用于控制平衡的方法和设备与流程

文档序号:14397607阅读:296来源:国知局

本申请要求于2016年11月2日提交到韩国知识产权局的第10-2016-0144905号韩国专利申请的优先权,该韩国专利申请的全部内容通过引用完整地包含于此。

至少一个示例实施例涉及一种用于为用户提供辅助力的方法和/或设备。例如,至少一个示例实施例涉及一种用于控制保持站立姿势的用户的平衡的方法和/或设备。



背景技术:

随着快速老龄化社会的开始,许多人可能经受来自关节问题的不便和/或痛苦。因此,对可以使具有关节问题的老年人和/或病人能够以较少的力气行走的步态辅助设备可能越来越感兴趣。此外,用于增强人体的肌肉力量的步态辅助设备对于军事目的可能是有用的。



技术实现要素:

一些示例实施例涉及一种通过平衡控制设备控制用户的平衡的方法。

在一些示例实施例中,所述方法包括:测量用户的平衡状态;基于用户的平衡状态确定平衡控制设备的辅助模式;基于辅助模式计算力矩;指示致动器提供所述力矩以使用户平衡。

在一些示例实施例中,所述方法还包括:验证用户是否处于站立状态,其中,如果验证的步骤验证到用户处于站立状态,则测量的步骤测量平衡状态。

在一些示例实施例中,验证的步骤包括:接收与站立状态相关联的数据,所述数据包括以下项中的至少一个:髋关节角度、髋关节角速度、髋关节角加速度或惯性测量单元(imu)数据;基于所述数据验证用户是否处于站立状态。

在一些示例实施例中,测量的步骤包括:基于用户的质心(com)测量平衡状态。

在一些示例实施例中,基于com测量平衡状态的步骤包括:基于髋关节角度数据和与用户相关联的imu数据来计算com,髋关节角度数据指示用户的髋关节角度;基于期望的姿势和与com相关联的姿势之间的差计算com角度;基于com角度计算com角速度。

在一些示例实施例中,imu数据包括用户的上肢的倾角。

在一些示例实施例中,基于com测量平衡状态的步骤包括:接收踝关节角度数据,踝关节角度数据指示用户的踝关节角度;基于踝关节角度计算com;基于期望的姿势和与com相关联的姿势之间的差计算com角度;基于com角度计算com角速度。

在一些示例实施例中,接收踝关节角度数据的步骤包括:从角度传感器接收踝关节角度数据,角度传感器被配置为附着于用户的脚踝。

在一些示例实施例中,测量的步骤包括:基于鞋底压力数据测量平衡状态,鞋底压力数据指示施加到用户的至少一只脚的鞋底的压力。

在一些示例实施例中,基于鞋底压力数据测量平衡状态的步骤包括:从至少一个压力传感器接收鞋底压力数据,所述至少一个压力传感器被配置为测量施加到用户的所述至少一只脚的鞋底的所述压力;基于所述压力测量平衡状态。

在一些示例实施例中,所述至少一个压力传感器包括多个压力传感器,基于鞋底压力数据测量平衡状态的步骤包括:基于通过所述多个压力传感器测量的压力的改变来测量平衡状态。

在一些示例实施例中,测量的步骤包括:基于平衡控制设备的零力矩点(zmp)测量平衡状态。

在一些示例实施例中,基于zmp测量平衡状态的步骤包括:基于惯性测量单元(imu)的加速度计算zmp;基于zmp测量平衡状态。

在一些示例实施例中,测量用户的平衡状态的步骤包括:基于imu数据和髋关节角度数据计算用户的com,髋关节角度数据指示用户的髋关节角度,基于期望的姿势和与com相关联的姿势之间的差计算com角度,基于com角度计算com角速度;确定辅助模式的步骤包括:将com角度与多个第一阈值进行比较以产生角度结果,将com角速度与多个第二阈值进行比较以产生角速度结果,基于角度结果和角速度结果从多个辅助模式之中确定辅助模式。

在一些示例实施例中,每一辅助模式对应于不同的com角速度。

在一些示例实施例中,计算力矩的步骤包括:确定增益;基于所述增益、com角速度、com角度和期望的角度来计算力矩。

在一些示例实施例中,所述增益是基于用户的疾病的类型、用户的身体状况或辅助方法中的至少一个可调节的。

在一些示例实施例中,测量平衡状态的步骤包括基于imu数据测量用户的上肢的转动,确定辅助模式的步骤包括:如果测量的转动超过阈值,则将辅助模式确定为横向辅助模式。

在一些示例实施例中,所述方法还包括:测量用户的步态状态,步态状态为步态周期的一部分;基于步态状态计算步态辅助力矩;指示致动器将步态辅助力矩提供给用户以帮助用户完成所述步态周期。

一些示例实施例涉及一种平衡控制设备。

在一些示例实施例中,所述平衡控制设备包括:处理器,被配置为:从至少一个传感器接收感测数据,基于感测数据测量用户的平衡状态,基于平衡状态确定辅助模式,基于辅助模式计算力矩;以及致动器,被配置为产生所述力矩。

