一种抗菌的羧甲基壳聚糖/纳米氧化锌复合微球及其制备的制作方法

文档序号:11116906阅读:1551来源:国知局
一种抗菌的羧甲基壳聚糖/纳米氧化锌复合微球及其制备的制造方法与工艺

本发明属于生物医药复合材料技术领域,特别涉及一种抗菌的羧甲基壳聚糖/纳米氧化锌复合微球及其制备方法与应用。



背景技术:

纳米氧化锌(nZnO)是一种具有优良抑菌性能的纳米金属氧化物,美国食品药品监督管理局(FDA)已将nZnO列入五种安全的锌化合物之一。抗菌能力强、无刺激性、热稳定好、来源丰富、价格低廉,且自身为白色,因此近年来nZnO作为抗菌剂被逐渐用在化妆品、纺织品和卫生陶瓷中。

然而纳米材料与普通材料的性质明显不同,其对人体健康潜在危害性尚不明确。国内外已有许多研究证明:粒径越小、浓度越大的nZnO抑菌性能越好,但同时对细胞的毒性越大。因此,nZnO在安全剂量范围内的控制释放是解决上述问题的重要方法。用生物安全性好的可降解高分子材料将药物包附,利用高分子材料生物降解来控制药物的毒性是常用的控制药物剂量的方法,而这其中,天然高分子材料又因来源广泛、无毒性、生物相容性好、制备工艺环保等优点倍受青睐。

中国专利CN 104416986 A“纳米氧化锌抗菌复合材料”中,采用聚氨酯与nZnO共混,通过注塑成型,制备成复合抗菌材料。其特点是制备简便、产物机械性能良好,但未涉及具体抗菌性能的评价。

中国专利CN 104928799 A“一种可持续抗菌的纳米氧化锌海藻纤维的制备方法”中,采用海藻纤维作为高分子基底,利用湿法静电纺丝制备了纳米氧化锌/海藻纤维复合抗菌材料。该发明的特点是nZnO在电纺纤维中分布均匀,生成的海藻酸盐有助促进创口修复。但制备工艺繁琐,涉及凝固浴再溶解再纺丝等多步。

壳聚糖及其水溶性衍生物具有无毒性、可降解性与良好的生物相容性等特点,同时还是一种广谱抑菌剂,在制药、印染、废水处理和化妆品等领域也同样得到广泛的应用和研究。在制药领域,壳聚糖被广泛用作药物载体,用于负载包括基因药物在内的多种药物,具有工艺简单、安全可靠的优点。

中国专利CN 104874008 A“一种医用生物抗菌敷料的制备方法”,采用甘薯淀粉、壳聚糖为主要原料,掺入nZnO和三七为主要辅料,制备了一种新型的医用生物抗菌敷料。该发明创新性地利用中药三七与nZnO共同作用,有效地提高了敷料的抗菌性能,但未涉及nZnO在材料中的分散情况,且制备原材料多达八种以上,较为复杂。

中国专利CN101366969“氧化锌作为壳聚糖生物膜的增强剂的用途”,采用溶液浇注法,直接将壳聚糖的醋酸溶液浇筑于nZnO粉末上干燥成膜,该方法制备的共混膜抗菌性良好,但nZnO在薄膜的分散性未得到解决,且酸性溶液对于纳米氧化锌复合材料存在较大的影响。

Gurpreet等采用冷冻干燥法制备了壳聚糖与nZnO的复合材料(Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity,Int Nano Lett(2014)4:107),该方法的特点是nZnO不会由于壳聚糖的酸溶性而损耗,但由于冷冻的条件,产物的形貌难以控制,形成微球包覆氧化锌的制备条件非常苛刻。

针对上述nZnO在应用中的生物安全性问题,及目前nZnO复合材料的研究状态。本发明以水溶性壳聚糖为高分子载体制备nZnO复合微球,从而解决在酸性的壳聚糖溶液中ZnO的反应问题。目前国内外尚未见以羧甲基壳聚糖为载体制备nZnO复合微球的研究。



技术实现要素:

为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种抗菌的羧甲基壳聚糖/纳米氧化锌复合微球的制备方法。本发明制备方法采用喷雾干燥原理,利用羧甲基壳聚糖复合纳米氧化锌,制备得到不同nZnO含量的羧甲基壳聚糖/纳米氧化锌复合微球。

本发明另一目的在于提供上述方法制备的羧甲基壳聚糖/纳米氧化锌复合微球。本发明的羧甲基壳聚糖/纳米氧化锌复合微球粒径小,纳米氧化锌在微球中分散均匀,具有显著提高的抑菌性能。

本发明再一目的在于提供上述羧甲基壳聚糖/纳米氧化锌复合微球在创面修复材料、食品药品包装材料和药物载体材料中的应用,可有效抑制大肠杆菌、金黄色葡萄球菌等细菌的生长。

