一种增材制造镍钛合金股骨柄假体及其制备方法

文档序号:26051088发布日期:2021-07-27 15:26阅读:183来源:国知局
一种增材制造镍钛合金股骨柄假体及其制备方法

本发明涉及医用假体技术领域,具体涉及一种增材制造镍钛合金股骨柄假体及其制备方法。



背景技术:

人工髋关节置换术是治疗严重性髋关节疾病(例如股骨粗隆间骨折、骨肿瘤等)的有效方法。人工髋关节由股骨柄、股骨头、臼杯座以及股骨头和臼杯座之间的衬套等组成。

传统股骨柄假体一般采用钛合金(弹性模量>110gpa)、钴铬钼(弹性模量>200gpa)或不锈钢(弹性模量>180gpa)等金属材料,与人体骨骼的弹性模量(10-30gpa)相差较大,二者接触部位由于模量差异产生应力遮挡效应,导致无菌松动。

现有技术中的增材制造多孔技术制备的股骨柄假体,选用的材料为钛合金或钴铬钼合金,虽然多孔结构可以降低整体弹性模量,能够降低应力遮挡效应,如中国专利cn106510903a,但是其仍存在如下问题:(1)钛合金材料耐磨性较差,会造成植入物与骨骼接触的表面发生磨损,易造成炎症甚至是植入体失效;(2)传统金属材料制备的多孔金属材料,整体弹性极限较小,在植入过程中仍需要严格按照植入体的尺寸对股骨髓腔进行磨削,通过物理楔入压配的方式实现初始固定,手术过程较为复杂;(3)虽然多孔植入物假体的整体模量较低,但是在假体与人体骨骼接触部位,仍然为高模量金属材料与低模量人体骨骼的结合,仍然会存在一定的应力遮挡效应。



技术实现要素:

本发明的目的在于提供一种增材制造镍钛合金股骨柄假体及其制备方法,以解决现有技术中存在的技术问题。

为实现上述目的,本发明采用的技术方案是:一种增材制造镍钛合金股骨柄假体,包括:假体本体,所述假体本体设置有远端和近端,所述近端为多孔结构;所述多孔结构由梯度过渡区和形变-回复区组成,其中,所述梯度过渡区覆盖于所述假体本体的实体区的表面,所述形变-回复区覆盖于所述梯度过渡区的表面;通过改变镍钛合金中镍的含量调整所述形变-回复区的相变温度,进而改变所述形变-回复区在人体温度下的弹性模量;当所述形变-回复区处于冰水温度时为马氏体状态,处于10℃-20℃时为奥氏体状态;调整弹性模量后的具有多孔结构的所述形变-回复区在冰水中通过外加应力对其进行变形,在植入人体后变形回复,并与人体柔性连接。

可选实施例中,通过改变镍钛合金中镍的含量调整所述梯度过渡区的相变温度,进而改变所述梯度过渡区的弹性模量;其中,所述梯度过渡区的弹性模量由内向外呈梯度变化。

可选实施例中,通过改变镍钛合金中镍的含量调整所述形变-回复区的材料的弹性模量为40-60gpa,与多孔结构结合后所述形变-回复区的弹性模量为10-30gpa。

可选实施例中,所述多孔结构为fcc面心立方晶格、bcc体心立方晶格、钻石型或骨小梁结构。

可选实施例中,所述多孔结构为均匀多孔结构或梯度多孔结构,所述多孔结构的各部分相互连通。

另一方面,本发明另一实施例中还提供了一种上述的增材制造镍钛合金股骨柄假体的制备方法,包括如下步骤:

步骤1,根据不同年龄患者的实际情况、医生诊疗结果和医学影像数据获取骨损伤图像,构建三维模型;

步骤2,将步骤1中构建的三维模型结合有限元方法进行应力及应变分布分析,建立与病人实际情况相匹配的最优应力应变分布模型,确定变形-回复区、梯度过渡区区和实体区的分布及力学性能需求,并据此优化三维模型;

