液流动)穿入的示例中,通过引导线131穿过心脏瓣膜座141前进到比如左心室等上游解剖室中,在这里用作输送系统导管的同轴前进的引导轨道,来对于输送系统的穿入建立初始引导。然后,在身体外部的某处,通过将引导线131插入承载导管220的远侧尖端中,带有承载导管220、输送导管210和鞘套101的组装好的输送导管系统200于是在引导线131之上同轴地进入身体中,至一邻近但未完全到达目标解剖部位的位置,在该情况下,目标解剖部位是病变的心脏瓣膜座141。
现在参见图5C,在至少一个实施例中,当在主动脉中时,承载区段221进一步膨胀以实现支架瓣膜120在外侧输送鞘套内的膨胀,使得输送气囊能够轴向地前进并径向地定位在支架瓣膜120的内部。即,当在主动脉中时,引导承载区段221比如通过气囊充气而膨胀,从而使可导管输送器件(支架瓣膜120)在输送鞘套101的可膨胀远侧区段103内部分地膨胀。在至少一个实施例中,外侧输送鞘套1`01包括可膨胀的柔性远侧区段103,其允许支架瓣膜120在外侧输送鞘套内部分地膨胀,例如至足以接收未膨胀的输送气囊211的直径。尽管外侧输送鞘套的远侧区段可以膨胀,但是沿轴向位于承载区段221的近侧的外侧输送鞘套轴104优选地在直径上保持相对较小,S卩,保持其初始未膨胀的直径,比如在身体和血管的入口处具有14弗伦奇的内直径。
现在参见图在支架瓣膜120在外侧输送鞘套101的远端部103内的部分膨胀之后,承载区段221例如通过气囊放气而收缩,然后轴向地前进超出外侧输送鞘套101,并前进到可导管输送器件(支架瓣膜120)外,使可导管输送器件仍保持在鞘套101的已膨胀的远侧区段103内。
输送区段气囊211接着轴向前进到支架瓣膜120径向内部的一位置。在输送导管210的输送区段211接着在承载导管的轴224之上同轴地前进到一横跨输送鞘套101内的可导管输送器件(支架瓣膜120)的位置的情况下,输送区段气囊211接着被部分地膨胀以驳接或捕获支架瓣膜120。
现在参见图5E,承载导管220的在前承载区段气囊221接着穿过目标解剖平面(原生心脏瓣膜座141),同轴地跟随在这里就位的引导线131,在这里引导线接着为较大输送导管210在承载导管220的轴224上的进一步同轴前进提供额外的机械引导和支撑。替代地,承载导管220可从系统和身体同轴地撤回,留下引导线在原位,然后一成形导管(具有特别设计的终端曲线,比如在血管造影导管上常见的Amplatz型曲线或者“抽头(pigtail)”,以促进其相对于解剖恰当地定位)可接着在引导线之上前进到上游解剖室,其轴于是取代承载导管的轴224。相应地,图5E示出引导线131和承载区段221已通过主动脉瓣膜,使得引导线和承载区段停留在病人的左心室内。承载导管轴224和承载区段221的轴向前进可独立于输送气囊211的位置而完成。之后,输送区段气囊211和输送导管轴214在承载导管轴224之上同轴地轴向前进,所述承载导管轴224用作输送区段气囊211的引导轨道。更具体地说,在输送导管211的突出尖端212引导超出了鞘套的尖端的情况下,输送区段211、可导管输送器件(支架瓣膜120)和输送鞘套101作为整体一起前进穿过目标解剖平面(例如,原生心脏瓣膜座141),至一被认为适合于可导管输送器件(支架瓣膜120)的部署的横跨目标平面的位置。
一旦定位在病人的主动脉瓣膜的平面处后,输送鞘套101便同轴地缩回,而输送导管保持原位,以在部署部位处暴露出保持在输送区段211上的可导管输送器件(支架瓣膜120)。之后,最终的输送气囊膨胀以部署支架瓣膜120。