在一些示例实施例中,致动器是被配置为连接到用户的脚踝的脚踝致动器,脚踝致动器被配置为产生所述力矩。

在一些示例实施例中,脚踝致动器包括被配置为测量用户的踝关节角度的角度传感器,处理器被配置为基于踝关节角度测量平衡状态。

一些示例实施例涉及一种通过平衡控制设备控制用户的平衡的方法。

在一些示例实施例中,所述方法包括:验证用户是否处于站立状态;如果验证的步骤验证到用户处于站立状态,则测量用户的平衡状态;基于平衡状态确定平衡控制设备的辅助模式;基于辅助模式计算警报力矩;指示致动器将警报力矩作为反馈提供给用户。

一些示例实施例涉及一种平衡控制设备。

在一些示例实施例中,所述平衡控制设备包括:处理器,被配置为:从至少一个传感器接收感测数据,基于感测数据验证用户是否处于站立状态,如果处理器验证到用户处于站立状态,则测量用户的平衡状态,基于平衡状态确定辅助模式,基于辅助模式计算警报力矩;以及致动器,被配置为产生所述警报力矩。

示例实施例的额外方面将在下面的描述中被部分阐述,并且部分从描述中将是清楚的,或者可通过公开的实践而获知。

附图说明

从下面结合附图对示例实施例的描述,这些和/或其他方面将变得明显和更加容易理解,其中:

图1和图2示出根据至少一个示例实施例的步态辅助设备;

图3示出根据至少一个示例实施例的与外力有关的平衡方法;

图4是示出根据至少一个示例实施例的平衡控制设备的框图;

图5是示出根据至少一个示例实施例的控制平衡的方法的流程图;

图6是示出根据至少一个示例实施例的验证用户是否处于站立状态的方法的流程图;

图7是示出根据至少一个示例实施例的测量用户的平衡状态的方法的流程图;

图8是示出根据至少一个示例实施例的基于用户的质心(com)测量平衡状态的方法的流程图;

图9示出根据至少一个示例实施例的用户的机械建模的状态;

图10示出根据至少一个示例实施例的计算的用户的质心(com);

图11是示出根据至少一个示例实施例的基于用户的质心(com)测量平衡状态的方法的流程图;

图12是示出根据至少一个示例实施例的基于鞋底压力(在用户的鞋底上的压力)测量平衡状态的方法的流程图;

图13示出根据至少一个示例实施例的测量用户的鞋底压力的方法;

图14是示出根据至少一个示例实施例的基于零力矩点(zmp)测量平衡状态的方法的流程图;

图15是示出根据至少一个示例实施例的确定与平衡状态相应的辅助模式的方法的流程图;

图16是示出根据至少一个示例实施例的基于辅助模式计算力矩的方法的流程图;

图17是示出根据至少一个示例实施例的为用户提供步态辅助力矩的方法的流程图;

图18是示出根据至少一个示例实施例的为用户提供警报力矩的方法的流程图。

具体实施方式

在下文中,将参照附图详细描述一些示例实施例。关于向附图中的元件分配的参考标号,应注意,在任何可能的情况下,即使相同的元件被示出在不同的附图中,相同的元件也将由相同的参考标号来表示。此外,在实施例的描述中,当认为公知的相关结构或功能的详细描述将导致本公开的解释模糊时,将省略公知的相关结构或功能的详细描述。

然而,应理解,不意在将本公开限制到所公开的具体示例实施例。相反,示例实施例将涵盖落入示例实施例的范围内的所有修改、等同物和替换物。贯穿附图的描述,相同的标号表示相同的元件。

此外,这里可使用诸如第一、第二、a、b、(a)、(b)等术语来描述组件。这些术语中的每个术语不用于限定相应组件的本质、顺序或次序,而仅用于将相应组件与其它组件进行区分。应该注意,如果在说明书描述一个组件“连接”、“结合”或“接合”至另一组件,则尽管第一组件可直接地连接、结合或接合至第二组件,但第三组件可“连接”、“结合”或“接合”在第一组件与第二组件之间。

在此使用的术语仅为了描述具体示例实施例的目的,而不意在限制。除非上下文另外明确地指示,否则如在此使用的单数形式也意在包括复数形式。还将理解,当在此使用术语“包括”和/或“包含”时,指定存在所叙述的特征、整体、步骤、操作、元件和/或组件,但是不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或它们的组。

还应注意,在一些选择性的实施例中,示出的功能/动作可不按附图中示出的顺序发生。例如,连续示出的两个附图可根据所涉及的功能/动作,实际上被同时执行或有时可以以相反的顺序来执行。

现在将参照示出一些示例实施例的附图更全面地描述各种示例实施例。在附图中,为了清楚起见,夸大层和区域的厚度。

<步态辅助设备的概述>

图1和图2示出根据至少一个示例实施例的步态辅助设备。

参照图1,步态辅助设备100可以为由用户穿戴并帮助用户步行的装置。图1示出髋型步态辅助设备的示例,然而,步行辅助设备的类型不限于髋型步态辅助设备。因此,例如,步态辅助设备100可以为以下步态辅助设备中的一个或多个:用于支撑下肢(pelviclimb)的一部分的步态辅助设备、用于支撑上至膝盖的步态辅助设备、用于支撑上至脚踝的步态辅助设备和用于支撑整个下肢的步态辅助设备。

