用于校准的方法和系统与流程

文档序号:12480470阅读:250来源:国知局
用于校准的方法和系统与流程
本发明涉及放射治疗的领域。具体地,本发明涉及校准放射治疗系统中的定位系统的方法,该放射治疗系统包括具有固定放射焦点的放射治疗单元。发明背景这些年来,外科技术的发展取得了很大的进步。例如,对于需要脑部手术的患者,现在可用非侵入性手术,该非侵入性手术对患者来说承受了非常小的创伤。非侵入性手术的一种系统是在LeksellGamma名下出售的,其借助于伽玛辐射来提供这样的手术。辐射是从大量固定的放射源发射的并且借助于准直器聚焦,即,用于获得有限截面的光束的通路或通道,朝向限定的目标或治疗区。每个源提供不足以损伤介入组织的伽玛辐射剂量。然而,组织破坏发生在来自所有辐射源的辐射梁相交或会聚的地方,其促使辐射达到组织破坏性水平。在下文会聚点被称为“焦点”。使用立体定向固定单元将要用放射治疗的患者固定到定位系统。因此,立体定向固定单元使患者的治疗区相对于定位系统进行固定,即,使患者的含有待治疗的组织区域部分进行固定。例如,当治疗区域或治疗区是患者头部内的组织的一部分时,立体定向固定单元通常构成头部固定框架,例如,该头部固定框架可以例如,通过固定螺钉等固定到患者的头骨。然后,立体定向固定单元的坐标由立体定向固定单元坐标系定义,该立体定向固定单元坐标系通过与治疗区的固定关系,还用于定义治疗区的轮廓。在操作中,立体定向固定单元以及因此立体定向固定单元坐标系相对于固定的放射焦点移动,使得该焦点精确地定位在固定单元坐标系的预定的坐标中。这样的立体定向单元和坐标系的示例分别包括Leksell立体定向头架和LeksellXYZ坐标系。LeksellXYZ坐标系是笛卡尔坐标系,该笛卡尔坐标系是由与立体定向固定单元的框架完全对准的三个正交轴定义的,该立体定向固定单元的框架设置有三个正交边。相对于患者,x轴在患者的内外方向中延伸,y轴在前后方向中延伸,以及z轴在颅尾方向中延伸。换言之,如果患者是正确地定位在LeksellXYZ坐标系中,x轴将从耳朵到耳朵延伸,z轴从头到脚延伸,以及y轴从患者的背部延伸到前面。结合放射治疗系统中的放射治疗,该治疗是在治疗计划系统中进行计划。使用成像系统(例如,锥形束计算机断层摄影(CBCT)系统)来扫描患者的治疗区,并且将扫描的图像输入到治疗计划系统。计算机断层摄影(CT)成像(还被称为计算机轴向断层摄影(CAT)扫描)涉及结合数字计算机旋转x射线设备的使用,以获得身体的图像。使用CT成像,可以产生人体器官和组织的横截面图像。使用CT成像,医生不仅可以确认肿瘤存在,而且他们还可以定位肿瘤的位置,准确地测量肿瘤的大小并且确定肿瘤是否已经扩散到邻近的组织。除了某些癌症的诊断外,CT成像还用于计划并且管理放射癌症治疗以及用于计划某些类型的手术。使用CBCT图像,可以创建治疗区的体积重构,该体积重建可以用在计划治疗中。为此目的,治疗区的体积重建必须完全与放射治疗系统的焦点位置和定位系统相关。然而,CBCT重建是相对于成像系统的旋转轴和CBCT系统的旋转轴进行的,并且立体定向固定单元坐标系没有被对准而由于例如制造公差将具有变化。当患者被固定到定位系统并且定位在用于治疗会话的放射单元内时,在CBCT坐标系和立体定向固定单元坐标系之间的角度变化可以例如导致定位误差。在现有技术中,已经试图解决上述问题。在相同申请人的WO2012/146301中,提出了用于校准成像系统的系统和方法。根据WO2012/146301,基于多组图像创建了校准工具的三维重建,并且然后将三维重建与立体定向坐标系中的校准工具的已知的位置和方位(即,位姿)进行比较,以获得位置差。这种解决方案要求捕获大量的图像以便创建校准工具的足够的体积重建。类似于对象之间的未对准的问题还在诸如计算机视觉和机器人的
技术领域
中进行处理。在这些领域中,常见任务还包括识别图像中的特定对象和确定每个对象相对于坐标系的位置和方位。例如,机器学习算法是用来基于大量的训练事例学习从2D图像特征到位姿变换的映射,或者试图通过反馈机制来对拟合进行优化。另一个方法是所谓的几何方法,其中,对象上的多组控制点(通常是角点或其他表征特征)是在该对象的图像中识别并且基于这个,可以解决位姿变换。这种方法要求对图像传感器(相机)进行校准并且来自场景中的3D点和图像中的2D点的映射是已知的。然而,这些方法并不适合于医疗系统中的使用。因此,仍然需要用于确定诸如CBCT系统的成像系统的坐标系和立体定向固定单元坐标系之间的偏差并且对其进行补偿的改进的方法和系统。