用于经由连续参数估计来监测患者呼吸状态的无创方法与流程

文档序号:13688888
用于经由连续参数估计来监测患者呼吸状态的无创方法与流程

以下总体涉及用于在患者通气期间监测和表征呼吸参数的系统和方法。其特别应用于向临床医师提供实时诊断信息以个性化患者的通气策略并改善患者预后的系统中,并且将特别参照其进行描述。然而,应该理解的是,其也可以应用于其他使用场景,并不一定限于上述应用。



背景技术:

呼吸系统的参数(阻力Rrs和顺应性Crs)和患者的吸气努力(呼吸肌压力Pmus(t))的实时评估为临床医师提供了宝贵的诊断信息,以优化通气治疗。

能够使用良好的Pmus(t)估计来量化患者的吸气努力并选择适当水平的通气支持以避免呼吸肌萎缩和疲劳。此外,估计的Pmus(t)波形也能够用于触发和关闭通气机,从而减少患者-通气机不同步性。Rrs和Crs的估计也很重要,因为它们为临床医师提供了有关患者的呼吸系统的机械性质的定量信息,并且它们能够用于诊断呼吸疾病并且更好地选择合适的通气机设置。

Pmus(t)传统上是经由食管压力测量来估计的。从球囊需要插入患者食管内的意义上说,这种技术是有创的,而且在重症监护条件下长时间使用时不可靠。

估计Pmus(t)的另一种选项是基于肺运动方程来计算它。假设Rrs和Crs是已知的,经由下面的被已知为肺运动方程的方程来估计Pmus(t)的确是可能的:

其中,Py(t)是在通气机的Y形件处测得的压力,是进出患者呼吸系统的空气流量(也是在Y形件处测得),V(t)是由通气机递送给患者的净空气体积(通过对流量信号随时间积分来测得),P0是一个常数项,用以说明呼气末期的压力(需要平衡方程式但本身并不是感兴趣的),并将在下面的讨论中被认为是Pmus(t)的一部分。然而,Rrs和Crs必须先测量或估计。

Rrs和Crs可以通过应用流量中断器技术(也称为吸气末暂停,EIP)来估计,但这会干扰通气机的正常运行,或者Rrs和Crs可以在项Pmus(t)能够“合理地”假定为零(即,完全卸载患者的呼吸肌)的特定情况下来估计。这些情况包括:患者处于连续强制通气(CMV)的周期性麻痹;周期性高压支持(PSV)水平;延伸在吸气阶段和呼气阶段期间的每个PSV呼吸的特定部分;以及PSV呼吸的流量信号满足指示患者的吸气努力不存在的特定条件的呼气部分。

使用EIP操作法的Rrs和Crs估计具有特定的缺点,并依赖于特定假设。EIP操作法中断了患者所需的正常通气。为使Rrs和Crs计算有效,它还假设患者呼吸肌在EIP操作法期间完全松弛。此外,经由EIP操作法获得的Rrs和Crs估计(其影响下一次呼吸的Pmus(t)的估计)被假定为恒定的,直到下一个EIP操作法被执行,从而没有获得Rrs和Crs的连续和实时的估计。实际上,在两次连续的EIP操作法之间,患者状况的变化可能会发生,并且这会对Pmus(t)的估计不利。另一个缺点是静态操作法(EIP)是在特定的通气模式(体积辅助控制,VAC)下进行的,并且所获得的R和C值可能并不能代表在诸如压力支持通气(PSV)的其他通气模式下支配肺动力学的真值。因此,在PSV操作期间经由方程(1)计算的Pmus(t)的准确性能够受到损害。

上述估计方法是在Pmus(t)可以忽略的假设上操作的。这个假设的实施在临床设置上能够是有问题的。例如,对患者强加周期性麻痹和CMV通常在临床上是不可行的。类似地,强加周期性高PSV会干扰通气机的正常运行,并且可能对患者不利。PSV呼吸期间Pmus(t)可忽略的假设值得商榷,尤其是在吸气阶段。在呼吸循环的选定部分上操作的方法也限制了在拟合过程中使用的数据点的分数,这使得估计结果对噪声更敏感。

在下文中,公开了用于经由连续参数估计来监测患者呼吸状态的无创方法,其克服了各种前述缺陷以及其他缺陷。



技术实现要素:

根据一个方面,描述了一种医学通气机设备。所述设备包括被配置为向通气患者递送通气的通气机,被配置为测量通气机的Y形件处的气道压力Py(t)的压力传感器,和被配置为在通气机Y形件处测量进出通气患者的空气流量的空气流量传感器。所述设备还包括呼吸系统监测器,所述呼吸系统监测器包括微处理器,所述微处理器被配置为使用移动窗口最小二乘(MWLS)估计来估计所述通气患者的呼吸参数,包括(i)呼吸系统弹性或顺应性(Ers或Crs),(ii)呼吸系统阻力(Rrs),和(iii)呼吸肌压力(Pmus(t))。

根据另一方面,一种方法包括:使用通气机对患者通气;在通气期间,测量气道压力Py(t)和进出患者的空气的空气流量使用微处理器,应用移动窗口最小二乘(MWLS)估计以估计(i)患者的呼吸系统弹性Ers或顺应性Crs,(ii)患者的呼吸系统阻力Rrs,和(iii)患者的呼吸肌压力Pmus(t);并且在显示器上显示通过应用MWLS估计所估计的患者的呼吸参数中的一个或多个。

一个优点在于提供用于经由包括阻力、顺应性和呼吸肌压力的连续参数估计来监测患者呼吸状态的无创方法。

另一个优点在于提供具有改进的数据分析的通气机。

本领域技术人员在阅读和理解下面的详细描述后将认识到本发明的其他优点。应该理解,特定实施例可以不实现这些优点中的任何一个,特定实施例可以实现这些优点中的一个、两个或更多个。

附图说明

本公开可以采取各种部件和部件布置以及各种步骤和步骤布置的形式。附图仅用于说明优选实施例的目的,而不应被解释为限制本发明。

图1示出了具有所提出的通气估计方案的用于患者的通气系统。

图2示出了所描述的估计方案的框图。

图3示出了用于Ers估计的移动窗口最小二乘算法。

图4示出了局部Pmus(t)波形的多项式阶的移动窗口最小二乘算法范例。

图5示出了MWLS Rrs估计结果的最大比率组合。

具体实施方式

以下涉及在患者通气期间的呼吸参数的特征,特别涉及呼吸肌压力Pmus(t),呼吸阻力Rrs和呼吸顺应性Cr或弹性Er=1/Cr。原理上,这些参数能够使用肺运动方程(方程(1))来估计,方程(1)将这些参数与通气机接口件处的压力Py(t)和空气流量连同肺的空气体积相关。在实践中,由于呼吸肌压力Pmus(t)随着时间变化,所以使用肺运动方程式联合估计Pmus(t),Rrs和Ers通常是欠定的并且不能被解析求解。处理这个问题的各种方法包括使用有创探头测量额外的信息,或者通过诸如中断正常呼吸的操作来创建“特殊情况”环境。有创探头具有明显的缺点,而依靠操纵正常患者呼吸的技术不能提供正常呼吸的持续监测,并且可能对患者有害。

参考图1,医学通气机系统包括医学通气机100,其经由进气软管104以正压将空气流递送至患者102。呼出的空气经由呼气软管106返回到通气机100。通气机系统的Y形件108用于在吸气期间将来自进气软管104的排气端的空气耦合到患者,并用于在呼气期间将来自患者的呼出空气耦合到呼气软管106中。注意,Y形件108有时也被其他的术语(例如T形件)所指代。在图1中未示出的是可以根据患者102正在接受的呼吸治疗而提供的许多其他辅助部件。这种辅助部件可以包括,例如:氧气瓶或其他医学级氧气源,其用于向空气流递送受控水平的氧气(通常由医师或其他医务人员设定的吸入氧分数(FiO2)通气机参数控制);加湿器,其垂直进入进气线104;鼻胃管,其向患者102提供营养物;等等。通气机100包括用户界面,在该说明性范例中,用户界面包括触敏显示器部件110,医师、呼吸专家或其他医务人员能够通过该触敏显示器部件110配置通气机操作并监测通气机100的测量的生理参数和操作参数。另外地或备选地,用户界面可以包括物理用户输入控件(按钮,拨号盘,开关等),键盘,鼠标,(一个或多个)可听警报设备,(一个或多个)指示灯,等等。还要注意的是,说明性的通气机100仅仅是说明性的范例。