参照图1和图2,步态辅助设备100包括:致动器110、传感器120、惯性测量单元(imu)130和控制器140。

致动器110为用户的髋关节或踝关节提供辅助力。例如,致动器110可位于,例如,用户的右髋部和/或左髋部、或者用户的右脚踝关节和/或左脚踝关节。致动器110可包括用于产生旋转力矩的电机。

传感器120在用户走动时测量用户的髋关节角度。关于由传感器120感测的髋关节角度的信息可包括:右髋关节的角度、左髋关节的角度、两个髋关节角之间的差和/或髋关节的运动方向。此外,传感器120还可测量用户的踝关节角度。例如,传感器120可位于致动器110中。传感器120可包括电位计。电位计可基于用户的步态运动来感测右(r)-轴关节角度、左(l)-轴关节角度、r-轴关节角速度和/或l-轴关节角速度。

imu130在用户走动时测量加速度信息和/或姿势信息。例如,imu130基于用户的步态运动来感测x-轴加速度、y-轴加速度、z-轴加速度、x-轴角速度、y-轴角速度和z-轴角速度。步态辅助设备100可基于由imu130测量的加速度信息来检测用户的脚着地的点。

除上述传感器120和imu130之外,步态辅助设备100还可包括被配置为基于步态运动感测用户的生物信号或运动的量的改变的另一传感器(例如,肌电图(emg)传感器)。

控制器140可控制致动器110输出用于帮助用户步行的辅助力。例如,控制器140可输出控制信号以控制致动器110产生力矩。致动器110可基于由控制器140输出的控制信号来产生力矩。可通过外部装置或控制器140来设置力矩。

除帮助用户步行的功能之外,上述步态辅助设备100还可提供确定用户的运动状态的额外功能。例如,步态辅助设备100可执行帮助用户控制平衡的功能。例如,步态辅助设备100可帮助用户保持站立姿势。将参照图3至图18提供步态辅助设备100帮助用户控制平衡的方法的描述。

<控制平衡的方法的概述>

图3示出根据至少一个示例实施例的与外力有关的平衡方法。

参照图3,在从人的后面将外力施加到人的情况300下,人可能向前倾斜身体。用于帮助人恢复平衡的机制可根据施加的外力的大小而不同。

在施加相对弱的外力的第一情况310下,人可通过使用腘绳肌(hamstring,ham)和腰椎周围的腰椎椎旁肌(par)向后倾斜上肢来恢复平衡。

在施加相对强的外力的第二情况320下,人可通过主要使用四头肌(quad)和腹肌(abd)向后移动髋部并向前倾斜上肢来恢复平衡。随后,人可通过抬起上肢而站立。

因为施加外力或由于损伤的感觉器官导致感觉不受控制而可能失去平衡。例如,具有损伤的肌肉或损伤的神经的病人可能不能依靠他们自己来保持平衡。

神经肌肉疾病可由于损伤的周围神经系统而引起肌萎缩和下肢肌肉力量的削弱,从而引起步态困难。神经肌肉疾病可包括多发性硬化、腓骨肌萎缩(cmt)疾病和吉兰-巴雷综合征。cmt疾病可引起周围运动神经和感觉神经的缺陷,从而可引起脚落地困难,并且cmt疾病可引起手、手臂、脚和腿的感觉丧失、肌肉萎缩、肌无力。因此,具有cmt疾病的病人可能难以步行、站立或抓取物体。

保持站立姿势对于正常人(非残疾人)可能相对容易,但对于具有神经肌肉疾病的病人可能相对困难。各种感觉(例如,本体感受反射、视觉系统和前庭系统)用于保持站立姿势。然而,因为由于神经损伤而导致脚踝的本体感受反射的感觉丧失,所以病人可能不能够感觉用于保持平衡的微小运动。因为当下肢肌肉的量减少时,承受外力的肌肉力量被削弱,所以病人可能难以保持平衡。

图4是示出根据至少一个示例实施例的平衡控制设备的框图。

参照图4,平衡控制设备400可对应于上述在图1和图2中所示的步态辅助设备100。例如,平衡控制设备400除了包括控制用户的平衡的功能之外,还可包括辅助用户的步态的功能。

平衡控制设备400可包括:通信器410、处理器420、致动器430、存储器440、关节角度传感器450和惯性测量单元(imu)460。

通信器410可连接到处理器420、存储器440、关节角度传感器450和imu460,并且可发送和接收数据。通信器410可连接到外部装置,并且可发送和接收数据。通信器410可被实现为平衡控制设备400中的电路。例如,通信器410可包括内部总线和外部总线。在另一示例中,通信器410可以为被配置为连接平衡控制设备400和外部装置的元件。通信器410可以为接口。通信器410可从外部装置接收数据,并将数据发送到处理器420和存储器440。

