近红外光一区介导的复合纳米棒光热材料及其制备方法与流程

文档序号:23729690发布日期:2021-01-26 19:58阅读:136来源:国知局
近红外光一区介导的复合纳米棒光热材料及其制备方法与流程

[0001]
本发明涉及无机纳米酶技术领域,具体涉及一种具有肿瘤选择性的复合纳米棒光热材料及其制备方法。


背景技术:

[0002]
肿瘤热疗是继手术、放疗、化疗和免疫疗法之后的第五大疗法,是一种绿色治疗手段。其原理是利用物理方法将组织加热到能灭杀肿瘤细胞的温度(42.5~43.5℃)并持续60~120分钟,达到既破坏肿瘤细胞又不损伤正常组织的效果(正常组织细胞的安全温度界限为45
±
1℃)。热疗不但对肿瘤细胞有直接的细胞毒效应,还可以增强化疗、放疗的疗效,提高机体的免疫力,抑制肿瘤的转移。大量体外实验和临床资料显示,肿瘤热疗虽然不能作为一种独立的肿瘤治疗方案取代手术、化疗或放疗,但它对于化疗、放疗和手术等肿瘤治疗手段具有明显的增效和补充作用。正因为如此,肿瘤热疗近年来发展迅速,成为继手术、放疗、化疗和生物治疗之后又一极为重要的肿瘤治疗手段。
[0003]
在现有的热疗技术中,比较常见和主流的是非浸入式的纳米光热热疗,其特点是利用经特定波长的近红外光照射具有光热转换特性的材料,将光能转化为热能,使肿瘤区域的温度升高到42℃以上,最终达到杀死肿瘤细胞的效果。光热疗法作为一种切实有效并且风险较低的肿瘤治疗技术,具有良好的发展前景。但是,光热治疗技术目前面临着一个迫切需要解决的问题,即用于治疗的光线对人体(动物)组织的穿透性低。研究表明,紫外-可见光的组织穿透能力差,无法穿透皮肤到达治疗部位的深处,因此使用紫外-可见光的光热治疗达不到理想效果。近红外光区的光具有较强的组织穿透力,因此开发近红外区的光引导光热治疗具有重要的临床意义。
[0004]
另一方面,光热治疗的效果在一定程度上也取决于光热材料在生物体内的分布。基于肿瘤的增强渗透和滞留效应(epr),粒径范围在200nm以下的颗粒可以通过epr效应集中分布于肿瘤组织,但是经实际研究发现,粒径在这个范围的纳米材料,在小鼠模型中经尾静脉注射后,一般相对集中在肝脏、脾脏和肾脏中,肿瘤中分布较少,即使给纳米颗粒赋予生物靶向,肿瘤组织中纳米材料的分布也很难得到实质性的提高,因此非常容易造成光热介导的热疗对正常组织的非靶向性加热,从而产生一定的副作用。为了解决这个问题,比较常用的方法是赋予纳米颗粒条件响应性以增强肿瘤靶向性,例如程等人(cn201811647761.0)提出一种光热化疗联合治疗微环境响应的载药胶束及其制备方法与应用,通过将近红外物质tiid-bt染料和dox化疗药物同时负载在特定的纳米胶束上,制备得到能够同时发挥光热治疗和化疗作用的纳米胶束。在dox和tiid-bt协同发挥作用的情况下,提高了体内肿瘤的治疗效果,但是阿霉素本身具有一定的毒副作用,对癌细胞的靶向性仍有待提高。又例如徐等人(cn201910046351.9)提出的一种具有靶向光热治疗和可控释药的多重作用纳米材料,该材料以葡萄糖为靶向分子,将其通过共价键连接到具有光热转换能力的聚多巴胺纳米材料上,并通过聚多巴胺纳米材料荷载抗肿瘤药物,最终实现肿瘤组织特异积蓄和药物释放,降低化疗药物对人体的毒副作用。
[0005]
值得关注的一点是过氧化氢与肿瘤微环境具有密切相关性,在肿瘤组织中过氧化氢处于过表达状态,如能充分利用对过氧化氢的特异性响应的特性,即可设计出可用于肿瘤治疗的具有肿瘤特异性的光热材料。


技术实现要素:

[0006]
本发明的目的在于提供一种近红外光一区介导的智能复合纳米棒光热材料极其制备方法,该材料对过氧化氢具有高度的特异性和敏感性,利用这种纳米材料,可以实现肿瘤的选择性光热消融,具有广阔的肿瘤治疗的前景。
[0007]
本发明是这样来实现的:一种近红外光一区介导的复合纳米棒光热材料的制备方法,具体包括如下步骤:
[0008]
1)水热法制备氢氧化铈纳米棒:将铈源溶解于氢氧化钠溶液中,搅拌后将其装入高压反应釜中进行反应,反应结束后将溶液底部的沉淀通过离心分离,使用超纯水洗涤沉淀至中性后进行冻干处理;
[0009]
2)水溶液可分散的二氧化铈纳米棒的制备:在超声辅助下,于步骤1)所制得的氢氧化铈纳米棒表面修饰亲水分子,老化处理后分离出沉淀,对沉淀进行后处理,干燥后制得水溶液可分散的ceo2纳米材料;
[0010]
3)过氧化氢响应的二氧化铈abts复合纳米棒的制备:将步骤2)所制得的水溶液可分散的ceo2纳米棒与abts(2,2'-联氨-双(3-乙基苯并噻唑啉-6-磺酸)二胺盐)混合,通过静电相互作用自组装形成过氧化氢响应的二氧化铈abts复合纳米棒。
[0011]
进一步地,步骤1)中铈源的选择范围包括硝酸铈,醋酸铈和氯化铈。
[0012]
进一步地,步骤1)中在高压反应釜中进行反应的温度为90~140℃,反应时间为5~20h。
[0013]
进一步地,步骤2)中所述亲水分子可选择包括聚丙烯酸、聚(烯丙胺
·
盐酸)、十六烷基三甲基溴化铵、聚乙烯吡诺烷酮、壳聚糖在内的表面修饰剂;亲水分子与铈的摩尔比为0.01~0.1。
[0014]
进一步地,步骤2)中进行老化处理的温度为80℃,处理时间为12h。
[0015]
进一步地,步骤3)中的后处理过程包括先用酸溶液洗涤两次再用乙醇和水交替洗涤三次。
[0016]
利用上述近红外光一区介导的复合纳米棒光热材料的制备方法制备的复合纳米棒光热材料的主体成分为长度在50~250nm的纳米棒,在ph<6.8的环境中,纳米棒在过氧化氢的刺激下,abts可被催化氧化生成具有强近红外吸收和光热转化性能优良的二聚体,在正常生理环境abts无法氧化生成二聚体。
[0017]
有益效果:
[0018]
本发明通过设计一类具有过氧化氢响应性质的纳米棒,来实现光热物质的肿瘤聚集。在肿瘤微环境中,纳米棒在过氧化氢的刺激下,将本身无光热性能的药物氧化生成具有近红外一区光热性能的物质,使其在肿瘤组织中产生热效应,从而可达到热治疗肿瘤的效果。而在正常的生理条件下,由于缺乏过氧化氢,因此无光热物质生成。这种过氧化氢响应的智能光热效应,可以提高热疗的选择性,从而实现对肿瘤的靶向性加热。
附图说明
[0019]
图1是实施例四制备的纳米棒材料的扫描电子显微镜图片;
[0020]
图2是利用实施例四制备的纳米棒材料配置的水分散容易在不同浓度的过氧化氢环境下的光热效果图。
具体实施方式
[0021]
下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
[0022]
实施例一
[0023]
1.将0.4g cecl3·
7h2o溶解于50ml的氢氧化钠(浓度3mol/l)溶液中,并于室温下搅拌一小时,然后将所得溶液装入高压反应釜,在115℃的烘箱中反应10h,待反应结束后将溶液底部的沉淀离心分离,用超纯水洗涤沉淀至中性之后进行冻干处理;
[0024]
2.将冻干后的粉末样品按1mg/ml的浓度超声分散于聚(烯丙胺
·
盐酸)(1mg/ml)水溶液中,80℃下水浴加热老化处理12h,离心分离出淡黄色沉淀,沉淀用盐酸溶液(1m)洗涤两次后用乙醇和水交替再洗涤三次,于60℃条件下进行干燥处理,最终得到白色粉末;
[0025]
3.将所得白色粉末按1mg/ml的浓度分散于abts(1mg/ml)水溶液中,搅拌12h后,离心分离(转速大于6000转/分钟),所得的沉淀洗涤两次后,于60℃条件下进行干燥处理,得到最终产物。
[0026]
实施例二
[0027]
1.将0.4g cecl3·
7h2o溶解于50ml的氢氧化钠(浓度3mol/l)溶液中,并于室温下搅拌一小时,然后将所得溶液装入高压反应釜,在115℃的烘箱中反应10h。待反应结束后将溶液底部的沉淀离心分离,用超纯水洗涤沉淀至中性之后进行冻干处理;