还需要具有改进的精度并且因此改进的且更精确的校准的用于确定并补偿诸如CBCT系统的成像系统的坐标系和立体定向固定单元坐标系之间的偏差的方法和系统。发明概述本发明的目的是提供用于补偿诸如CBCT系统的成像系统的坐标系和立体定向固定单元坐标系之间的偏差的系统和方法。目的还是提供具有改进的精度并且因此改进的且更精确的校准的用于确定并补偿诸如CBCT系统的成像系统的坐标系和立体定向固定单元坐标系之间的偏差的方法和系统。这些目的和其他目的是通过提供具有在独立权利要求中定义的特征的校准方法来实现的。在从属权利要求中定义了优选的实施例。在本申请的上下文中,术语“位姿”定义对象的位置和方位的组合。根据本发明的方面,提供了用于相对于放射治疗系统校准用于捕获患者的图像的成像系统的方法。放射治疗系统包括具有固定放射焦点的放射治疗单元和用于对患者相对于放射治疗单元中的固定焦点进行定位的定位系统。根据本发明的该方面,方法包括在图像扫描过程期间使用成像系统的放射单元利用电离辐射来照射包括具有至少一个参考对象的校准工具。校准工具或校准工具的参考点以及至少一个参考对象在立体定向坐标系中具有已知的位置或坐标。此外,包括校准工具的参考对象的横截面表示的至少一个二维图像是在图像扫描过程期间使用成像系统的检测器捕获的。确定捕获的图像中的每个参考对象的表示的图像坐标以及确定校准工具的原点相对于成像单元的位置。基于参考对象图像坐标、立体定向坐标系中的参考对象相对于校准工具的原点的位置和校准工具的原点相对于成像单元的的位置,计算出立体定向坐标系中的校准工具的位置和成像系统坐标系中的校准工具的位置之间的变换。换言之,基于参考对象图像坐标、立体定向坐标系中的相应的参考对象相对于校准工具的原点的位姿和校准工具的原点相对于成像单元的位置,计算出立体定向坐标系中的校准工具的位姿和成像系统坐标系中的校准工具的位姿之间的变换。根据本发明的另一方面,提供了用于相对于放射治疗系统校准用于捕获患者的图像的成像系统的系统,该放射治疗系统包括具有固定放射焦点的放射治疗单元和用于对患者相对于放射治疗单元中的固定焦点进行定位的定位系统。成像系统被配置为在图像扫描过程期间使用放射单元利用电离辐射来照射包括至少一个参考对象的校准工具,该校准工具或校准工具的参考点以及至少一个参考对象在立体定向坐标系中具有已知的位置或坐标。成像系统还被配置为在图像扫描过程期间使用检测器来捕获包括校准工具的参考对象的横截面表示的至少一个二维图像。处理单元被配置为确定捕获的图像中的每个参考对象的表示的图像坐标并且获得校准工具的原点相对于成像单元的位置。此外,处理单元被配置为基于参考对象图像坐标、立体定向坐标系中的参考对象相对于校准工具的原点的位置和校准工具的原点相对于成像单元的的位置,计算立体定向坐标系中的校准工具的位置和成像系统坐标系中的校准工具的位置之间的变换。换言之,基于参考对象图像坐标、立体定向坐标系中的相应的参考对象相对于校准工具的原点的位姿和校准工具的原点相对于成像单元的的位置,计算立体定向坐标系中的校准工具的位姿和成像系统坐标系中的校准工具的位姿之间的变换。变换包括立体定向坐标系中的校准工具的位置和成像系统坐标系中的校准工具的位置之间的平移和旋转位置差。本发明可以用在放射治疗系统(诸如LINAC系统或LeksellGamma系统)中。本发明是基于认识到由于例如制造公差在诸如CBCT系统的成像系统的坐标系和定义治疗位置的立体定向坐标系之间存在角度变化或偏差。CBCT系统用于捕获患者和治疗区的图像,以及因此治疗区的重建图像必定与治疗单元的焦点和患者定位系统有关。CBCT坐标在物理上偏移于焦点并且不可能机械地从公差知道CBCT系统相对于焦点在什么位置。因此,当患者被转移到用于治疗的放射治疗单元中时,这些变化或偏差造成定位误差。如果患者被转移大距离,即使非常小的正弦误差,也可导致大偏差,并且因此可造成大的定位误差。这些认识已经导致了本发明和确定并补偿诸如CBCT系统的成像系统的坐标系和定义治疗位置的立体定向坐标系之间的偏差的想法。使用确定的偏差,可以确定重建的对象相对于立体定向坐标系的位置和旋转。为了确定偏差,使用可以容易地对准并且在立体定向坐标系中被精确定位的并且从而在图像采集期间牢固地保持静止的校准工具。例如,校准工具可以被安装或被附接到患者定位系统的立体定向固定单元。用于固定治疗区的立体定向固定单元与患者定位系统固定接合并且不能相对于定位系统进行转移或旋转。使用借助于成像系统的检测器捕获的至少一个二维图像来确定与成像系统有关的坐标系中的校准工具的位置。