处理器420可处理由通信器410接收的数据和在存储器440中存储的数据。处理器420可将关于力矩的信息发送或输入到致动器430。处理器420可对应于上述控制器140。

“处理器”可以为被实现为包括具有用于执行期望的操作的物理结构的电路的硬件的数据处理装置。例如,期望的操作可涉及包括在程序中的代码和指令。例如,被实现为硬件的数据处理装置可包括以下项中的一个或多个:微处理器、中央处理器(cpu)、处理器核、多核处理器、多处理器、专用集成电路(asic)和现场可编程门阵列(fpga)。

处理器420可执行在存储器(例如,存储器440)中存储的将由计算机读取的代码(例如,软件)以及由处理器420引起的指令。

致动器430可基于关于力矩的信息进行操作。致动器430可通过电机的旋转产生辅助力。致动器430可对应于上述图1的致动器110。

存储器440可存储由通信器410接收的数据和由处理器420处理的数据。例如,存储器440存储程序。

在一个示例中,存储器440包括:随机存取存储器(ram)、闪存、硬盘驱动器以及光盘驱动器以及易失性存储器或非易失性存储器中的至少一个。

存储器440存储用于操作平衡控制设备400的指令集,例如,软件。通过处理器420来执行用于操作平衡控制设备400的指令集。

关节角度传感器450测量用户的关节的角度。例如,用户的关节包括髋关节、膝关节和踝关节。关节角度传感器450可测量髋关节的角速度、膝关节的角速度和踝关节的角速度。

imu460测量平衡控制设备400的方向的改变。例如,imu460测量穿戴平衡控制设备400的用户的躯干的方向。

将参照图5至图18来提供由通信器410、处理器420、致动器430、存储器440、关节角度传感器450和imu460执行的功能的详细描述。

图5是示出根据至少一个示例实施例的控制平衡的方法的流程图。

参照图5,在操作510中,处理器420验证穿戴平衡控制设备400的用户是否处于站立状态。将参照图6来提供验证用户是否处于站立状态的方法的详细描述。如果处理器420验证出用户未处于站立状态,则处理器420可执行操作515。相反,如果处理器420验证到用户处于站立状态,则处理器420可执行操作520。

在操作515中,处理器420将平衡控制设备400的操作模式设置为步态辅助模式。将参照图17来提供步态辅助模式的详细描述。

在操作520中,处理器420测量用户的平衡状态。用户的平衡状态可指示施加到用户的外力的大小。平衡状态可包括用户的质心(com)、com角度、com角速度、髋关节角度或踝关节角度中的至少一个。将参照图7至图14来提供测量用户的平衡状态的方法的详细描述。

在操作530中,处理器420基于平衡状态确定辅助模式。例如,处理器420在多个预设的辅助模式之中确定与测量的平衡状态相应的辅助模式。将参照图15来提供确定与测量的平衡状态相应的辅助模式的方法的详细描述。

在操作540中,处理器420基于确定的辅助模式来计算力矩。例如,计算力矩的方法可根据辅助模式而不同。将参照图16来提供计算力矩的方法的详细描述。

在操作550中,处理器420将计算的力矩输入到致动器430。例如,处理器420将均与计算的力矩相应的电流的值或电压的值输入到致动器430。致动器430可基于输入的力矩进行操作。

虽然未示出,但在一些示例实施例中,平衡控制设备400可利用操作510中的用户处于站立的验证,试图避免与持久的站立相关联的问题。这些问题可包括静脉曲张、心血管疾病(诸如,颈动脉粥样硬化)、关节压迫,肌肉疲劳和/或晕厥的出现。

例如,在操作510中确定用户处于站立之后,处理器420可开启计时器以跟踪用户处于站立的时间长度,并在期望的(或者,可选地,预设的)时间之后,处理器420可向用户提供指示用户已站立超过一段时间的反馈。可选地,在一些示例实施例中,处理器420可在时间到期之后使得在操作550中提供的辅助用户保持站立姿势的辅助力矩失效。

图6是示出根据至少一个示例实施例的验证用户是否处于站立状态的方法的流程图。

参照图6,参照图5描述的操作510可包括操作610和操作620。

在操作610中,通信器410从至少一个传感器接收感测数据。感测数据包括以下项中的至少一个:髋关节角度、髋关节角速度、髋关节角加速度、膝关节角度、膝关节角速度、膝关节角加速度、踝关节角度、踝关节角速度、踝关节角加速度或惯性测量单元(imu)数据。传感器中的至少一个传感器可包括关节角度传感器450和imu460。关节角度传感器450可包括髋关节角度传感器、膝关节角度传感器或踝关节角度传感器。

通信器410可无线地连接到膝关节角度传感器和踝关节角度传感器。例如,通信器410可通过蓝牙与膝关节角度传感器和踝关节角度传感器交换数据。

在操作620中,处理器420基于接收的感测数据来验证用户是否处于站立状态。处理器420基于以下项中的至少一个来验证用户是否处于站立状态:髋关节角度、髋关节角速度、髋关节角加速度、膝关节角度、膝关节角速度、膝关节角加速度、踝关节角度、踝关节角速度、踝关节角加速度或imu数据。例如,当感测数据在期望的(或者,可选地,预设的)时间段期间被保持在期望的(或者,可选地,预设的)范围内时,处理器420验证到用户处于站立状态。