在可导管输送器件(支架瓣膜120)完全膨胀和部署到位的情况下,该器件被保持在目标解剖平面(原生心脏瓣膜座141)内。该输送区段211接着例如通过气囊放气而收缩,确认已部署器件的功能,并将输送导管、承载导管、输送鞘套101和引导线131从解剖目标区域抽回并从身体移除以完成过程。
可膨胀的外侧输送鞘套
如本文所述的,经腔输送系统的至少一个实施例包括外侧输送鞘套,该外侧输送鞘套进一步包括可膨胀的远侧区段。下面的段落中描述了几种提供可膨胀远侧区段的不同方式。
现在参见图6A,外侧输送鞘套310的远侧区段可包括编织合金线部分311。通过示例而不是限制,远侧区 段在设计上可以与包括编织镍钛记忆合金线的IDEVTECHNOLOGIES SUPERA 支架类似。替代地,在至少一个实施例中,编织线部分311可进一步包括柔性塑料覆盖件,即这样一种构造:其中,编织线部分停留在形成外侧输送鞘套的管状部分的柔性塑料基体内。在典型操作中,线织物形成为膨胀构造,并通过在线元件上的纵向牵引力伸长,结果管状形式收缩为减小的直径。之后,牵引力的释放实现织物的自膨胀。在至少一个实施例中,可通过使用控制线牵拉远侧区段的编织线部分的控制端来加宽外侧输送鞘套310的远侧区段的远端部。
现在参见图6B,在一替代实施例中,外侧输送鞘套320的远侧区段包括位于鞘套覆盖件内的切割镍钛记忆合金支架321。更具体地说,外侧输送鞘套的远侧区段包括嵌入远侧区段内的镍钛记忆合金支架321,其中,镍钛记忆合金支架321为远侧区段提供形状记忆功能。结果,当在其上安装有支架瓣膜120的气囊导管在远侧区段内胀大时,远侧区段发生膨胀以容纳胀大的气囊导管和支架瓣膜。之后,当气囊导管从外侧输送鞘套320推出时,远侧区段于是因与位于远侧区段内的镍钛记忆合金支架321相关联的形状记忆功能而发生缩回。
现在参见图6C,在至少一个实施例中,外侧输送鞘套330的远侧区段包括弹性材料,该弹性材料能够被动地膨胀以及可选地回缩。即,当气囊导管在远侧区段内膨胀时,弹性材料容纳该膨胀。之后,在气囊导管放气的情况下,形成远侧区段的弹性材料回缩。替代地,比如PTFE(聚四氟乙烯)等鞘套材料可膨胀,但不收缩。在这样的情况下,当回缩穿过在近侧布置的入口鞘套或血管入口点时,薄壁鞘套材料沿纵线向内折叠,允许从身体轻松移除,甚至在持续膨胀状态下也如此。
现在参见图6D,在一替代实施例中,外侧输送鞘套340的远侧区段包括多个电致动压电陶瓷元件341。电线或导体342延伸到外侧输送鞘套340的近端,以便将电流施加到压电陶瓷元件341。当需要时,外科医师闭合电路以接通电源343,并经由电线或导体342将电流施加到压电陶瓷元件341。通电时,压电陶瓷元件341使外侧输送鞘套340的远侧区段膨胀。通过终止电流流向压电陶瓷元件341来使远侧区段收缩。在此进一步参考美国专利N0.5,415,633,该专利的内容通过引用全部并入本文。
现在参见图6E,使用充电元件的一变型例包括使用有源元件,所述有源元件的特征在于在通电时发生弯曲的差动合金夹层或层压体344。有源元件的弯曲导致远侧区段膨胀。与上述压电陶瓷元件341 —样,通过终止将电流施加到差动合金夹层或层压体344,来实现远侧区段的收缩。