在本发明的优选实施例中,使用具有可附接到固定单元的至少三个球杆的校准工具。每个球杆在立体定向坐标系中并且相对于校准工具的原点具有已知的位置(坐标)。由于校准工具的参考对象的尺寸、形状和材料,它们的投影将占据对背景具有高对比度并且在水平或垂直上没有重叠的图像中的区域。因此,可以识别相应的参考对象的投影并且可以确定它们的图像坐标。由于立体定向坐标系中参考对象的坐标已知,且成像系统中检测器的位置、参考对象的图像坐标可以被确定。通过确定从成像系统的X射线源的点到每个图像的参考工具的相应的参考对象的向量,可以确定校准工具相对于成像系统坐标系的位置或坐标。此后,可以计算成像系统坐标系中的校准工具的确定的位置和立体定向固定单元坐标系中的校准工具的已知位置之间的变换。与现有技术相比,本发明提供了非常精确的校准。根据本发明的实施例,计算校准工具的原点相对于成像单元的位置。在可选实施例中,校准工具的原点相对于成像单元的位置是预定的且已知的。根据本发明的实施例,基于参考对象图像坐标和检测器相对于成像单元的位置,确定参考对象相对于成像单元的位置,并且基于参考对象相对于成像单元的位置、成像坐标系中参考对象的位置和校准工具相对于成像单元的位置,计算变换。根据本发明的实施例,变换的计算还基于成像单元和检测器之间的距离以及检测器旋转。也就是说,检测器的位置差或立体定向坐标系中的检测器的位置和成像系统坐标系中的检测器的位置之间的变换。根据本发明的实施例,基于相应的参考对象图像坐标和对于相应的参考对象在参考对象位置和成像单元的位置之间的向量与参考对象图像坐标的位置和成像单元的位置之间的向量是平行的的假设,确定参考对象位置和成像单元的位置之间的向量。参考对象位置和成像单元的位置之间的向量和参考对象图像坐标的位置和成像单元的位置之间的向量之间的关系然后用在计算变换中。根据本发明的实施例,参考对象图像坐标相对于成像单元的向量和参考对象位置相对于成像单元的向量之间的关系被定义为标量,并且基于参考对象相对于成像单元的位置、成像坐标系中参考对象的位置和校准工具相对于成像单元的位置,确定标量的值。根据本发明的实施例,基于参考对象相对于立体定向坐标系中的校准工具的原点的位置,计算参考对象相对于成像系统坐标系中的校准工具的原点的位置,并且基于参考对象图像坐标、成像坐标系中的参考对象的坐标和校准工具相对于成像单元的坐标,计算变换。根据本发明的实施例,立体定向坐标系中的参考对象的位置和成像坐标系中该参考对象的位置之间的每个关系被计算为使用向量旋转方法定义平移和旋转位置差的向量。根据本发明的实施例,校准工具包括:用于实现与患者定位系统的固定装置的可释放的附接的附接装置;以及具有能够在六个维度中进行位置确定的形状的参考对象。在本发明的实施例中,校准工具包括至少三个参考对象,每个参考对象包括附接到基板的杆,该基板包括附接装置和附接到相应杆的钢球。根据本发明的实施例,执行成像系统的校准包括确定成像系统的旋转轴。该校准步骤可以在确定在成像系统坐标系和立体定向坐标系之间的偏差的会话之前执行。如本领域的技术人员容易理解的,可以使用用于确定放射焦点的各种已知的方法,其中的一些已经在上面进行了描述。然而,本发明不限于本文示出和描述的特定示例,而是用于确定放射焦点的任何合适的测量方法被预期为落入在本发明的范围之内。附图简述现在将参考附图更详细地描述本发明的优选实施例,其中图1示意性地图示了使用本发明的、适合于校准的放射治疗系统的一般原理;图2根据本发明示意性地图示了在图1的放射治疗系统中实现的系统的实施例;图3根据本发明示意性地图示了校准工具的实施例;图4示意性地图示了以反方向从图1的放射单元的前面到立体定向坐标系的z轴的方向看到的几何图形;图5示意性地图示了以反方向从图1的放射单元的前面到z轴的方向看到的几何图形的放大视图;图6图示了相比于立体定向坐标系的检测器旋转;图7是图示根据本发明的方法的总体步骤的流程图;图8是图示根据本发明的实施例的方法的步骤的流程图;以及图9是图示根据本发明的实施例的方法的步骤的流程图。优选实施方式的描述参考图1,适用本发明的放射治疗系统1包括放射单元10和患者定位单元20。在放射单元10中,提供了放射源、放射源保持器、准直器主体以及外部屏蔽元件。准直器主体包括大量的准直器通道,该准直器通道以如本领域中所公知的方式指向共同焦点。准直器主体还用作辐射屏蔽,防止辐射除通过准直器通道外到达患者。