图7是示出根据至少一个示例实施例的测量用户的平衡状态的方法的流程图。

参照图7,参照图5描述的基于com测量平衡状态的操作520可包括操作710、操作720或操作730中的至少一个。

操作710、操作720和操作730可并行地被执行,并且操作710、操作720或操作730中的至少一个可被复合地执行。例如,将权重分配到在每一操作中计算的平衡状态。

在操作710中,处理器420基于用户的质心(com)测量平衡状态。将参照图8至图11来提供基于com测量平衡状态的方法的详细描述。

在操作720中,处理器420基于鞋底压力测量平衡状态,其中,鞋底压力是用户的鞋底上的压力。例如,处理器420通过确定将被施加到鞋底的压力的中心来测量平衡状态。将参照图12和图13来提供基于鞋底压力测量平衡状态的方法的详细描述。

在操作730中,处理器420基于平衡控制设备400的零力矩点(zmp)测量平衡状态。将参照图14来提供基于zmp测量平衡状态的方法的详细描述。

图8是示出根据至少一个示例实施例的基于用户的质心(com)测量平衡状态的方法的流程图。

参照图8,参照图7描述的基于com测量平衡状态的操作710可包括操作810、操作820和操作830。

操作810、操作820和操作830可响应于平衡控制设备400不能感测或获得踝关节角度而被执行。在操作810被执行之前,惯性测量单元(imu)数据和髋关节角度可被获得。

在操作810中,处理器420基于imu数据和髋关节角度来计算用户的com。imu数据包括用户的上肢的转动(roll)或倾角(pitch)中的至少一个,并且处理器420基于imu数据测量用户的上肢的转动或倾角中的至少一个。例如,处理器420对用户的状态进行建模,并基于建模的用户的状态来计算com。将参照图9来提供基于建模的状态计算com的方法的详细描述。

在操作820中,处理器420计算com角度,其中,com角度指示期望的(或者,可选地,预设的)姿势与由计算的com引起的姿势之间的差。期望的(或者,可选地,预设的)姿势可以为由用户的脚跟和com形成的直线与重力方向相同的姿势。将参照图10提供com角度的详细描述。

在操作830中,处理器420基于com角度计算com角速度。例如,处理器420以期望的(或者,可选地,预设的)时间间隔计算com角度,并使用计算的com角度来计算com角速度。关于平衡状态的信息可包括:计算的com、计算的com角度和计算的com角速度。

图9示出根据至少一个示例实施例的机械建模的用户的状态。

参照图9,被施加外力的用户的状态可被建模。

处理器420基于惯性测量单元(imu)数据和髋关节角度对用户的状态进行建模。例如,用户的身体信息可预先被存储。身体信息可包括:用户的身高、上肢长度、下肢长度、体重、上肢重量和下肢重量。建模的用户的状态可基于髋关节被划分为上肢部分910和下肢部分920。上肢部分910可包括用户的头、手臂和躯干。下肢部分920可包括用户的大腿和小腿以及膝关节,并且膝关节可被假设为被伸直。

处理器420基于指示上肢的倾角θ1和髋关节角度θ2的imu数据,来估计踝关节角度θ3。处理器420基于上肢的倾角θ1、髋关节角度θ2和踝关节角度θ3来对用户的状态进行建模。处理器420基于建模的用户的状态来计算用户的质心(com)。

图10示出根据至少一个示例实施例的计算的用户的质心(com)。

参照图10,在参照图8和图9描述的操作810中计算的质心(com)1010存在于用户的身体的内部。处理器420基于com1010确定用户的当前姿势1020。

处理器420计算指示预设的姿势与由com1010引起的姿势1020之间的差的com角度θcom。预设的姿势可以为由用户的脚跟和com形成的直线与重力方向相同的姿势。

图11是示出根据至少一个示例实施例的基于用户的质心(com)测量平衡状态的方法的流程图。

参照图7描述的操作710可包括操作1110、操作1120、操作1130和操作1140。操作1110、操作1120、操作1130和操作1140可响应于平衡控制设备400感测或获得踝关节角度而被执行。

在操作1110中,通信器410接收踝关节角度。例如,通信器410从踝关节角度传感器接收踝关节角度。踝关节角度传感器可使用电阻法、电容法和/或偏振法。

在操作1120中,处理器420基于踝关节角度计算com。例如,处理器420对用户的状态进行建模,并基于建模的用户的状态来计算com。因为参照图9提供的描述也适用于图11,所以为了更加清楚和简明,将省略建模用户的状态的方法的重复描述。

在操作1130中,处理器420计算指示期望的(或者,可选地,预设的)姿势与由计算的com引起的姿势之间的差的com角度。因为操作1130的详细描述与图8的操作820的描述本质相同,所以为了更加清楚和简明,省略操作1130的详细描述。

在操作1140中,处理器420基于com角度计算com角速度。因为操作1140的详细描述与图8的操作830的描述本质相同,所以为了更加清楚和简明,省略操作1140的详细描述。