步骤3,选用niti二元形状记忆合金粉末,利用激光选区熔化工艺成形试验样块,测试并构建激光选区熔化工艺参数与niti合金相变温度、弹性模量、力学性能、形状记忆和弹性特性之间的关系;依据步骤2中股骨柄假体的优化三维模型中不同部位对力学性能及功能特性的需求,确定所选取的激光选区熔化工艺参数。

步骤4,基于优化三维模型,以及步骤3所获得的实验数据,利用niti二元形状记忆合金粉末,通过激光选区熔化设备制造相应的股骨柄假体,包括制备梯度过渡区、形变-回复区和实体区;依据步骤3所得到的实验数据,通过调控激光选区熔化工艺参数改变股骨柄不同部位的相变温度,来调控股骨柄不同部位的力学特性;通过激光选区熔化调整镍含量改变制备形变-回复区材料自身的弹性模量,结合调整形变-回复区自身的多孔结构的孔隙率和孔径,进一步调整形变-回复区的弹性模量;

步骤5,将制备好的股骨柄假剖开,采用压缩或压痕实验,对假体不同部位的力学性能及功能特性进行评价;并与步骤2中的优化三维模型进行比较,判断股骨柄假体不同部位的力学性能及假体整体力学性能是否满足预期要求;

步骤6,制备完整的股骨柄假体,如有必要可对股骨柄假体植入骨生长因子。

可选实施例中,步骤3中,选用的niti二元形状记忆合金粉末按原子份数的ni含量为50.5-51.0at.%,粒度范围为15-53μm。

可选实施例中,步骤3中,激光选区熔化工艺参数的变化范围为:激光功率50-500w、激光扫描速度50-2000mm/s、激光扫描间距10-150μm,铺粉层厚10-100μm;其中,激光扫描间距与铺粉层厚选取一定值并保持不变。

可选实施例中,步骤4中,调整后的变形-回复区在冰水温度下保持为马氏体,在10℃-20℃范围内转变为奥氏体,同时发生形状回复,在人体温度下为奥氏体;梯度过渡区在人体温度条件下弹性模量呈梯度变化;形变-回复区的最外层与人体骨骼相接触的部位,制备时采用激光反复扫描,铺粉一次,激光扫描两次以上,降低最外层的镍含量,使其在人体温度下表现为马氏体,具有较低模量的同时抑制镍离子的析出。

可选实施例中,步骤4中,形变-回复区的孔隙率的调整范围为50%-90%,孔径的调整范围为50-800μm。

本发明的有益效果在于:

(1)本发明中的增材制造镍钛合金股骨柄假体制备过程中通过激光选区熔化技术调整镍的含量,使niti合金的弹性模量会根据温度及相组成的变化而发生变化,弹性模量最低可至30gpa,最高为90gpa。与传统的钛合金、钴铬钼以及不锈钢等相比,具有更低的弹性模量,与人体骨骼具有更好的匹配度。尤其需要指出的是,通过调整材料自身的弹性模量再与多孔结构设计相结合,可以进一步地降低植入体的弹性模量,使之与人体骨骼更加匹配,极大缓解应力遮挡效应。

(2)本发明中的增材制造镍钛合金股骨柄假体通过调控niti合金的相变温度和弹性模量,植入前将植入体放入冰水中冷却并进行变形,使植入体部分发生变形,植入后加热至10-20℃范围内使植入体形状回复,可极大降低手术难度,简化手术过程。并且,使回复后的植入体在人体温度条件下(37℃),表现有弹性,在不同的应变条件下产生的应力基本相同,不会因为植入体与股骨髓腔的微小形状差异而造成应力集中。该股骨柄假体还可以在形变-回复区保持孔隙率、孔径大小最优的条件下实现对弹性模量的调控,即在孔隙率和孔径一定的情况下,通过改变制备材料自身的相变温度进而改变形变-回复区的弹性模量,满足最优设计。