可以在WO2004/06269A1中可以发现可应用于本发明的放射治疗系统中的准直器布置的示例,其据此通过引用并入本文。患者定位单元20包括刚性框架22、可滑动或可移动支架24以及用于使支架24相对于框架22移动的发动机(未示出)。支架24还配有用于承载和移动整个患者的患者床(未示出)。在支架24的一端处,提供了用于直接或者经由适配器单元(未示出)接收并且固定立体定向单元(未示出)的固定装置28,并且从而防止立体定向固定单元相对于可移动支架24的平移或旋转运动。可以使用放射治疗系统1的坐标系中的患者定位单元20或患者定位单元20来至少在沿着图1示出的三个正交轴x、y和z轴中转移患者。在一些实施例中,该患者还可以沿着例如旋转轴进行转移。用于捕获患者例如与治疗计划或治疗有关的图像的成像系统50被布置或定位在放射单元10处,例如,锥形束计算机断层摄影(CBCT)系统。成像系统50包括X射线源51和检测器52。X射线源51和检测器52被布置成围绕成像系统50的坐标系(a,b,c)的旋转轴c(见图1)旋转,以不同的角度捕获定位在患者床26上的患者的图像。理想情况下,X射线源51和检测器52围绕患者定位单元20的z轴旋转,其与成像系统50的旋转轴c对准。然而,实际上,例如,由于制造公差引起存在对准误差,其导致患者定位单元20的坐标系和成像系统50之间的未对准,并且因此c轴与z轴并不对准。在计算机断层摄影中,通过围绕旋转的单个轴以非常小的步幅(例如,<1°)在对象周围旋转成像系统同时拍摄一系列的二维X射线图像来生成三维图像。在其他应用中,以小步幅围绕成像旋转对象。通常,成像设备或对象是分别围绕对象或成像设备旋转例如,180°或360°。之后,基于二维图像,可以数值重建最终的三维图像,并且该最终的三维图像可以被显示为一系列的断层图像或三维图像。如从图1可以理解的,描述的实施例涉及用于向人类患者的头部中的目标区提供伽玛放射治疗的放射治疗系统。这样的治疗通常被称为立体定向手术。在治疗期间,例如,使用咬块和以立体定向头架的形式的固定单元来将患者头部固定在立体定向固定单元中,该固定单元包括适合于与放射治疗系统的固定装置28接合的接合点。因此,在立体定向手术期间,患者的头部被固定在立体定向框架中,该立体定向框架反过来经由固定装置28固定地附接到患者定位系统。在患者的头部中的治疗区相对于放射焦点例如沿着图1示出的三个轴x,y和z运动期间,整个患者是移动的。因此,在头架和患者定位系统20的支架24之间没有相对运动。现在转向图2,将讨论根据本发明的系统的实施例。在图2中,连同示意性图示的放射单元10和成像系统50,示意性地示出根据本发明的系统100。一般而言,根据本发明的系统1包括校准工具110和处理单元120(例如,个人电脑(PC)),该校准工具110被布置为可释放地和牢固地附接到放射治疗系统的固定装置28。在图3中,示出了校准工具110的实施例的更详细的视图。校准工具110被布置为容易地对准并且精确地定位在立体定向固定单元坐标系中。通过借助于附接装置118牢固地附接校准工具110而使校准工具110没有相对于患者定位单元20运动的任何可能,可以保证校准工具被定位在立体定向固定单元坐标系中的定义的且预定的位置xcal.tool、ycal.tool和zcal.tool处并且在图像采集期间保持静止。优选地,当工具110被附接到固定装置28时,校准工具110分别在立体定向固定单元坐标系中包括具有预定的或已知的位置的至少一个参考对象或标记112。也就是说,参考对象或标记112相对于校准工具110的预定的位置的是已知的并且因此在立体定向固定单元坐标系中具有预定的坐标。参考对象112其制成材料制使得并且参考对象112被布置和被成形为使得它们能够在由成像系统50的检测器52捕获的二维图像中被识别出。在图2和图3中示出的校准工具110的实施例中,校准工具110包括四个参考对象112,每个参考对象包括杆116,该杆116配有在板119上附接的钢球115。当校准工具110被附接到固定装置28时,每个参考对象112在立体定向固定单元坐标系中具有预定的位置。为了允许在由检测器52捕获的二维图像中的参考对象的识别,参考对象112是由衰减从成像单元或X射线源51发射的X射线辐射的材料(诸如钢)制成的。X射线是被参考对象112衰减,其要求每个参考对象的表示是由检测器捕获的并且其以阴影可以在每个图像中看到表示。将在下面描述用于识别每个参考对象表示的过程。处理单元120可连接到成像系统50,使得允许例如使用例如蓝牙或WLAN进行无线双向通信。