在另一替代实施例中,使用磁力或电磁力来将支架瓣膜120保持在输送区段气囊上,以便于向目标瓣膜平面的前进以及随后的部署。更具体地说,并且现在参见图7,示出了一替代的腔内磁性输送系统400,其利用磁力或电磁力来维持支架瓣膜120在输送区段气囊411上的位置,其中,输送区段气囊411位于输送导管轴414的远端部处或附近。磁体或电磁体416优选并入气囊导管轴414中,与输送区段气囊411同轴并沿输送区段气囊411轴向地对中,以与安装的支架瓣膜的轴向位置对齐。如本领域一般技术人员理解的,支架瓣膜120必须包含以足够数量和分布受磁力影响的材料,以促进将支架瓣膜120吸引至并入气囊导管轴414中的磁体或电磁体416。引导线131用于引导同轴地定位的输送气囊导管410。输送气囊可部分地 膨胀,以:(a)提供头锥来促进输送系统插入并穿过病人的血管;和/或(b)提供进一步的摩擦力来固定支架瓣膜120。由于支架瓣膜120通过磁力或电磁力以及由输送气囊的部分膨胀产生的任何其它摩擦力而保持就位,所以支架瓣膜120能够牢固地前进通过病人的血管系统,而不需要外侧输送鞘套,由此简化和减少了输送系统的轮廓。一旦到达目标瓣膜平面后,输送气囊411就膨胀,由此克服磁力或电磁力(当然,可通过停止施加电流到电磁体来终止电磁力),以在病变原生瓣膜的平面处部署支架瓣膜120。类似地,磁性输送导管410的磁体可以以类似的方式并入串联双气囊系统100和/或伸缩导管输送系统200的输送区段气囊中,以便在支架瓣膜穿过解剖结构时将其捕获和保持在输送区段气囊上。
除了支架瓣膜120的经腔输送外,一个或多个本发明的至少一个实施例涉及一种取回和/或重新定位系统500,其能够用于从病人身上移除已部署的支架瓣膜120,或者在病人体内重新定位支架瓣膜120。现在参见图8A和8B,其中示出了取回和/或重新定位系统500。该取回和/或重新定位系统包括取回导管510,该取回导管在其远端部上结合有磁体511,更优选地是具有足够强度的电磁体,以至少部分地收缩和固定在先部署的支架瓣膜120。参见图SB,部分地收缩的瓣膜于是例如通过对如图所示的可选控制线124的牵引而被抽回(即,从病人身上取回),或者被重新定位然后重新部署。
现在参见图8C和8D,在另一实施例中,提供了多极磁性取回导管系统520,其中,多个磁性元件522沿周向排列并布置在取回导管521的远端部处,以便允许磁体522以及它们所附接至的下方导管元件523的一些部分沿径向向外移动成与已部署支架瓣膜120的径向内表面接触。在至少一个实施例中,附接磁体522的导管的下方部分523沿纵向彼此分离,以便它们能随所附接磁体522的径向向外移动,彼此独立地自由移动。在至少一个实施例中,磁体522具有同样的极性,并且最初被外覆的鞘套机构限制成彼此邻近。当所述鞘套524回缩时,远侧导管部分523与它们所附接的磁体522 —起在相斥磁力的作用下沿径向向外移动成与支架瓣膜120接触。磁体522与支架瓣膜框架121的紧邻(如果不是完全接触的话)有利地使保持力最大化,以促进在从瓣膜平面移除器件时施加的牵引力。鞘套524可以再次前进到导管的磁性远端部523之上,从而对器件框体施加径向向内的作用力,以紧缩它,并促进其在轴向牵引力下移除。
成形导管
在本文对各实施例所描述的各种鞘套和导管轴可包括“成形”远端部。更具体地说,“成形”导管可用于协助横越解剖阻力,或者在引导线从心室移位的情况下,为再次横越瓣膜平面提供引导。该问题发生在支架瓣膜和输送系统围绕主动脉前进时。在这样的情况下,牵引力常常会将引导线拉出心室。如果这发生了,并且在输送系统已经处于主动脉中的情况下,那么要求从病人身体移除输送系统,并从头再来一遍。有利地,本文描述的一个或多个实施例能够帮助避免该问题。即,可以使用这样的导管,其包括具有一个或多个曲线形状的远端部,所述一个或多个曲线形状是例如在血管造影导管上常见的Amplatz型曲线或者“抽头”,并包括 供引导线穿过的中心同轴管腔。成形导管用于“指引”引导线穿过非常狭窄的瓣膜口。因此,在一个实施例中,“成形”导管在输送导管的中心管腔内穿过。在这样的构造中,引导线能够更轻松地再次穿过瓣膜平面,并且成形导管(有利地,比较牢固的导管)能够前进到心室,并留下来用作输送导管的增强支撑轨道。