图12是示出根据至少一个示例实施例的基于鞋底压力(用户的鞋底上的压力)测量平衡状态的方法的流程图。

参照图12,参照图7描述的基于鞋底压力测量平衡状态的操作720可包括操作1210和操作1220。

在操作1210中,通信器410从设置在鞋底上的压力传感器接收由压力传感器测量的鞋底压力。例如,多个压力传感器被设置在鞋的鞋内底上。将参照图13来提供设置在鞋内底上的压力传感器的详细描述。

在操作1220中,处理器420基于鞋底压力测量平衡状态。例如,处理器420可基于鞋底压力计算压力中心(cop)。cop可被计算为使得cop位于用户的鞋底上。可基于计算的cop来测量用户的平衡状态。例如,如果cop位于朝向鞋底的前面,则用户可向前倾斜。

与cop的位置相应的质心(com)角度可预先被设置。例如,cop的位置与com角度的匹配表可预先存储在存储器440中。处理器420可确定与计算的cop的位置相应的com角度。处理器420基于com角度计算com角速度。

图13示出根据至少一个示例实施例的测量用户的鞋底压力的方法。

参照图13,多个压力传感器1310、1320、1330和1340被包括在鞋内底1300中。每一压力传感器可测量施加到每一压力传感器的压力的大小。每一压力传感器可以以期望的(或者,可选地,预设的)时间间隔来测量压力。压力传感器1310、1320、1330和1340可位于鞋内底1300的压迫用户的鞋底的主要部分。例如,压力传感器被设置在鞋底的鞋跟或鞋掌上。

压力传感器1310、1320、1330和1340中的每个压力传感器可通过无线通信将测量的压力发送到通信器410。处理器420测量压力的改变,并且基于压力的改变来测量平衡状态。

图14是示出根据至少一个示例实施例的基于零力矩点(zmp)测量平衡状态的方法的流程图。

参照图14,参照图7描述的基于zmp测量平衡状态的操作730可包括操作1410和操作1420。

在操作1410中,处理器420基于惯性测量单元(imu)数据来计算zmp。imu数据可包括imu460的加速度。

zmp可以为针对在用户的脚与地面接触的动态反作用力在水平方向未产生任何力矩的点,即,水平惯性与重力的总和等于零的点。

在操作1420中,处理器420基于zmp测量平衡状态。

图15是示出根据至少一个示例实施例的确定与平衡状态相应的辅助模式的方法的流程图。

参照图15,参照图5描述的确定辅助模式的操作530可包括操作1510、操作1520和操作1530。操作1510和操作1520可被并行地执行。

在操作1510中,处理器420将计算的质心(com)角度与多个期望的(或者,可选地,预设的)阈值中的每一阈值进行比较。例如,处理器420可使用等式1和等式2将com角度与每一阈值进行比较。第一阈值可小于第四阈值。第一阈值和第二阈值的范围可与第三阈值和第四阈值的范围部分重叠。

[等式1]

第一阈值<|com角度|<第二阈值

[等式2]

第三阈值<|com角度|<第四阈值

在操作1520中,处理器420将计算的com角速度与多个期望的(或者,可选地,预设的)阈值中的每一阈值进行比较。例如,处理器420可使用等式3和等式4将com角速度与每一阈值进行比较。第五阈值可小于第七阈值。

[等式3]

|com角速度|<第五阈值

[等式4]

第六阈值<|com角速度|<第七阈值

在操作1530中,处理器420可基于操作1510和操作1520中的比较结果确定与平衡状态相应的辅助模式。例如,处理器420在多个辅助模式之中确定与平衡状态相应的辅助模式。

例如,当等式1和等式3同时被满足时,处理器420可将辅助模式确定为第一辅助模式。当等式2和等式4同时被满足时,处理器420可将辅助模式确定为第二辅助模式。当平衡状态没有被确定为对应于第一辅助模式和第二辅助模式时,处理器420可将辅助模式确定为第三辅助模式。也就是说,每一辅助模式可对应于不同的com角速度。

第一辅助模式可以为与第二辅助模式的外力相比相对弱的外力的辅助模式。例如,第一辅助模式可以为施加相对弱的外力的上述第一情况310的辅助模式,第二辅助模式可以为施加相对强的外力的上述第二情况320的辅助模式。第三辅助模式可以为不提供用于恢复平衡的力矩的模式。例如,当用户因为施加的外力相对强而向前迈步时,处理器420可将辅助模式确定为第三辅助模式。第三辅助模式可以为步态辅助模式。当辅助模式被确定为第三辅助模式时,处理器420可执行参照图5描述的操作515。

在一个示例中,处理器420响应于测量的用户的上肢的转动超过阈值,来确定横向辅助模式。例如,横向辅助模式可以为用于控制用户的横向平衡的辅助模式。横向辅助模式可包括上述第一辅助模式和上述第二辅助模式中的每一辅助模式的功能。此外,横向辅助模式可用于控制用户的横向平衡。平衡控制设备400还可包括用于控制横向平衡的额外的致动器。