[0028]
2.将冻干后的粉末样品按1mg/ml的浓度超声分散于聚乙烯吡诺烷酮(pvp,1mg/ml)水溶液中,80℃下水浴加热老化处理12h,离心分离出淡黄色沉淀。沉淀用盐酸溶液(1m)洗涤两次后用乙醇和水交替再洗涤三次,于60℃条件下进行干燥处理,最终得到白色粉末;
[0029]
3.将所得白色粉末按1mg/ml的浓度分散于abts(1mg/ml)水溶液中,搅拌12h后,离心分离(转速大于6000转/分钟),所得的沉淀洗涤两次后,于60℃条件下进行干燥处理,得到最终产物。
[0030]
实施例三
[0031]
1.将0.56g ce(no3)3溶解于50ml的氢氧化钠(浓度3mol/l)溶液中,并于室温下搅拌一小时,然后将所得溶液装入高压反应釜,在115℃的烘箱中反应10h。待反应结束后将溶液底部的沉淀离心分离,用超纯水洗涤沉淀至中性之后进行冻干处理;
[0032]
2.将冻干后的粉末样品按1mg/ml的浓度超声分散于聚丙烯酸(1mg/ml)水溶液中,80℃下水浴加热老化处理12h,离心分离出淡黄色沉淀。沉淀用盐酸溶液(1m)洗涤两次后用乙醇和水交替再洗涤三次,于60℃条件下进行干燥处理,最终得到白色粉末;
[0033]
3.将所得白色粉末按1mg/ml的浓度分散于abts(1mg/ml)水溶液中,搅拌12h后,离心分离(转速大于6000转/分钟),所得的沉淀洗涤两次后,于60℃条件下进行干燥处理,得到最终产物。
[0034]
实施例四
[0035]
1.将0.4g cecl3·
7h2o溶解于50ml的氢氧化钠(浓度3mol/l)溶液中,并于室温下搅拌一小时,然后将所得溶液装入高压反应釜,在115℃的烘箱中反应10小时。待反应结束后将溶液底部的沉淀离心分离,用超纯水洗涤沉淀至中性之后进行冻干处理;
[0036]
2.将冻干后的粉末样品按1mg/ml的浓度超声分散于壳聚糖(1mg/ml)水溶液中,80℃下水浴加热老化处理12h,离心分离出淡黄色沉淀,沉淀用盐酸溶液(1m)洗涤两次后用乙醇和水交替再洗涤三次,于60℃条件下进行干燥处理,最终得到白色粉末;
[0037]
3.将所得白色粉末按1mg/ml的浓度分散于abts(1mg/ml)水溶液中,搅拌12h后,离心分离(转速大于6000转/分钟),所得的沉淀洗涤两次后,于60℃条件下进行干燥处理,得到最终产物。
[0038]
相关性能测试:
[0039]
1.图1为该实施例制得的纳米棒材料的扫描电子显微镜图片,从图中可看出,该纳米棒的长度在50~250nm。
[0040]
2.将所制得的最终产物配置成浓度为1mg/ml的水分散溶液,均分成五份,在每份溶液中加入相应量的过氧化氢,最终体系的过氧化氢浓度为(0,4,16,32,64mm)。混合溶液反应30分钟后,用波长为808nm,功率为1w的激光进行照射,利用红外温度摄像仪记录溶液实时温度。最终获得复合纳米棒的光热转化曲线(如图2所示),从图中可以看出,随着体系中过氧化氢浓度的增加,体系的光热效应也逐步提升。
[0041]
这主要是由于,在过氧化氢的刺激下,纳米棒上负载的无色abts会发生如下式所示的反应,最终氧化生成abts二聚体:
[0042][0043]
由于abts二聚体具有较强的近红外一区(nir-i,700-900nm)吸收及较好的光热转化性能,因此在外加近红外光作用下,可产生热效应,从而达到热治疗肿瘤的效果。尽管纳米棒很难通过epr效应实现对肿瘤组织的靶向性分布和靶向性热疗,但是利用过氧化氢响应性纳米棒包裹光热药物的前驱物,即便大量分布在非肿瘤区域,在外加近红外光作用下,在正常组织中(ph=7.2~7.4),由于过氧化氢的浓度过低不足以产生热反应。而在肿瘤组织(ph=6.5~6.8),由于过氧化氢过表达,大量生成光热物质,并滞留于肿瘤组织处,可促使光热疗效最大化。这种过氧化氢响应的光热效应,可以提高热疗的选择性,从而实现对肿瘤的靶向性加热。
[0044]
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1