为了帮助理解本发明,下面提供部件和在附图中的相关标号的列表:
标记部件
100 串联双气囊导管输送系统
101 输送鞘套
102 内部鞘套的可选凸缘
103 可膨胀的柔性鞘管区段
104 鞘套本体
110 双串联气囊导管组件
111 输送区段,是输送气囊
112 承载区段,是串联先导承载气囊
113 可选的头锥
114 远侧控制线从导管轴的出口
120支架瓣膜组件
121瓣膜框架
122塌缩的瓣膜
123附接到瓣膜框架的远端的可选控制线(进入导管轴内)
124附接到瓣膜框架的近端的可选控制线
130引导线组件
131引导线
140原生心脏瓣膜
141原生心脏瓣膜座
200伸缩式气囊导管输送系统
210输送气囊导管组件
211输送区段,是输送气囊
212输送区段气囊的尖端
213输送区段气囊的部分胀大的引导尖端
214输送气囊导管轴
220承载气囊导管组件
221承载区段,是在输送区段气囊的中心管腔内同轴地伸缩的引导气囊
222承载区段气囊的尖端
223承载区段气囊的胀大的引导尖端
224承载导管的轴
300可膨胀的鞘套系统
310编织线鞘套
320具有嵌入的镍钛记忆合金支架的鞘套
321镍钛记忆合金支架
330柔性塑料鞘套
340电致 动鞘套
341压电陶瓷元件
342导体
343电源
344合金层压体
400磁性气囊导管输送系统
410磁性气囊输送导管
411输送气囊
412磁性气囊输送导管的尖端
413输送气囊的部分胀大的尖端
414磁性气囊输送导管的轴
415磁性气囊输送导管的引导线腔
416磁体或电磁体
500磁性取回导管系统
510 磁性取回导管组件
511 磁体或电磁体
520 多极磁性取回导管组件
521 多极磁性取回导管
522 沿周向排列的磁体
523 附接到磁体的远侧可移动导管元件
524 鞘套
在不脱离本发明的精神或基本特征的情况下,一个或多个本发明可实施为其它特定形式。所描述的实施例在所有方面都应该看作仅仅是说明性的,而不是限制性的。因此,一个或多个本发明的范围由所附权利要求示出,而不是通过以上描述示出。落于各权利要求的等同方案的含义和范围内的所有变化都被包含在它们的范围内。
一个或多个本发明在各种实施例中包括基本如本文所图示和描述的部件、方法、过程、系统和装置,包括各种实施例、次组合和其子集。本领域的技术人员在理解本公开之后将明白如何制作和使用一个或多个本发明。
一个或多个本发明在各种实施例中包括提供在缺少在本文或者在各种实施例中未示出和/或描述的项目的情况下的器件和方法,包括缺少可能已经用于先有器件或方法的那些项目的情况(例如,用于提高性能,实现轻松和/或减少实施成本)。
一个或多个本发明的前述讨论提供来用于说明和描述的目的。前述内容并不意在将一个或多个本发明限制为本文所公开的一个或多个形式。例如在前述具体实施方式
中,一个或多个本发明的各种特征在一个或多个实施例中组合起来用于精简公开的目的。该公开方法不应解释为反映这样一种意图,即所要求保护的一个或多个本发明需要比权利要求中明确记载的更多的特征。相反,如所附权利要求所反映的,创新方面在于比单一的上述公开的实施例的所有特征少。因此,所附权利要求在这里并入具体实施方式
中,每个权利要求独立地作为一个或多个本发明的一个单独的优选实施例。