附图说明

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

图1为本发明一实施例提供的增材制造镍钛合金股骨柄假体整体结构示意图。

图2为本发明一实施例提供的增材制造镍钛合金股骨柄假体的纵剖面示意图。

图3为本发明一实施例提供的增材制造镍钛合金股骨柄假体的横剖面示意图。

其中,图中附图标记为:1、远端,2、多孔结构,3、形变-回复区,4、梯度过渡区,5、实体区。

具体实施方式

为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

需要说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接或者间接位于该另一个部件上。当一个部件被称为“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置为基于附图所示的方位或位置,仅是为了便于描述,不能理解为对本技术方案的限制。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。

请参阅附图1-3,本实施例的目的在于提供了一种增材制造镍钛合金股骨柄假体,包括:假体本体,假体本体设置有远端1和近端,近端为多孔结构2;多孔结构2由梯度过渡区4和形变-回复区3组成,其中,梯度过渡区4覆盖于假体本体的实体区5的表面,形变-回复区3覆盖于梯度过渡区4的表面;通过改变镍钛合金中镍的含量调整形变-回复区3的相变温度,进而改变形变-回复区3在人体温度下的弹性模量;当形变-回复区3处于冰水温度时为马氏体状态,处于10℃-20℃时为奥氏体状态;调整弹性模量后的具有多孔结构的形变-回复区3在冰水中通过外加应力对其进行变形,在植入人体后变形回复,并与人体柔性连接。具体为,改变形变-回复区3制备材料自身的弹性模量,结合调整形变-回复区3的孔隙率和孔径大小,进一步调整调整形变-回复区3的弹性模量,尤其是降低形变-回复区3的弹性模量,形变-回复区3在植入前降温使假体收缩,植入人体后形状回复,可以极大地简化手术流程、降低手术难度。

需要指出的是,通过改变镍钛合金中镍的含量调整形变-回复区3的材料的弹性模量为40-60gpa,与多孔结构结合后形变-回复区3的弹性模量为10-30gpa。优选地,多孔结构2为fcc面心立方晶格、bcc体心立方晶格、钻石型或骨小梁结构等。多孔结构2为均匀多孔结构或梯度多孔结构,多孔结构2的各部分相互连通。

具体地,通过改变镍钛合金中镍的含量调整梯度过渡区4的相变温度,进而改变梯度过渡区4的弹性模量;其中,梯度过渡区4的弹性模量由内向外呈梯度变化。梯度过渡区4是指形变-回复区3的弹性模量较低,主要是为了降低应力遮挡效应,而假体的中心部位为实体区5,为了提供足够的支撑力。由于形变-回复区3和实体区5的弹性模量是不同的,为了实现二者的力学最优结合,设置梯度过渡区4。

上述增材制造镍钛合金股骨柄假体的制备方法,其特征在于,包括如下步骤:

步骤1,根据不同年龄患者的实际情况、医生诊疗结果和医学影像数据获取骨损伤图像,构建三维模型;

步骤2,将步骤1中构建的三维模型结合有限元方法进行应力及应变分布分析,建立与病人实际情况相匹配的最优应力应变分布模型,确定变形-回复区3、梯度过渡区4区和实体区5的分布及力学性能需求,并据此优化三维模型;

步骤3,选用niti二元形状记忆合金粉末,其中,选用的niti二元形状记忆合金粉末按原子份数的ni含量为51.0at.%,粒度范围为15-53μm;利用激光选区熔化工艺成形试验样块,测试并构建激光选区熔化工艺参数与niti合金相变温度、弹性模量、力学性能、形状记忆和弹性特性之间的关系;依据步骤2中股骨柄假体的优化三维模型中不同部位对力学性能及功能特性的需求,确定所选取的激光选区熔化工艺参数。