从而,例如,处理单元120可以从成像系统50获得图像信息并且向成像系统50发送指令来启动图像扫描过程。一般而言,处理单元120被配置为计算立体定向坐标系中的校准工具110的位置和成像系统坐标系中的校准工具110的位置之间的变换或平移位置差和旋转位置差。由于例如制造公差,其中定位校准工具110的立体定向固定单元的坐标系(如由x轴、y轴和z轴定义)与成像系统的坐标系(由a轴、b轴和c轴定义)未对准。因此,处理单元120确定成像系统50的坐标系中的校准工具110的位置acal.tool、bcal.tool和ccal.tool,或者更确切的是参考对象的位置,即,获得一组坐标,其中每个参考对象是与三个坐标相关。优选地,确定每个参考对象114的坐标,产生位置坐标的阵列。此外,处理单元120被配置为计算相对于成像系统的坐标系中的校准工具的确定的位置acal.tool、bcal.tool和ccal.tool和立体定向固定单元坐标系中的校准工具的位置xcal.tool、ycal.tool和zcal.tool之间的变换,以确定相对于成像系统的坐标系和立体定向固定单元坐标系中的校准工具的位置之间的关系。优选地,确定立体定向固定单元坐标系中的参考标记的已知位置和相对于成像系统的坐标系中的校准工具的确定位置之间的变换。计算基于参考对象图像坐标dxy、立体定向坐标系中的参考对象112相对于校准工具110的原点o的位置rob和校准工具110的原点o相对于成像单元51的位置rso。在本发明的实施例中,变换的计算基于参考对象相对于成像单元51的位置rsd、成像坐标系中的参考对象的位置ro’b和校准工具相对于成像单元51的位置rso。在本发明的实施例中,变换的计算还基于成像单元51和检测器52之间的距离SDD(见图4)以及立体定向坐标系中的检测器的位置和成像单元坐标系中的检测器的位置之间的检测器旋转。参考图6,向量旋转是以三个参数定义的,其中,q和w是平面外的旋转角而n是平面内的旋转角。检测器平面被对准,使得v轴平行于z轴并且u轴平行于y轴。沿着u=u0的轴的检测器平面的旋转角是q,沿着v=v0的轴的检测器平面的旋转角是w,以及沿着(u0,v0)的点的检测器平面的旋转角是n。x轴、y轴、z轴与立体定向坐标系(见图1)有关以及u和v与检测器平面有关。在本发明的实施例中,基于相应的参考对象图像坐标dxy以及对于相应的参考对象112的参考对象位置和成像单元51的位置之间的向量rsb与参考对象图像坐标dxy的位置和成像单元51的位置之间的向量rsd平行的假设,并且将参考对象位置和成像单元51的位置之间的向量rsd和参考对象图像坐标dxy的位置和成像单元51的位置之间的向量rsb的关系用在计算变换中,确定参考对象位置和成像单元51的位置之间的向量rsb。根据本发明的实施例,基于参考对象相对于立体定向坐标系中的校准工具110的原点o的位置rob,计算参考对象112相对于成像系统坐标系中的校准工具110的原点o的位置ro’b’,并且基于参考对象图像坐标dxy、成像坐标系中的参考对象的坐标ro’b’和校准工具相对于成像单元51的坐标rso,计算变换。现在参考图4-图9,将描述根据本发明的用于校准用于捕获与放射治疗系统中的治疗计划或治疗有关的患者的图像的成像系统50的方法。例如,该方法可以在如图2所述的系统中执行。图4-图6示意性地示出了成像过程期间的几何形状,以及图7-图9示出了根据本发明的方法的实施例的流程图。参考图4和图5,示意性地图示从即反方向中放射单元10(在此实施例中为伽玛刀)到图1中示出的立体定向坐标系的z轴的方向看到的几何形状。在位置s处(即,在成像系统坐标系的坐标as、bs、cs处)的X射线源51发射辐射,该辐射由位置b处(即,在立体定向坐标系中的坐标xb、yb、zb)的参考对象112衰减。清晰可辨的阴影然后可以在位置d(dx,dy)处的检测器52上检测到。基于图像,每个参考对象的表示在空间中的位置是d,即,立体定向坐标系中的xd、yd、zd。校准工具110定位在位置o处,即,校准工具110的参考点定位在立体定向坐标系中的点xo、yo、zo。成像系统50中的校准工具110的位置是o’,即,ao’、bo’、co’。向量rsb是从点s到点b的向量,即,从X射线源51到相应的参考对象112的向量。向量rob是从点o到点b的向量,即,从校准工具110的中心点到相应的参考对象112的向量。该向量rob是已知的。向量rso是从点s到点o的向量,即,从X射线源51到校准工具110的向量。