图16是示出根据至少一个示例实施例的基于辅助模式计算力矩的方法的流程图。

参照图16,参照图5描述的计算力矩的操作540可包括操作1610和操作1620。

在操作1610中,处理器420确定确定的辅助模式的增益。处理器420基于用户的疾病的类型、用户的身体状况或期望的(或者,可选地,预设的)辅助方法中的至少一个来确定增益。该增益是基于用户的疾病的类型、用户的身体状况或辅助方法中的至少一个可调节的。期望的(或者,可选地,预设的)辅助方法可与由用户预先选择的平衡控制程度相关联。

例如,响应于辅助模式被确定为第一辅助模式,处理器420确定质心(com)角速度的增益和com角度的增益。响应于辅助模式被确定为第二辅助模式,处理器420确定髋关节角速度的增益、髋关节角度的增益、阈值时间、com角速度的增益和com角度的增益。阈值时间可指示在相同辅助模式中提供的辅助力的形式被转换的时间点。

作为另一示例,响应于辅助模式被确定为横向辅助模式,处理器420计算横向辅助模式的增益。可独立于第一辅助模式和第二辅助模式中的每一辅助模式的增益来计算横向辅助模式的增益。

在操作1620中,处理器420基于确定的辅助模式计算力矩。处理器420基于确定的增益、计算的com角速度、计算的com角度和期望的(或者,可选地,预设的)角度来计算力矩。

例如,响应于辅助模式被确定为第一辅助模式,处理器420使用等式5计算力矩。在等式5中,fv1表示com角速度的增益,fp1表示com角度的增益。

[等式5]

力矩=fv1×com角速度+fp1×(com角度-期望的角度)

处理器420可使用线性控制方法、非线性控制方法、sigmoid控制方法或指数控制方法中的至少一个来计算第一辅助模式的力矩。

作为另一示例,响应于辅助模式被确定为第二辅助模式,处理器420使用等式6计算力矩。

第一力矩可以为在阈值时间之前产生的力矩,第二力矩可以为在阈值时间之后产生的力矩。响应于辅助模式被确定为第二辅助模式,处理器420基于阈值时间在两个操作中计算力矩。t0表示阈值时间。fv2表示髋关节角速度的增益,fp2表示髋关节角度的增益。fv3表示com角速度的增益,fp3表示com角度的增益。fv4表示髋关节角速度的增益,fp4表示髋关节角度的增益。第一期望角度、第二期望角度和第三期望角度可预先被设置。

[等式6]

对于t<t0,第一力矩=fv2×髋关节角速度+fp2×(髋关节角度-第一期望角度)

对于t>t0,第二力矩=fv3×com角速度+fp3×(com角度-第二期望角度)+fv4×髋关节角速度+fp4×(髋关节角度-第三期望角度)

处理器420可使用线性控制方法、非线性控制方法、sigmoid控制方法或指数控制方法中的至少一个来计算第二辅助模式的力矩。

图17是示出根据至少一个示例实施例的为用户提供步态辅助力矩的方法的流程图。

参照图17,参照图5描述的执行步态辅助模式的操作515可包括操作1710、操作1720和操作1730。

在操作1710中,处理器420测量用户的步态状态。处理器420从至少一个传感器接收感测数据。感测数据包括以下项中的至少一个:髋关节角度、髋关节角速度、髋关节角加速度、膝关节角度、膝关节角速度、膝关节角加速度、踝关节角度、踝关节角速度、踝关节角加速度或惯性测量单元(imu)数据。

例如,处理器420基于测量的步态状态确定用户的步态周期。这里,步态状态为步态周期的一部分。处理器420可基于用户的期望的(或者,可选地,预设的)步态轮廓(gaitprofile),来确定与步态状态相应的步态周期。例如,处理器420使用特定外形自适应振荡器(psao)来确定步态周期。作为另一示例,处理器420使用有限状态机(fsm)来确定步态周期。作为另一示例,处理器420使用psao和fsm来确定步态周期。

在操作1720中,处理器420计算与测量的步态状态相应的步态辅助力矩。处理器420可基于确定的与步态状态相应的步态周期,来计算步态辅助力矩。可通过步态辅助力矩提供用于辅助用户的步态的辅助力。

在操作1730中,处理器420将计算的步态辅助力矩输入到致动器430。致动器430可基于输入的步态辅助力矩进行操作。

图18是示出根据至少一个示例实施例的为用户提供警报力矩的方法的流程图。

参照图18,为了帮助用户平衡,除产生直接辅助力的方法之外,还可考虑用户通过“需要控制平衡”的自我通知来自主控制平衡的方法。例如,具有腓骨肌萎缩(cmt)疾病的病人可能因为脚踝的感觉的迟钝而不能识别存在平衡问题。在这样的情况下,当具有正常感觉的大腿部分受到刺激时,病人可识别刺激并自主控制平衡。将通过操作1810、操作1820、操作1830、操作1840和操作1850的描述来提供用户通过“需要控制平衡”的自我通知来自主控制平衡的方法的详细描述。操作1810、操作1820、操作1830、操作1840和操作1850的描述可解释为用户提供生物反馈的方法。