说明性的通气机100是具有近端传感器的双肢通气机。然而,所公开的患者呼吸状态监测技术可以与基本上任何类型的通气机结合使用,例如单肢或双肢通气机,具有阀或鼓风机的通气机,具有与患者的有创耦合的通气机(例如经由气管造口术或气管内导管)或具有与患者的无创耦合的通气机(例如使用面罩),具有如图所示的用于测量压力和流量的近端传感器的通气机或依赖于通气机单元中的传感器的没有这样的近端传感器的通气机,等等。

继续参考图1,患者102由各种生理参数传感器监测。具体而言,图1示出了两个这样的传感器:气道压力传感器112和空气流量传感器114,气道压力传感器112测量与患者的耦合处的压力Py(t)(通常在Y形件108处测量,因此Py(t)),空气流量传感器114测量进出患者的空气流量(通常也在Y形件108处测量)。传感器112、114可以被集成到Y形件108中,置于空气线104、106上,或者集成到通气机100中。在机械通气期间,其他生理参数可以通过合适的传感器来监测,例如心率,呼吸速率,血压,血氧(例如SpO2),呼吸气体成分(例如测量呼吸气体中的CO2的二氧化碳图)等等。其他生理参数可以从直接测量的生理参数中导出。

该系统还包括呼吸系统分析器120,其包括微处理器、微控制器或其他电子数据处理设备,其被编程为处理包括气道压力Py(t)和空气流量的输入数据以生成关于患者呼吸系统参数的信息:阻力Rrs,顺应性Crs(或等效地,Ers=1/Crs)和通过呼吸肌压力Pmus(t)表征为时间的函数的患者的吸气努力。通过使用应用于气道压力Py(t)和空气流量连同空气流量积分器122根据确定的空气体积的移动窗口最小二乘估计(MWLS)评估肺运动方程(方程(1)),实时地将这些参数确定为时间的函数。(或者,可以采用专用的空气体积传感器)。为了克服方程(1)的欠定性质,MWLS估计是使用以下的连续估计来执行的:(1)经由Ers估计器132的弹性或顺应性(Ers或Crs)参数;接着(2)经由Rrs估计器134的阻力(Rrs)参数的估计;接着(3)经由Pmus(t)估计器136的呼吸肌压力(Pmus(t))参数的估计。

这些连续的估计器132、134、136被应用在时间窗口130内,该时间窗口130通常具有两秒或更少的持续时间,并且更优选地具有一秒或更少的持续时间,并且在说明性范例中,具有100Hz的数据采样的0.6秒持续时间,使得时间窗口包含60个样本。时间窗口的持续时间的上限是由呼吸速率施加的,正常成人的呼吸速率通常为每分钟12至20次呼吸,对应于持续时间为3-5秒的呼吸循环。时间窗口130的持续时间优选地是呼吸循环持续时间的一部分,使得参数Ers和Rrs能够被合理地假定为在每个时间窗口130内是恒定的,并且每个时间窗口130内的Pmus(t)的变化能够使用相对简单的近似函数(例如,在本文中公开的说明性范例中的低阶多项式)表示。

估计器132、134、136被连续地应用在每个时间窗口130内,并且对于每个连续(并且部分重叠)的时间间隔130(因此术语“移动”时间窗口),实时提供Ers,Rrs和Pmus(t)的估计。在说明性的范例中,Ers和Rrs的值被假定为在每个时间窗口130内是恒定的,使得这些参数的估计以与时间窗口130的持续时间相当的时间分辨率是实时的,例如,在一些实施例中为2秒或更少,或者更优选地为1秒或更少,并且在说明性的范例中为0.6秒。如果连续的时间窗口部分重叠,这能够进一步提高有效的时间分辨率。Pmus(t)的实时估计能够具有比Ers和Rrs更高的时间分辨率,因为在时间窗口130内Pmus(t)随时间的变化在说明性的范例中通过时间的低阶多项式函数建模。