向量ro’b’.SDD是“源到检测器的距离”,即,X射线源51到检测器52之间的距离。机架角β定义了X射线源51的当前位置s和y轴之间的角度。角α定义了要求校正的旋转,因此,成像系统50的坐标系中的校准工具110的位置o’并且与立体定向坐标系中的校准工具110的位置o相比。图5是图4中示出的几何形状的更详细的视图。参考图4,向量rsb可以被表示为:rsb=rso+rob=rso+roo’+ro’b(1)其中,如上所述,符号rsb表示从点s(X射线源51)到点b(相应的参考对象112)的向量。假设参考对象112相对于校准工具110的中心点o的位置是已知的。立体定向坐标系中的坐标和旋转的坐标系(即,成像系统的坐标系)中的坐标之间的关系可以通过使用空间向量旋转的算法来确定,例如,Rodrigues旋转公式,给定轴^k和旋转角度α:R(r,^k,α)=rcosα+(^kxr)sinα+^k(^k·r)(1-cosα)(2)由于旋转轴是单位向量,它可以用两个参数θ和φ来表示为^k(θ,φ)=(cosφsinθ,sinφsinθ,cosθ)(3)考虑到机架旋转。假设如图4定义的静态的参考框架,这可以通过将具有^k=^z和α=β的方程(2)应用到rso(β=0)和rsd(β=0)来完成:rso=R(rso(β=0),^z,β)=(yssinβ-xscosβ,-yscosβ-xssinβ,-zs)(4)rsd=R(rsd(β=0),),^z,β)=(xdcosβ-ydsinβ,ydcosβ+xdsinβ,zd)(5)向量rsd=(xd,yd,zd)可以根据图像例如通过质心计算来计算出。参考对象112的每个表示将占据大于像素的检测器表面上(即,在图像中)的区域。根据本发明的实施例,在检测器表面上中的一点或像素被选择用于每个参考对象,每个参考对象精确地表示它的投影。基于检测器表面上的选择的点dx和dy,可以确定向量rsd(xd,yd,zd)。参考对象112对背景具有高对比度,并且因此阈值化是用于识别或确定投影的有效方法。校准工具110和参考对象112优选地被设计成使得图像中出现的不同的投影之间水平或垂直都没有重叠。根据优选的实施例,确定感兴趣区域用于每个投影,并且确定精确地表示投影的点是例如使用质心计算选自该感兴趣区域的。由于向量rsb与rsd平行,以下应用:rsb=λ·rsd(6)其中,λ是标量。该标量的值可以通过将余弦公式应用于图5示出的三角形来表示,其得到:‖rsb‖2=‖rsb‖2+‖rsb‖2-2‖rsb‖‖rsb‖cosγ(7)将方程(7)和方程(6)相结合并且将长度表示为标积,得到以下方程:λ=1||rsd||rso·rso+rob·rob+2rso·rob---(8)]]>λ=||rso+rob||||rsd||---(9)]]>基于方程(8)和方程(9),方程(1)可以被表示为:rsd||rsd||=rso+roo′+ro′b||rso+roo′+ro′b||---(10)]]>自由度是变换roo’=(x0,y0,z0)和旋转,其由校准工具的θ、φ、α和源到轴的距离(SAD)确定。求解关于每个图像中的每个参考对象的方程(10)。在优选的实施例中,使用三个参考对象并且在成像会话期间捕获300图像。此外,根据优选的实施例,可以在最小二乘意义上数值求解方程(10)。以下将说明利用高斯-牛顿算法的方程(10)的数值解的示例。为了简单的符号,引入以下方程:x=(RSAD,x0,y0,z0,θ,φ,α)(11)yi=rsd(β)i||rsd||---(12)]]>rso(RSAD,β)=RSAD·(-sinβ,-cosβ,0)(13)v(x)=rso(RSAD,β)+roo’(x0,y0,z0)+ro’b(θ,φ,α)(14)u(x)=v·v(15)Fi=viu(x)---(16)]]>其中,对向量分量和参考对象两者上的适当的索引是理解的。RSAD是从源(即,X射线源51)通过校准工具110的源点(即,校准工具110的位置)到轴的距离。接下来,当求解方程(10)时,考虑残差vi:vi=yi–Fi(x)(17)高斯-牛顿算法致力于将平方和进行最小化。以初始猜测值x0开始,该算法根据以下方程迭代地更新解:xn+1=xn+Δ(18)其中,Δ是通过求解正规方程确定的小阶:(JTJ)Δ=JTv(19)并且J反过来是关于x的F的雅可比行列式,即:Jij(xn)=∂Fi∂xj|x=xn---(20)]]>正规方程可以在一阶中使用J的Cholesky分解或QR因式分解来求解。