在操作1810中,处理器420验证穿戴平衡控制设备400的用户是否处于站立状态。因为操作1810的详细描述与上面参照图5和图6的操作510的描述本质相同,所以为了更加清楚和简明,省略操作1810的详细描述。

在操作1815中,处理器420将平衡控制设备400的操作模式设置为步态辅助模式。因为操作1815的详细描述与上面参照图5和图17的操作515的描述本质相同,所以为了更加清楚和简明,省略操作1815的详细描述。

在操作1820中,处理器420测量用户的平衡状态。因为操作1820的详细描述与上面参照图5、图7至图14的操作520的描述本质相同,所以为了更加清楚和简明,省略操作1820的详细描述。

在操作1830中,处理器420基于平衡状态来确定辅助模式。因为操作1830的详细描述与上面参照图5和图15的操作530的描述本质相同,所以为了更加清楚和简明,省略操作1830的详细描述。

在操作1840中,处理器420基于确定的辅助模式确定警报力矩。警报力矩可以是以生物反馈的形式发送信息的力矩,其中,所述信息包括用户正在控制平衡的通知。例如,当上肢将被向后设置时,平衡控制设备400可操作设置在髋关节部分上的致动器430,为用户发送信息来向后设置上肢。

上述等式1至等式6可用于计算警报力矩。与计算用于直接提供辅助力的力矩的操作540相比,在操作1840中计算的增益可小于在操作540中计算的增益。

在操作1850中,处理器420将计算的警报力矩输入到致动器430。例如,处理器420将与计算的警报力矩相应的电流的值或电压的值输入到致动器430。致动器430可基于输入的警报力矩进行操作,以通知用户自我调节他们的平衡。

虽然图18示出处理器420计算警报力矩并将警报力矩作为生物反馈提供给用户的示例实施例,但示例实施例不限于此。例如,在其他示例实施例中,平衡控制设备400可包括输出装置,诸如,显示器或扬声器(未示出),并且在操作1830之后,处理器420可将警告(诸如,声音警告或视觉警告)提供给用户以向用户通知不平衡。

在此描述的单元和/或模块可使用硬件组件和软件组件来实现。例如,硬件组件可包括:麦克风、放大器、带通滤波器、音频数字转换器和处理装置。处理装置可使用一个或多个硬件装置来实现,其中,所述一个或多个硬件装置被配置为通过执行算术、逻辑和输入/输出操作来实现和/或执行程序代码。处理装置可包括:处理器、控制器和算术逻辑单元、数字信号处理器、微型计算机、现场可编程阵列、可编程逻辑单元、微处理器或能够以限定的方式响应和执行指令的任何其它装置。处理装置可运行操作系统(os)以及一个或多个在os上运行的软件应用。处理装置还可响应于软件的执行来访问、存储、操作、处理和创建数据。为了简洁的目的,对处理装置的描述被用作单数;然而,本领域技术人员将理解,处理装置可包括多个处理元件以及多种类型的处理元件。例如,处理装置可包括多个处理器或一个处理器和一个控制器。此外,不同的处理配置是可行的,例如,并行处理器。

软件可包括用于独立地或共同地命令和/或配置处理装置按照期望进行操作,从而将处理装置转换为专用处理器的计算机程序、一段代码、指令或它们的一些组合。可以以任何类型的机器、组件、物理或虚拟设备、计算机存储介质或装置,或者以能够将指令或数据提供给处理装置或被处理装置解释的传输信号波来永久地或暂时地实现软件和数据。软件还可被分布在联网的计算机系统中,从而以分布式存储和执行软件。可通过一个或多个非暂时性计算机可读记录介质来存储软件和数据。

根据上述示例实施例的方法可被记录在非暂时性计算机可读介质中,其中,所述非暂时性计算机可读介质包括用于实现上述示例实施例的各种操作的程序指令。介质还可包括单独的数据文件、数据结构等,或与程序指令结合的数据文件、数据结构等。记录在介质上的程序指令可以是针对示例实施例的目的而专门设计和构造的程序指令,或者它们可以是对计算机软件领域的技术人员公知和可用的类型。非暂时性计算机可读介质的示例包括:磁介质(诸如,硬盘、软盘和磁带);光介质(诸如,cd-rom盘、dvd和/或蓝光光盘);磁光介质(诸如,光盘);和专门配置为存储和执行程序指令的硬件装置(诸如,只读存储器(rom)、随机存取存储器(ram)、闪存(例如,usb闪速驱动器、存储卡、记忆棒等)等)。程序指令的示例包括机器代码(诸如,由编译器所产生的机器代码)和包含可由计算机使用解释器执行的更高级代码的文件。上述装置可被配置为用作一个或多个软件模块以执行上述示例实施例的操作,反之亦然。

以上已经描述了多个示例实施例。然而,应理解,可对这些示例实施例进行各种修改。例如,如果以不同的顺序执行描述的技术,和/或如果描述的系统、架构、装置或电路中的组件以不同的方式组合和/或被其他组件或其等同物代替或补充,则可实现合适的结果。因此,其他实施方式落入权利要求的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1