本文公开的方法利用了这样的认识,即在所估计的三个参数中,弹性/顺应性(Ers或Crs)通常随时间最缓慢变化。在肺运动方程(方程(1))中,Ers是作为积分随时间缓慢变化的空气体积V(t)的系数。下一个最缓慢变化的参数通常是阻力Rrs,它是空气流量的系数。最后,呼吸肌压力Pmus(t)具有随时间变化最快的潜力,因为其响应于患者主动吸气和呼气而改变。鉴于此,Pmus(t)估计器136的说明性范例不假定Pmus(t)是时间窗口130内的常数,而是采用低阶近似多项式函数。代替在时间窗口130内的Pmus(t)的低阶多项式近似,在其他设想的实施例中,可以设想一些其他时间的参数化函数,例如样条函数。

继续参考图1,输出Ers(或Crs),Rrs和Pmus(t)能够用于各种目的。在一个应用中,估计参数中的一个或多个可以被显示在通气机100的显示部件110上,例如作为数字实时值和/或作为随时间的函数绘制的趋势线。典型地,呼吸弹性或顺应性(Ers或Crs)和呼吸阻力(Rrs)是临床医师最感兴趣的并且适当地被显示和/或被给出趋势。呼吸肌压力Pmus(t)是在正常的临床操作的机械通气期间实时采集的作为时间函数的波形,因此,Pmus(t)能够被通气机100用于触发和关闭机械通气,以减少患者-通气机不同步性(即,使通气机100的正压的施加与患者的呼吸肌肉动作的吸气部分同步)。

在一些实施例中,呼吸功(WoB)估计器140将呼吸肌压力Pmus(t)随体积进行积分,即WoB=∫Pmus(t)dV(t)。WoB是患者102其自己在呼吸上应用多少努力的度量。WoB可以在显示部件110上被显示和/或被给出趋势,以向临床医师提供用于设置诸如压力支持通气(PSV)的通气模式中的通气机压力设置的有用信息。此外,由于WoB估计器140实时地提供WoB(例如在一些实施例中具有大约一秒或更少的时间滞后和分辨率),所以通气机100任选地采用WoB作为反馈控制参数,例如,调节受控的通气机设置以将WoB维持在恒定的设定点值。例如,如果WoB增加,则这意味着患者102正在挣扎地呼吸,并且因此应该增加PSV模式下的通气机100所施加的正压力以向挣扎的患者提供增加的呼吸辅助。

参考图2,描述了连续估计器132、134、136的一些说明性实施例。显示了参数Ers,Rrs和Pmus(t)在一秒的一部分的时间窗口上的连续估计,在该时间窗口上假定参数Ers和Rrs是常数。在第一遍(由Ers估计器132执行)中,假设所有三个参数Ers,Rrs和ΔPmus(t)在时间窗口130上是恒定的并且被同时计算,但是从该第一遍仅仅保留估计的(在本文中使用的符号中,使用上标“帽子”,即用于指示参数p的估计值。)在第二遍(由Rrs估计器134执行)中,现在已知的(估计的)的贡献通过相减被去除,并且肺运动方程的剩余部分针对Rrs和Pmus(t)拟合,后者使用低阶多项式(n=0、1或2)来近似。在实验中,发现多项式阶的最佳选择取决于时间窗口130由于可能的过度拟合而位于的呼吸阶段-因为在本文公开的说明性实施例中呼吸阶段不是先验已知的,使用零阶、一阶和二阶多项式的加权组合。Rrs估计器134的输出是呼吸阻力的估计值,即最后,在第三遍(由Pmus(t)估计器136执行)中,通过进一步的减法去除现在已知的(估计的)的贡献,并且直接拟合肺运动方程的剩余部分以获得估计的呼吸肌压力,即

继续参考图2,进一步描述说明性的Ers估计器132。在208处,对气道压力Py(t)执行差分运算,并且将输出ΔPy(t)计算为ΔPy(t)=Py(t)-Py(t-1)。使用移动窗口最小二乘(MWLS)估计器在210处连续估计Ers(t)——其是呼吸系统的弹性,Ers(t)=1/Crs(t)——并且基于以下差分方程:

应当注意,在对于每个时间窗口130生成估计的范围内,Ers(t)被估计为时间的函数,使得随着随时间应用连续(部分重叠)的时间窗口,对于连续时间窗口130时间函数被生成为值然而在每个时间窗口130内,将ΔPmus(t),Pmus(t)波形的差值信号以及参数Rrs(t)和Ers(t)被建模为常数,并通过最小二乘最小化方法联合估计。对于Ers估计器132,仅使用Ers(t)的估计,即(在图2的说明性范例中由卡尔曼滤波器212进行滤波之后),而丢弃其他估计输出。而且,Ers估计器132还计算估计值的方差,本文中表示为

MWLS估计器210的输入是由差分运算208输出的Py(t)的差值信号,即,ΔPy(t)。基于运动方程(方程(1)),可以将ΔPy(t)建模为:

其中,是流量差值信号,是体积差值信号(其中,T是采样时间间隔,例如100Hz采样对应于T=0.01秒),并且ΔPmus(t)=Pmus(t)-Pmus(t-1)是Pmus(t)差值信号。

在下文中,滑动时间窗口130的尺寸(或持续时间)被表示为L,其任选地是能够由用户设置的系统参数。当前时间t处的滑动窗口跨越区间[t-L+1,t]。对于MWLS估计器210,滑动窗口中的Pmus(t)差值信号ΔPmus(t)被建模为常数ΔPmus。进一步假定Rrs和Ers在滑动时间窗口130中是恒定的。因此,ΔPy(t)的方程变为:

在时刻t,MWLS算法210使用滑动窗口130中的输入信号,即,区间t-L+1≤n≤t中的样本ΔPy(n)和,以联合估计Rrs,Ers和ΔPmus,但是在随后的运算(即随后的估计器134、136)中仅使用Ers估计

如图3进一步所示,具体地,在时间t,MWLS公式基于上述方程解最小二乘问题300:

在时间t,

y=[ΔPy(t),ΔPy(t-1),...,ΔPy(t-L+1)]T

X=[x(t),x(t-1),...,x(t-L+1)]T

此外,还计算了Ers估计的方差其中是最小二乘剩余方差,

如图3指示的,随着移动窗口向前移动,MWLS估计210被连续地执行,例如,窗口310n之后是下一个窗口310n+1,等等。由于MWLS方法对Py测量噪声和建模误差敏感,因此只有Ers估计值被Ers估计器132保留,而其他估计输出(例如和)被丢弃。

为了进一步提高Ers估计性能,任选地使用卡尔曼滤波器212来减少Ers估计误差。如前提到的,呼吸系统弹性Ers通常不根据时间快速变化。卡尔曼滤波器212用于对中的估计噪声进行滤波并且改善Ers(t)估计结果。卡尔曼滤波器212的输入是和卡尔曼滤波器的输出214是Ers(t)的最终估计,本文中被表示为并且其中ωE(t)是噪声或不确定性度量。上述模型假定是具有噪声项的Ers(t)的无偏估计。

卡尔曼滤波器能够被设计为基于以下假设来减少MWLS估计噪声:(1)状态处理方程,其中,Ers缓慢变化并且能够被建模为随机游走,即Ers(t)=Ers(t-1)+ωE(t),ωE(t)~N(0,δE);以及(2)观察方程,其中,MWLS估计值能够被建模为标准卡尔曼滤波器能够用A=1,B=0,Q=δE,H=1和来实现。卡尔曼滤波器具有特定优势,包括在滑动时间窗口的背景中计算上高效的实现,直观的操作和加权平均的输出。参数δE是控制平均窗口长度的算法参数。

继续参考图1和图2,Ers估计器132的最终输出214被后续的Rrs估计器134用来执行Rrs(t)估计。为了估计Rrs(t),使用将弹性压力分量ErsV(t)从Py(t)中消除。该Ers消除运算216能够表达为:

Ers消除216从肺运动方程中去除一个未知量(Ers),并因此简化了Rrs估计。假定由Ers估计器132输出的估计是正确的并且弹性压力分量被完全消除,则Rrs估计器134的MWLS运算218优化以下方程:

使用移动窗口最小二乘(MWLS)估计器218,估计呼吸阻力Rrs

在Ers估计器132的Ers估计器MWLS运算210中,由于Pmus(t)的差值,即ΔPmus(t),对于每个时间窗口被估计为恒定值ΔPmus,所以将呼吸肌压力Pmus(t)间接地估计为t的线性函数。然而,本文已经发现,在Rrs估计器134的MWLS运算218的情况下,这个估计过分粗糙,并且如果在MWLS运算218中呼吸肌压力Pmus(t)被自适应地建模,则提供呼吸阻力Rrs的显著改善的估计。在本文的说明性范例中,使用低阶多项式对Pmus(t)进行建模,例如0阶(常数值),1阶(线性)或2阶(二次)。Pmus(t)多项式函数的阶M能够显著改变估计性能。

此外,简要参考图4,用于对Pmus(t)建模的多项式的最优阶M取决于呼吸循环内的移动窗口130的位置。在说明性的图4中,第一时间窗口130A位于一阶(M=1)多项式是Pmus(t)的有效模型的呼吸阶段;而对于第二时间窗口130B所处的呼吸阶段,零阶(M=0)多项式是有效的。然而,当前时间窗口130所处的呼吸阶段通常不是Rrs估计器134的输入。

简要参考图5,对于Rrs MWLS 218,Pmus(t)波形被建模为M阶多项式函数(M>=0),即Pmus(t)=a0+a1t+…+aMtM,并且Rrs(t)参数假定为常数。(虽然在本文中描述了Pmus(t)的多项式模型以用于说明,但也考虑包括时间的参数化函数的其他模型,例如样条模型)。为了适应呼吸循环上最佳多项式阶的差异,Rrs MWLS估计器218计算三个Rrs估计值:使用0阶多项式(M=0,即Pmus(t)被建模为常数)的MWLS估计值2180;使用一阶多项式(M=1,即Pmus(t)被建模为t的线性函数)的MWLS估计2181;和使用二阶多项式(M=2,即Pmus(t)被建模为t的二次函数)的MWLS估计2182。每个MWLS估计器2180、2181、2182的MWLS公式在图5的右边框以及下面的表1中列出。

表1-每个Pmus(t)模型的Rrs估计器公式

继续参考图5,由相应的MWLS运算2180、2181、2182输出的三个Rrs(t)估计通过组合运算219被组合在一起,以产生最终的MWLS估计组合运算219可以使用各种组合技术,诸如最大比率组合运算或最小方差选择组合。说明性的组合器219采用的最大比率组合将最大权重分配给具有最小估计方差的估计(例如,具有最佳多项式阶的估计),使得具有最佳多项式阶的估计将主导Rrs估计输出。MWLS 218还计算的方差

返回参考图2,在Rrs估计器134的情况下,只保留MLS运算218输出的Rrs(t)估计而其他估计输出(例如Pmus(t)多项式系数)被丢弃。在Rrs估计器134的最后阶段中,应用卡尔曼滤波器220以进一步改善由MWLS 218输出的Rrs估计。卡尔曼滤波器220适当地类似于上面关于Ers估计器132描述的卡尔曼滤波器212。用于Rrs估计器134的卡尔曼滤波器220能够被设计为基于以下假设来减少MWLS估计噪声:(1)状态处理方程,其中,Rrs缓慢变化并且能够被建模为随机游走,即Rrs(t)=Rrs(t-1)+ωR(t),ωR(t-1)~N(0,δR);以及(2)观察方程,其中,MWLS估计能够被建模为其中,标准卡尔曼滤波器能够用A=1,B=0,Q=δR,H=1和来实现。同样,卡尔曼滤波器具有特定优势,包括在滑动时间窗口的背景中计算上高效的实现,直观的操作以及加权平均的输出。参数δR是控制平均窗口长度的算法参数。

Rrs(t)卡尔曼滤波器220的输出222是在此被表示为的Rrs估计。这个输出假设是Rrs(t)的无偏估计,但是具有噪声项

返回参考图2,在最后一遍中,一旦Ers和Rrs估计由相应的估计器132、134获得,就应用Pmus(t)估计器136来估计Pmus(t)。使用先前估计的Rrs(t)和Crs(t),Pmus(t)计算224根据下式计算估计:

在时间窗口130中对Py(t),和(经由积分器122)V(t)的样本进行评估。换句话说,在MWLS的时间窗口130中评估为了去除中的高频噪声,能够使用任选的低通滤波器226来进一步改进Pmus(t)估计。额外地或备选地,能够输入Pmus(t)波形的生理学知识以进一步改善Pmus(t)估计。