对于大系统,诸如共轭梯度法的迭代方法可以是更有效的。然后,J(x)的解析表达式可以被计算:J=▿F1▿F2...=▿viu-vi2u3/2·▿u---(21)]]>由于v(x)=rso(RSAD,β)+roo’(x0,y0,z0)+ro’b(θ,φ,),以下应用:∂v∂RSAD=∂rso∂RSAD=(-sinβ,-cosβ,0)---(22)]]>∂v∂x0=∂roo′∂x0=(1,0,0)---(23)]]>∂v∂y0=∂roo′∂y0=(0,1,0)---(24)]]>∂v∂z0=∂roo′∂z0=(0,1,0)---(25)]]>∂v∂θ=∂ro′b∂θ=(∂k^∂θ×ro′b)sinα+(∂k^∂θ(k^·ro′b+k^(∂k^∂θ·ro′b)(1-cosα)---(26)]]>∂v∂φ=∂ro′b∂φ=(∂k^∂φ×ro′b)sinα+(∂k^∂φ(k^·ro′b+k^(∂k^∂φ·ro′b)(1-cosα)---(27)]]>∂v∂α=∂ro′b∂α=(k^×ro′b)cosα+(k^(k^·ro′b)-ro′b)sinα---(28)]]>其中,∂k^∂θ=(cosφcosθ,sinφcosθ,-sinθ)---(29)]]>∂k^∂φ=(-sinφsinθ,cosφsinθ,0)---(30)]]>最后,以下应用:▿u=2(v·▿)v---(31)]]>其以分量形式变换成∂u∂xj=2Σn=17vn∂vn∂xj---(32)]]>因此,方程(21)可以写成:J=▿viu-viu32(v·▿)v---(33)]]>现在参考图7,将描述根据本发明的用于校准用于捕获与放射治疗系统中的治疗计划或治疗有关的患者的图像的成像系统50的方法的实施例的一般步骤。例如,该方法可以在如图2所述的系统中执行。第一步骤可以是执行成像系统50的图像质量参数的校准,其包括确定成像系统50的旋转轴。可替换地,如果早期已经执行校准,成像系统50可以不需要校准并且校准数据可以存储在校准文件中。在步骤210处,启动图像扫描过程并且使用成像系统50的放射单元51来照射可释放地附接的校准工具110。在步骤220处,包括校准工具110的参考对象112的横截面表示的至少一个二维图像是在图像扫描过程期间使用成像系统50的检测器52来捕获的。在步骤230处,每个参考对象112的表示或投影的图像坐标dxy是在捕获的图像中识别出的或确定的。如以上已经描述的,确定每个对象112的点,确定表示它的投影的点。由于对象112的尺寸,它们的投影将占据图像中大于像素的区域并且因此识别表示中心点的点将是有效的。例如,阈值化可以用于将投影与背景进行分离。参考对象112被布置在校准工具110上,使得在水平方向上或者在垂直方向上没有投影重叠。执行非重叠方向中的求和以及对连续的非零区域的识别。在两个方向上重复关于每个分割条的该过程。所求点可以在产生的感兴趣区域中发现。例如,质心计算可以用于这个目的。在步骤240处,获得校准工具110的原点o相对于成像单元51的位置或成像单元51和校准工具的原点o之间的向量rso。在本发明的实施例中,计算成像单元51和校准工具的原点o之间的向量rso,以及在本发明的其他实施例中,预定成像单元51和校准工具的原点o之间的向量rso。在步骤250处,包括在立体定向坐标系中的校准工具110的位置和成像系统坐标系中的校准工具110的位置之间的平移和旋转位置差的变换是使用例如以上描述的方程(1)-(33)来计算出的。通常,计算是基于参考对象图像坐标dxy、立体定向坐标系中的参考对象112相对于校准工具110的原点o的位置rob和校准工具110的原点o相对于成像单元51的位置rso。如果没有预定SAD,在计算变换的同时计算SAD。在下面的步骤中,已经计算的变换可以用于校准与放射治疗系统1有关的成像系统50。现在转向图8,将描述根据本发明的用于校准用于捕获与放射治疗系统中的治疗计划或治疗有关的患者的图像的成像系统50的方法的另一个实施例的步骤。例如,该方法可以在如图2所述的系统中执行。第一步骤可以是执行成像系统50的图像质量参数的校准,其包括确定成像系统50的旋转轴。可替换地,如果早期已经执行校准,成像系统50可以不需要校准并且校准数据可以存储在校准文件中。在步骤310处,启动图像扫描过程并且使用成像系统50的放射单元51来照射可释放地附接的校准工具110。在步骤320处,包括校准工具110的参考对象112的横截面表示的至少一个二维图像是在图像扫描过程期间使用成像系统50的检测器52来捕获的。