此外,虽然一个或多个本发明包括了对一个或多个实施例以及某些变更和变型的描述,但是其它变更和变型也在一个或多个本发明的范围内(例如,在理解本公开后,可能处于本领域技术人员的技能和知识范围内的)。应该明白的是,在不脱离一个或多个本发明的实施例的范围的情况下,本领域技术人员可以对在本文为了说明本发明的性质而描述和图示出的各细节、材料、步骤和元件配置进行多种改变。意图在于获得以最大程度包括各替代实施例的权利,包括所要求了的替 代、可互换和/或等同结构、功能、范围或步骤,不论这种替代、可互换和/或等同结构、功能、范围或步骤是否被本文所披露,并没有打算向公众奉献任何可取得专利的主题。
权利要求
1.一种用于将可输送器件穿过病人的脉管系统经腔输送至病人体内的输送部位的系统,包括: 外侧输送鞘套,包括远端部分,其中所述外侧输送鞘套的至少一部分的尺寸做成便于插入病人的脉管系统中; 承载区段,位于导管轴的远端部,所述承载区段的外表面的尺寸做成暂时保持所述可输送器件在所述外侧输送鞘套的远端部分中,其中所述导管轴的至少一部分位于所述外侧输送鞘套内,并与所述外侧输送鞘套同轴;以及 输送区段,定位成与所述外侧输送鞘套同轴,所述输送区段的外表面的尺寸做成当所述可输送器件停留在所述外侧输送鞘套的远端部分内时,在使所述可输送器件与所述承载区段分离后,沿径向嵌入所述可输送器件内,其中所述输送区段构造成将所述可输送器件部署在输送部位处。
2.如权利要求1所述的系统,其中,所述外侧输送鞘套的远端部分的至少一部分是可膨胀的。
3.如权利要求2所述的系统,其中,所述外侧输送鞘套的远端部分的至少一部分包括一个或多个电启动元件。
4.如权利要求2所述的系统,其中,所述外侧输送鞘套的远端部分的至少一部分包括一个或多个压电陶瓷元件。
5.如权利要求2所述的系统,其中,所述外侧输送鞘套的远端部分的至少一部分包括可被动地膨胀的材料,所述可被动地膨胀的材料可通过所述承载区段和所述输送区段中至少一者施加的沿径向向外的作用力而膨胀。
6.如权利要求2所述的系统,其中,所述外侧输送鞘套的远端部分的至少一部分在所述远端部分的至少一部分被施加拉力时膨胀。
7.如权利要求1所述的系统,其中,所述远端部分包括从所述远端部分的内表面沿径向向内延伸的变窄区域和内部突起中的至少一者。
8.如权利要求1所述的系统,其中,所述外侧输送鞘套的内表面的一部分还包括用于保持纵向延伸元件的至少一部分的引导件,所述纵向延伸元件构造成选择性地控制与所述外侧输送鞘套同轴的结构或者所述外侧输送鞘套的至少一部分。
9.如权利要求1所述的系统,其中,所述外侧输送鞘套的内表面的一部分还包括这样的引导件,所述引导件包括以下中的至少一者: (a)管腔;以及 (b)索环; 其中,所述引导件保持至少一根控制线,以选择性地保持所述可输送器件。
10.如权利要求1所述的系统,其中,所述承载区段和所述输送区段都位于所述导管轴上。
11.如权利要求1所述的系统,其中,所述承载区段位于所述导管轴上,并且其中所述输送区段与输送区段轴相关联,所述输送区段轴与所述导管轴同轴,并相对于所述导管轴沿轴向可移动。
12.如权利要求1所述的系统, 其中,所述承载区段是可膨胀的气囊,其具有的膨胀直径小于所述输送区段的膨胀直径。
13.如权利要求1所述的系统,其中,所述输送区段是可膨胀的气囊,其具有的膨胀直径大于所述承载区段的膨胀直径。
14.如权利要求1所述的系统,其中,所述承载区段和所述输送区段中的至少一者是心轴。
15.如权利要求14所述的系统,其中,所述心轴通过机械或者机电构件是可膨胀的。
16.如权利要求14所述的系统,其中,所述心轴是不可膨胀的。
17.如权利要求1所述的系统,其中,所述输送区段沿轴向位于所述承载区段的近侧。
