一种去除热声效应影响的电导率磁声成像装置及成像方法

文档序号:10669757阅读:265来源:国知局
一种去除热声效应影响的电导率磁声成像装置及成像方法
【专利摘要】一种去除热声效应影响的电导率磁声成像装置及成像方法,考虑了磁声耦合成像中的热声效应声源对声信号的影响。磁声耦合效应信号的生成,是通过在稳恒磁场中加载交变激励磁场,受到洛伦兹力的作用产生同频振动实现的。热声效应信号是通过交变的激励磁场作用在生物组织,吸收电磁波引起热膨胀产生的振动。本发明的方法只使用一套成像装置实现两种效应的信号检测与样本电导率成像,将样本放置在静磁场中,在加静磁场和不加静磁场两种条件下,施加可调幅值和频率的脉冲激励磁场,分别实现磁声效应信号和热声效应信号的采集。本发明对采集的信号进行处理,去掉热声效应对磁声信号的影响,实现样本电导率分布重建,在一定程度上提高了电导率重建的准确度。
【专利说明】
一种去除热声效应影响的电导率磁声成像装置及成像方法
技术领域
[0001] 本发明涉及一种电导率磁声成像装置及成像方法。特别是涉及一种去除热声效应 影响的电导率磁声成像装置及成像方法。
【背景技术】
[0002] 肿瘤组织在还未发生形态的改变时,其电特性已经发生了变化,如果可以提取出 病变早期的电特性变化信息,对于疾病的早期发现提供了可能性。因此,无创、安全、结构成 像和功能成像相结合的成像技术越来越受到广泛关注。
[0003 ]磁声成像是新型生物组织电特性成像的方法。磁声成像是通过外部电流激励组织 内部的带电离子,同时在静磁场的作用下,将组织内部电导率信息转换为声信号。热声信号 是通过交变磁场输入成像组织内部产生感应电流,由焦耳热激发声信号,从声信号中提取 热吸收系数分布信息对组织进行电特性成像。
[0004] 在现有装置的磁声成像中获得的声信号不仅来源于洛伦兹力引起的振动,也来源 于无稳恒磁场、仅有脉冲磁场作用的热声效应声振动。因此,声传感器接收到的所谓的磁声 信号是这两种声源产生的声信号的叠加,由于这两种声源都与电导率相关,目前使用的基 于洛伦兹力密度散度声源设计的电导率重建算法,没有考虑到热声效应声源对声信号的影 响,对声信号的特征描述与图像重建结果,与实际接收到的声信号及电导率分布存在差异。

【发明内容】

[0005] 本发明所要解决的技术问题是,提供一种能够对电导率准确重建的去除热声效应 影响的电导率磁声成像装置及成像方法。
[0006] 本发明所采用的技术方案是:一种去除热声效应影响的电导率磁声成像装置,包 括,耦合剂槽,所述的耦合剂槽内分别设置有:用于支撑样本的托盘,连接在所述托盘的底 端用于驱动托盘旋转的步进电机,分别设置在所述样本两侧的第一声换能器和第二声换能 器,其中,所述步进电机的输入端通过贯穿耦合剂槽的导线连接由计算机控制的驱动电路, 所述第一声换能器和第二声换能器的信号输出端均连接双通道前置放大器的信号输入端, 所述双通道前置放大器的信号输出端通过采集卡连接计算机,所述样本的上方还设置有激 励线圈,所述激励线圈连接激励装置,所述激励线圈的上方还设置有静磁铁。
[0007] 所述的激励装置包括有相连接的用于产生激励信号的信号发生器和用于对所述 的激励信号进行放大的功率放大器,所述功率放大器的输出端连接所述的激励线圈。
[0008] 所述的静磁铁是通过能够移动的移动支架设置在所述激励线圈的上方。
[0009] -种用于去除热声效应影响的电导率磁声成像装置的成像方法,包括如下步骤:
[0010] 1)由激励装置输出频率1MHz的脉冲正弦激励电压到激励线圈中作用于待测样本;
[0011] 2)由高共模抑制比的双通道前置放大器分别通过第一声换能器和第二声换能器 采集待测样本的磁声信号和热声信号;
[0012] 3)对磁声信号和热声信号数字化处理;
[0013] 4)采用时频分析方法对热声信号进行频域分析,得到热声信号的频域特性;
[0014] 5)根据热声信号的频域特性设计数字低通滤波器,利用数字低通滤波器去除磁声 信号中的热声信号,分离出单一的磁声信号;
[0015] 6 )将基于洛伦兹力的磁声声源作为源项,建立磁声声源的声压波动方程