在步骤330处,每个参考对象112的表示或投影的图像坐标dxy是在捕获的图像中识别出的或确定的。如以上已经描述的,确定每个对象112的点,确定表示它的投影的点。由于对象112的尺寸,它们的投影将占据图像中大于像素的区域并且因此识别表示中心点的点将是有效的。例如,阈值化可以用于将投影与背景进行分离。参考对象112被布置在校准工具110上,使得在水平方向上或者在垂直方向没有投影重叠,见图4。执行非重叠方向中的求和以及对连续的非零区域的识别。在如图4所示的两个方向上重复关于每个分割条的该过程。所求点可以在产生的感兴趣区域中发现。例如,质心计算可以用于这个目的。在步骤340处,基于参考对象图像坐标dxy和相对于成像单元或X射线源51的检测器52的位置rsd,确定或计算参考对象112相对于成像单元51的位置rsd。在步骤350处,获得与成像单元51有关的校准工具110的原点o的位置或成像单元51和校准工具的原点o之间的向量rso。在本发明的实施例中,计算成像单元51和校准工具的原点o之间的向量rso,以及在本发明的其他实施例中,预定成像单元51和校准工具的原点o之间的向量rso。在步骤360处,包括在立体定向坐标系中的校准工具110的位置和成像系统坐标系中的校准工具110的位置之间的平移和旋转位置差的转换是使用例如以上描述的方程(1)-(31)来计算的。通常,计算是基于参考对象相对于成像单元51的位置rsd、成像坐标系中的参考对象的位置ro’b和校准工具110的原点o相对于成像单元51的位置rso。如果没有预定SAD,在计算变换的同时计算SAD。在下面的步骤中,已经计算的变换可以用于校准与放射治疗系统1有关的成像系统50。现在转向图9,将描述根据本发明的用于校准用于捕获与放射治疗系统中的治疗计划或治疗有关的患者的图像的成像系统50的方法的又一个实施例的步骤。例如,该方法可以在如图2所述的系统中执行。第一步骤可以是执行成像系统50的图像质量参数的校准,其包括确定成像系统50的旋转轴。可替换地,如果早期已经执行校准,成像系统50可以不需要校准并且校准数据可以存储在校准文件中。在步骤410处,启动图像扫描过程并且使用成像系统50的放射单元51来照射可释放地附接的校准工具110。在步骤420处,包括校准工具110的参考对象112的横截面表示的至少一个二维图像是在图像扫描过程期间使用成像系统50的检测器52来捕获的。在步骤430处,每个参考对象112的表示或投影的图像坐标dxy是在捕获的图像中识别出的或确定的。如以上已经描述的,确定每个对象112的点,确定表示它的投影的点。由于对象112的尺寸,它们的投影将占据图像中大于像素的区域并且因此识别表示中心点的点将是有效的。例如,阈值化可以用于将投影与背景进行分离。参考对象112被布置在校准工具110上,使得在水平方向上或者在垂直方向上没有投影重叠,见图4。执行非重叠方向中的求和以及对连续的非零区域的识别。在如图4中所示的两个方向上重复关于每个分割条的该过程。所求点可以在产生的感兴趣区域中发现。例如,质心计算可以用于这个目的。在步骤440处,基于相应的参考对象图像坐标dxy并且对于相应的参考对象112的参考对象位置和成像单元51的位置之间的向量rsb与参考对象图像坐标的位置和成像单元51的位置之间的向量rsd是平行的的假设,确定参考对象位置和成像单元51的位置之间的向量rsb。在步骤450处,获得与成像单元51有关的校准工具110的原点o的位置或成像单元51和校准工具的原点o之间的向量rso。在本发明的实施例中,计算成像单元51和校准工具的原点o之间的向量rso,以及在本发明的其他实施例中,预定成像单元51和校准工具的原点o之间的向量rso。在步骤460处,包括在立体定向坐标系中的校准工具110的位置和成像系统坐标系中的校准工具110的位置之间的平移和旋转位置差的转换是使用例如以上描述的公式(1)-(31)来计算的,在计算该变换中还使用参考对象位置和成像单元51的位置之间的向量rsd和参考对象图像坐标dxy的位置和成像单元51的位置之间的向量rsb之间的关系。如果没有预定SAD,在计算变换的同时计算SAD。在下面的步骤中,已经计算的变换可以用于校准与放射治疗系统1有关的成像系统50。虽然以上已经使用其示例性实施例描述了本发明,但是如本领域的技术人员理解的,可以做出改变、修改及其组合,而不偏离在所附权利要求中定义的本发明的范围。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1