步骤4,基于优化三维模型,以及步骤3所获得的实验数据,利用niti二元形状记忆合金粉末,通过激光选区熔化设备制造相应的股骨柄假体,包括制备梯度过渡区4、形变-回复区3和实体区5;依据步骤3所得到的实验数据,通过调控激光选区熔化工艺参数改变股骨柄不同部位的相变温度,来调控股骨柄不同部位的力学特性;通过激光选区熔化调整镍含量改变制备形变-回复区3材料自身的弹性模量,结合调整形变-回复区3自身的多孔结构的孔隙率和孔径,再次调整形变-回复区3的弹性模量,尤其是进一步降低形变-回复区3的弹性模量,优选地,形变-回复区3的孔隙率的调整范围为50%-90%,孔径的调整范围为50-800μm。值得一提的是,通过改变niti合金材料的相变温度来调控在人体温度条件下形变-回复区3的弹性模量,可以在保持孔隙率最优的条件下实现对弹性模量的调控,即在孔隙率和孔径一定的情况下,通过改变制备材料自身的相变温度进而改变形变-回复区3的弹性模量,满足最优设计。也就是说,即可先调整制备形变-回复区3制备材料的弹性模量,再调整多孔结构的孔隙率和孔径,也可在多孔结构的孔隙率和孔径一定的情况下,再调整形变-回复区3制备材料的弹性模量,以满足最优设计。

需要指出的是,调整后的变形-回复区3在冰水温度下保持为马氏体,在10℃-20℃范围内转变为奥氏体,同时发生形状回复,在人体温度下为奥氏体;梯度过渡区4在人体温度条件下弹性模量呈梯度变化;形变-回复区3的最外层与人体骨骼相接触的部位,制备时采用激光反复扫描,铺粉一次,激光扫描两次以上,使其在人体温度下表现为马氏体。优选地,激光选区熔化工艺参数的变化范围为:激光功率50-500w、激光扫描速度50-2000mm/s、激光扫描间距10-150μm,铺粉层厚10-100μm;其中,激光扫描间距与铺粉层厚选取一定值并保持不变。

在假体的变形-回复区3的最外层与人体骨骼接触的部位,采用高密度激光或者是激光反复扫描的方式加工,反复扫描或者高能量密度加工可以降低该部位的ni含量,使其在人体温度条件下处于马氏体状态。马氏体具有较低的弹性模量,可以降低与骨头接触部位的应力遮挡效应。传统钛合金植入体虽然整体模量可以通过多孔结构,得到较低的弹性模量,但是假体和人体骨骼接触的部位,仍然是较软的骨骼和较硬钛合金金属之间的结合,在接触表面仍然存在一定的应力遮挡效应。更具体地,形变-回复区3的主体部分在人体温度下表现为奥氏体,以及良好的弹性。但是形变-回复区3的最外层与人体接触的部分为马氏体,通过高激光能量密度或者激光反复扫描的方法,降低ni含量,使其处在马氏体状态。一方面马氏体具有较低的弹性模量,另一方面ni含量低可以抑制ni离子析出。通过激光反复扫描可以促进ni元素的挥发,导致该部分材料内部ni含量降低,ni含量降低导致相变温度升高,相变温度升高使的最外层材料在人体温度条件下为马氏体,解决应力遮挡效应。

此外,反复扫描或者高能量密度加工可以降低该部位的ni含量,可以减轻有害的ni离子的析出。虽然niti合金具有良好的生物相容性,但是有一部分人群仍然对少量的ni离子非常敏感,通过降低与人体接触部位的ni含量,可以降低ni离子的析出。

步骤5,将制备好的股骨柄假剖开,采用压缩或压痕实验,对假体不同部位的力学性能及功能特性进行评价;并与步骤2中的优化三维模型进行比较,判断股骨柄假体不同部位的力学性能及假体整体力学性能是否满足预期要求;

步骤6,制备完整的股骨柄假体,如有必要可对股骨柄假体植入骨生长因子等。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1