再基于时间反投影算法利用单一的磁声信号重 建待测样本的电导率,得到样本电导率分布图像。
[0016] 步骤2)中在检测磁声信号时,在加载静磁场的条件下,施加可调幅值和频率的脉 冲激励作用于激励线圈,采用中心频率1MHz的超声换能器采集待测样本的磁声信号;
[0017] 步骤2)中在检测热声信号时,通过可移动的支架移去静磁铁,在不加载静磁场的 条件下,施加可调幅值和频率的脉冲激励作用于激励线圈,采用中心频率200~500kHz的超 声换能器采集待测样本的热声信号。
[0018] 本发明的一种去除热声效应影响的电导率磁声成像装置及成像方法,考虑热声效 应声源的影响,检测两种声源传播至体表传感器位置的声信号,解析热声效应声源对磁声 成像电导率重建的影响,去除传感器接收到的声信号中热效应声源产生的影响,分离出单 一洛伦兹力声信号,采用原有洛伦兹力密度散度声源理论重建电导率图像进而从声信号中 获取更加准确的电导率信息,减小热声效应的不利影响,提高电导率成像质量。
【附图说明】
[0019] 图1是本发明去除热声效应影响的电导率磁声成像装置的结构示意图;
[0020] 图2是本发明去除热声效应影响的电导率磁声成像装置的成像方法流程图。
[0021] 图中
[0022] 1:耦合剂槽 2:托盘
[0023] 3:样本 4:步进电机
[0024] 5:驱动电路 6:计算机
[0025] 7:采集卡 8:双通道前置放大器
[0026] 9:第一声换能器 10:第二声换能器
[0027] 11:激励装置 12:激励线圈
[0028] 13:静磁铁 14:移动支架
【具体实施方式】
[0029] 下面结合实施例和附图对本发明的一种去除热声效应影响的电导率磁声成像装 置及成像方法做出详细说明。
[0030] 本发明的一种去除热声效应影响的电导率磁声成像装置及成像方法,考虑了磁声 耦合成像中的热声效应声源对声信号的影响。磁声耦合效应信号的生成,是通过在稳恒磁 场中加载交变激励磁场,受到洛伦兹力的作用产生同频振动实现的。热声效应信号是通过 交变的激励磁场作用在生物组织,吸收电磁波引起热膨胀产生的振动。本发明的方法只使 用一套成像装置实现磁声与热声两种效应信号的检测与分离。将样本放置在托盘上,在加 静磁场和不加静磁场两种条件下,对待侧样本施加可调幅值和频率的脉冲激励磁场,分别 实现样本的磁声信号和热声效应信号的采集。本发明设计算法对采集的信号进行处理,去 掉热声效应对磁声信号的影响,实现样本电导率分布重建,在一定程度上提高了电导率重 建的准确度。
[0031] 如图1所示,本发明的一种去除热声效应影响的电导率磁声成像装置,包括,耦合 剂槽1,所述的耦合剂槽1内分别设置有:用于支撑样本3的托盘2,连接在所述托盘2的底端 用于驱动托盘2旋转的步进电机4,分别设置在所述样本3两侧的第一声换能器9和第二声换 能器 10,其中,所述步进电机4的输入端通过贯穿耦合剂槽1的导线连接由计算机6控制的驱 动电路5,所述第一声换能器9和第二声换能器10的信号输出端均连接双通道前置放大器8 的信号输入端,所述双通道前置放大器8的信号输出端通过采集卡7连接计算机6,所述样本 3的上方还设置有激励线圈12,所述激励线圈12连接激励装置11,所述的激励装置11包括有 相连接的用于产生激励信号的信号发生器111和用于对所述的激励信号进行放大的功率放 大器112,所述功率放大器112的输出端连接所述的激励线圈12。所述激励线圈12的上方还 通过移动支架14设置有静磁铁13。
[0032] 所述的静磁铁13是通过能够移动的移动支架14设置在所述激励线圈12的上方,从 而可以实现加载静磁场和不加载静磁场的不同条件。通过可移动的支架移动静磁铁,在加 载静磁场的条件下,对待测样本施加可调幅值和频率的脉冲激励磁场,实现磁声效应声信 号的采集。通过可移动的支架移动静磁铁,在不加载静磁场的条件下,对待测样本施加可调 幅值和频率的脉冲激励磁场,实现热声效应声信号的采集。