本发明的目的通过下述方案实现:

一种羧甲基壳聚糖/纳米氧化锌复合微球的制备方法,包括以下步骤:

将nZnO加入到羧甲基壳聚糖的水溶液中,超声振荡使其分散均匀,静置,得到羧甲基壳聚糖与nZnO的混合悬浮液;将上述悬浮液利用喷雾干燥仪进行喷雾干燥,得到羧甲基壳聚糖/纳米氧化锌复合微球。

在其中一个实施例中,所述nZnO的用量为羧甲基壳聚糖质量的6~10%。

在其中一个实施例中,所用羧甲基壳聚糖的粘度为200~800mpa·s。

在其中一个实施例中,所述羧甲基壳聚糖的水溶液的质量浓度为0.8~2.0%。

在其中一个实施例中,所述喷雾干燥的参数为送料速率20~35%;进口温度为190~220℃。

在其中一个实施例中,所用的喷雾干燥仪为瑞士有限公司型号B290。

在其中一个实施例中,所用的nZnO为自制的或购买得到的均可,粒径优选为5~50nm。

本发明提供上述方法制备得到的羧甲基壳聚糖/纳米氧化锌复合微球,其粒径为1~10μm。

本发明的羧甲基壳聚糖/纳米氧化锌复合微球具有显著的抑菌性能,在1mg/mL的浓度下对金黄色葡萄球菌、大肠杆菌的24h抑菌率均达到80%以上。且生物毒性低,如nZnO含量8wt%的复合微球在浓度小于等于125mg/mL时NIH-3T3细胞24h存活率均高于90%。本发明的羧甲基壳聚糖/纳米氧化锌复合微球可应用于创面修复材料、食品药品包装材料和药物载体材料中。

本发明利用羧甲基壳聚糖复合纳米氧化锌,其一定粘度具有较好装载性及外观可控性,通过喷雾干燥,物料经雾化后,水分瞬间迅速汽化,得到外观形貌为微球或微囊状的颗粒,可用于药物的装载。本发明方法原料安全无毒,不涉及有毒有害液体及其他挥发性试剂,工艺简单可控,产率高,易于工业化大批量生产。且制备得到的羧甲基壳聚糖/纳米氧化锌复合微球粒径小,纳米氧化锌在微球中分散均匀,显著提高了复合微球的抑菌性能,不同纳米氧化锌含量的复合微球对典型的革兰氏阳性菌和阴性菌24小时的抑菌率均高于80%,有效抑制大肠杆菌、金黄色葡萄球菌等细菌的生长,满足日常生活中食品药品包装、细菌性创口感染的修复等不同材料对复合微球抗菌性的需求,可广泛应用于创面修复、食品药品包装和药物载体等领域中。

附图说明

图1为实施例1的复合微球的微观形貌。

图2为实施例2的复合微球的微观形貌。

图3为实施例3的复合微球的微观形貌。

图4为实施例4的复合微球的微观形貌。

图5为实施例1、实施例2的复合微球细胞毒性测试结果。

图6为本发明制备方法流程示意图。

具体实施方式

下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。

本发明实施例中所用试剂均可从商业渠道获得。本发明制备方法流程示意图见图6。

本发明实施例中喷雾干燥装置为小型喷雾干燥仪(B-290,)。

本发明实施例中羧甲基壳聚糖/纳米氧化锌复合微球表征:采用TM3030(Tabletop Microscope,MITACHI)表征形貌;采用国家标准GBT 21510-2008中粉末抗菌性能试验方法对抑菌性能进行测试,试验菌种为大肠杆菌(E.coli,ATCC25922)和金黄色葡萄球菌(S.aureus,ATCC6538);采用CCK-8试剂盒对细胞毒性进行测试,试验细胞为小鼠成纤维细胞NIH-3T3。

实施例1

应用羧甲基壳聚糖与纳米氧化锌(粒径~10nm)以100:8质量比制备复合微球的步骤如下:

(1)称取5g羧甲基壳聚糖粉末(SIGMA-ALDRICH,粘度200~800mpa·s)加入到300mL去离子水中,并用搅拌器进行搅拌,待粉末完全溶解后,得到1.67wt%的溶液;

(2)nZnO的制备:将乙酸锌与二甲基砜溶于甲醇中制备成0.015mol/L的溶液,在其中缓慢滴入0.001mol/L的氢氧化钾的甲醇溶液,反应12h后获得透明的溶胶,加入去离子水使纳米颗粒结晶沉淀,经离心分离并用乙醇洗涤沉淀后干燥获得粉末状nZnO;

(3)称取步骤(2)中所得的nZnO粉末(直径约10nm)0.4g,以纳米氧化锌/羧甲基壳聚糖=8wt%的比例加入到步骤(1)所得羧甲基壳聚糖溶液中,并用超声振荡仪振荡20min进行分散,待分散均匀后静置备用;