18.如权利要求1所述的系统,其中,所述输送区段沿轴向位于所述承载区段的远侧。
19.如权利要求1所述的系统,其中,所述输送区段包括磁体,以协助将所述可输送器件捕捉并保持在所述输送区段上。
20.一种用于将可输送器件经血管输送至病人体内的某一输送部位的组件,包括: 第一导管,包括第一导管轴; 承载区段,沿所述第一导管轴布置,所述承载区段构造成在将所述第一导管插入病人体内之前接收所述可输送器件;以及 输送区段,相对于所述承载区段在轴向方向上顺次地定位,其中所述输送区段构造成在所述可输送器件与所述第一导管的至少一部分同轴时在病人体内接合所述可输送器件,并且其中所述输送区段构造成随后将所述可输送器件部署在输送部位处。
21.如权利要求20所述的组件,其中,所述输送区段也沿所述第一导管布置。
22.如权利要求20所述的组件,其中,所述输送区段沿第二导管布置,所述第二导管包括供所述第一导管穿过的同轴管腔。
23.如权利要求22所述的组件,其中,所述第一导管和所述第二导管中的至少一者包括弯曲的远端部。
24.如权利要求20所述的组件,其中,所述承载区段是可膨胀的气囊。
25.如权利要求20所述的组件,其中,所述承载区段是心轴。
26.如权利要求25所述的组件,其中,所述心轴通过机械或者机电构件是可膨胀的。
27.如权利要求25所述的组件,其中,所述心轴是不可膨胀的。
28.如权利要求20所述的组件,其中,所述输送区段是可膨胀的气囊。
29.如权利要求20所述的组件,其中,所述输送区段是心轴。
30.如权利要求29所 述的组件,其中,所述心轴通过机械或者机电构件是可膨胀的。
31.如权利要求29所述的组件,其中,所述心轴是不可膨胀的。
32.如权利要求20所述的组件,其中,所述输送区段包括磁体,以协助将所述可输送器件捕捉并保持在所述输送区段上。
33.如权利要求20所述的组件,其中,所述输送区段包括电磁体,以协助将所述可输送器件捕捉并保持在所述输送区段上。
34.一种将可输送器件穿过病人的脉管系统输送至病人体内的目标部位的方法,包括: 将所述可输送器件安装在沿导管轴布置的可选择性地膨胀的承载区段上,其中所述导管轴的至少一部分位于外侧输送鞘套内,并与所述外侧输送鞘套同轴; 将所述外侧输送鞘套和所述导管轴插入病人体内;在病人体内移动所述外侧输送鞘套,以将所述可选择性地膨胀的承载区段和所述可输送器件定位在目标部位附近; 在所述可输送器件至少部分地保持在所述外侧输送鞘套内的同时,使用所述可选择性地膨胀的承载区段来使所述可输送器件部分地膨胀; 将输送区段径向地定位在所述可输送器件内,并使所述输送区段部分地膨胀,以促进所述输送区段与所述可输送器件的接合; 将所述输送区段和所述可输送器件移动至目标部位;以及 通过使所述输送区段进一步膨胀来`将所述可输送器件部署在目标部位处。
全文摘要
一种双气囊输送导管系统,包括承载区段,所述承载区段是位于导管的远端部处的引导/承载气囊。承载区段与更靠近侧定位的输送区段顺次地排列,其中所述输送区段是输送气囊或者心轴。第一承载区段使支架瓣膜膨胀一足够量,以在承载区段移动离开支架瓣膜后接收输送区段。输送区段然后定位在目标部位处,然后支架瓣膜得到部署。
文档编号A61M25/01GK103153384SQ201180041521
公开日2013年6月12日 申请日期2011年6月28日 优先权日2010年6月28日
发明者R.D.菲什 申请人:科利柏心脏瓣膜有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1