在说明性的实施例中,首先应用呼吸弹性(或顺应性)估计器132,然后是呼吸阻力估计器134,并且最后是呼吸肌压力估计器136。然而,预见到首先估计呼吸阻力,随后估计呼吸弹性或顺应性(即,反转估计器132、134的顺序)。在这样的变型实施例中,第二(Ers)估计器将适当地包括类似于说明性实施例的运算216的Rrs消除运算。不管Ers(或Crs)和Rrs的估计顺序如何,可以理解的是,如果不使用Pmus(t)和WoB(由积分器140据其计算),则可以任选地省略最终的Pmus(t)估计器136。

如果在通气机100的显示部件110上显示呼吸弹性(或顺应性)和/或阻力,则这些值也可以任选地与它们各自的不确定度量度一起显示,例如以本文所述的δ或ω统计量或其函数来表达。虽然在说明性范例中这些或其他呼吸参数被描述为在通气机100的显示部件110上显示,但是应当理解的是,这些值可以额外地或备选地显示在床边患者监视器上,护士站计算机处,和/或可以存储在电子健康记录(EHR)或其他患者数据存储系统等中。说明性的呼吸系统分析器120适当地经由通气机100的微处理器来实现;然而,呼吸系统分析器120可以额外地或备选地经由床边患者监视器的微处理器或其他电子数据处理设备来实现。所公开的呼吸系统分析器功能还可以由存储指令的非暂态存储介质来实现,所述指令可由这样的微处理器或其他电子数据处理设备读取和运行以执行所公开的功能。举例来说,非暂态存储介质可以例如包括硬盘或其他磁存储介质、光盘或其他光学存储介质、闪存或其他电子存储介质、其各种组合等等。

如前所述,除了显示估计值中的一个或多个(例如,任选地具有其统计不确定性的值中的一个或多个)作为实时值、趋势线等等,在另一个说明性的应用中,波形可以用于使由通气机100施加的正压与由患者102消耗的呼吸努力同步,以减少患者-通气机不同步性。在该应用中,调节通气机100施加的正气压,例如,增加或减少,与量值的增大或减小同步。在另一种控制应用中,由积分器140输出的WoB可以用作用于控制通气机100的反馈信号。通常,由通气机100施加的正压应当随着积分器140输出的测量的WoB的增加而增加,并且该增加的机械通气应导致患者WoB的相应减少,直到达到设定点WoB。如图所示,比例和/或微分和/或积分控制器(例如PID控制器)可用于该反馈控制,其中,来自积分器140的WoB信号用作反馈信号,目标WoB用作设定点值,并且正压是受控变量。

已经利用模拟的数据和猪呼吸数据对呼吸系统分析器120进行了测试,并且结果显示分析器120能够提供与有创方案相当的结果,并且在不同通气机设置(包括低PSV设置)下是稳定的。分析器120提供各种益处,包括(但不限于):提供实时数据(滞后几秒或更少);逐样本估计(如果连续的窗口重叠,并由单个样本间隔);在计算复杂度和时间分辨率之间进行可定制的折衷(通过可能重叠的窗口之间的更大的间隔来实现更快的计算,与降低的时间分辨率折中);快速收敛(在一些测试中在10次呼吸内),提供低启动时间;相对于意外的干扰的稳定性;采用例如高效伪逆(L×4)矩阵计算(其中,L是窗口尺寸,例如在一些合适的实施例中为60-90个样本)的良好计算效率;和低存储器要求(存储当前时间窗口的数据,对于一些实施例,大约60-90个采样)。

作为进一步的优点,呼吸系统分析器120适当地估计弹性或顺应性Ers(t),阻力Rrs(t)和呼吸肌压力Pmus(t),而不接收呼吸阶段或呼吸速率作为输入,并且无需做出关于这些参数的任何先验假设(除了假定在MWLS估计的任何给定的时间窗口内Ers和Rrs是恒定的)。呼吸系统分析器120适当地仅在测得的气压Py(t)和空气流量连同在时间上对进行积分导出的上进行运算。

已经参照优选实施例描述了本发明。在阅读和理解前面的详细描述后,其他人可以做出修改和变化。旨在将本发明构造为包括所有这样的修改和变化,只要它们落入权利要求书或其等价要件的范围内。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1