(4)将步骤(3)得到的混合悬浮液用喷雾干燥仪进行喷雾干燥,进口温度为220℃,进气量为90%,给料速率为7.5mL/min,得到的复合微球粉末储存于防潮箱中备用。

所得复合微球微观上呈球形或微囊形,表面光滑,见图1;复合微球在1mg/mL浓度下对大肠杆菌ATCC25922抑菌率为98.9%,对金黄色葡萄球菌ATCC6538抑菌率为99.9%,具体见表1;在125mg/mL浓度下NIH-3T3细胞24小时细胞存活率为94.5%,而同浓度下纯nZnO组的细胞存活率仅为52.6%,见图5。

实施例2

应用羧甲基壳聚糖与纳米氧化锌(粒径~30nm)以100:8质量比制备复合微球的步骤如下:

(1)称取5g羧甲基壳聚糖粉末(SIGMA-ALDRICH,粘度200~800mpa·s)加入到300mL去离子水中,并用搅拌器进行搅拌,待粉末完全溶解后,得到1.67wt%的溶液;

(2)称取纳米氧化锌粉末(ALADDIN,直径30±10nm)0.4g,以纳米氧化锌/羧甲基壳聚糖=8wt%的比例加入到步骤(1)所得羧甲基壳聚糖溶液中,并用超声振荡仪振荡20min进行分散,待分散均匀后静置备用;

(3)将步骤(2)得到的混合悬浮液用喷雾干燥仪进行喷雾干燥,进口温度为220℃,进气量为90%,给料速率为7.5mL/min,得到的复合微球粉末储存于防潮箱中备用。

所得复合微球微观上呈球形或微囊形,表面光滑好,见图2;复合微球在1mg/mL的浓度下对大肠杆菌ATCC25922的抑菌率为99.9%,对金黄色葡萄球菌ATCC6538的抑菌率为97.3%,具体见表1;在125mg/mL浓度下NIH-3T3细胞24小时细胞存活率为96.2%,而同浓度下纯nZnO组的细胞存活率仅为58.0%,见图5。

实施例3

应用羧甲基壳聚糖与纳米氧化锌(粒径~30nm)以100:6质量比制备复合微球的步骤如下:

一种羧甲基壳聚糖/纳米氧化锌复合微球的制备方法,包括以下步骤:

(1)称取5g羧甲基壳聚糖粉末(SIGMA-ALDRICH,粘度200~800mpa·s)加入到300mL去离子水中,并用搅拌器进行搅拌,待粉末完全溶解后,得到1.67wt%的溶液;

(2)称取纳米氧化锌粉末(ALADDIN,直径30±10nm)0.3g,以纳米氧化锌/羧甲基壳聚糖=6wt%的比例加入到羧甲基壳聚糖溶液中,并用超声振荡仪振荡20min进行分散,待分散均匀后静置备用;

(3)将步骤(2)得到的混合悬浮液用喷雾干燥仪进行喷雾干燥,进口温度为220℃,进气量为90%,给料速率为7.5mL/min,得到的复合微球粉末储存于防潮箱中备用。

所得复合微球微观上多呈球状或囊状,微球尺寸较小,见图3;复合微球在1mg/mL的浓度下对大肠杆菌ATCC25922抑菌率为88.0%,对金黄色葡萄球菌ATCC6538抑菌率为86.0%,具体见表1。

实施例4

应用羧甲基壳聚糖与纳米氧化锌(粒径~30nm)以100:10质量比制备复合微球的步骤如下:

一种羧甲基壳聚糖/纳米氧化锌复合微球的制备方法,包括以下步骤:

(1)称取5g羧甲基壳聚糖粉末(SIGMA-ALDRICH,粘度200~800mpa·s)加入到300mL去离子水中,并用搅拌器进行搅拌,待粉末完全溶解后,得到1.67wt%的溶液;

(2)称取纳米氧化锌粉末(ALADDIN,直径30±10nm)0.5g,以纳米氧化锌/羧甲基壳聚糖=10wt%的比例加入到羧甲基壳聚糖溶液中,并用超声振荡仪振荡20min进行分散,待分散均匀后静置备用;

(3)将步骤(2)得到的混合悬浮液用喷雾干燥仪进行喷雾干燥,进口温度为220℃,进气量为90%,给料速率为7.5mL/min,得到的复合微球粉末储存于防潮箱中备用。

所得复合微球微观上多呈囊状,微球尺寸较大,结果见图4;复合微球在1mg/mL的浓度下对大肠杆菌ATCC25922抑菌率为99.9%,对金黄色葡萄球菌ATCC6538抑菌率为99.5%,具体见表1。

表1羧甲基壳聚糖/纳米氧化锌复合微球的抑菌性能

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1