[0033] 第一声换能器9和第二声换能器10相对放置,同时接收声信号,第一声换能器9和 第二声换能器10的中心频率按照样本电导率重建信息的要求设计。在测量生物组织时,第 一声换能器9中心频率选为与激励脉冲同频的1MHz,第二声换能器10中心频率选为200~ 500kHz〇
[0034] 根据磁声親合效应声压波动方程:
[0035](1) (6.. . 1./1,
[0036] 其中,p(r,t)为磁声耦合声信号,J为电流密度,根据欧姆定律J = 〇E,〇为电导率, Bo为静磁场,cs为介质中的声速。
[0037] 根据热声耦合效应声压波动方程:
[0038]
(2):
[0039] 其中,p(r,t)为热声耦合声信号,β为热膨胀系数,CP为常压热容。
[0040] 从方程(1)中可见,磁声效应信号是由洛伦兹力振动声源引起的,从方程(2)中可 见,热声效应声信号是由焦耳热声源引起的。在磁声成像的测量条件下,所测得的声信号既 包含由洛伦兹力振动引起的磁声信号,也包含热声效应产生的热声信号。
[0041] 本发明的一种用于去除热声效应影响的电导率磁声成像装置的成像方法,通过去 除磁声信号中的热声信号以实现精确重建被测样本电导率分布图像,如图2所示,具体包括 如下步骤:
[0042] 1)由激励装置输出频率1MHz的脉冲正弦激励电压到激励线圈中作用于待测样本;
[0043] 2)由高共模抑制比的双通道前置放大器分别通过第一声换能器和第二声换能器 采集待测样本的磁声信号和热声信号;其中
[0044] 在检测磁声信号时,在加载静磁场的条件下,施加可调幅值和频率的脉冲激励作 用于激励线圈,采用中心频率1MHz的超声换能器采集待测样本的磁声信号;
[0045] 在检测热声信号时,通过可移动的支架移动静磁铁,在不加载静磁场的条件下,施 加可调幅值和频率的脉冲激励作用于激励线圈,采用中心频率200~500kHz的超声换能器 采集待测样本的热声信号。
[0046] 3)对磁声信号和热声信号数字化处理;
[0047] 4)采用时频分析方法对热声信号进行频域分析,得到热声信号的频域特性;
[0048] 5)根据热声信号的频域特性设计数字低通滤波器,利用数字低通滤波器去除磁声 信号中的热声信号,分离出单一的洛伦兹力磁声信号;
[0049] 6 )将基于洛伦兹力的磁声声源作为源项,建立磁声声源的声压波动方程
,再基于时间反投影算法利用单一的磁声信号重 建待测样本的电导率,得到样本电导率分布图像。
[0050] 下面给出实例:
[0051] 1)将待测样本3固定在如图1所示装置中的激励线圈下方,耦合剂槽1上方通过移 动支架14放置静磁铁13形成的均匀磁场垂直于样本放置平面,第一声换能器9和第二声换 能器10沿水平方向对称放置在样本3平面两侧;
[0052] 2)检测热声信号时,使用1MHz频率的正弦脉冲电压激励样本,通过移动支架14移 走静磁铁13去掉均匀静磁场的作用,用中心频率200-500kHz的第二声换能器和1MHz的第一 声换能器采集信号,采用双通道前置放大器8接收信号,通过计算机控制电机带动放有样本 3的托盘2旋转,使第一声换能器9和第二声换能器10沿圆周扫描方式逐点采集信号,获得各 采集点处样本3的热声信号;
[0053] 3)检测磁声信号时,使用1MHz频率的正弦脉冲电压激励样本,通过移动支架14移 动静磁铁13至样本3的正下方,设置静磁场的强度为1T,同时用中心频率200-500kHz的第二 声换能器和1MHz的第一声换能器采集信号,采用双通道前置放大器接收信号,通过计算机 控制电机带动放有样本3的托盘2旋转,使第一声换能器9和第二声换能器10沿圆周扫描方 式逐点采集信号,获得各采集点处样本3的磁声信号;
[0054] 4)对于每一个位置采集的信号,采用时频分析法去除传感器接收到的磁声信号中 的热声效应影响,分离出单一洛伦兹力声信号;
[0055] 5)求解方程
[0056]
(1)
[0057] 获取相应的算法,将步骤4)中得到的数据输入算法,对样本电导率分布进行重建。 [0058]该方法及步骤同样适用于激励脉冲为其他频率的情况下,不仅限于1MHz。此时,第 一声换能器的中心频率应与激励脉冲频率一致。在测量生物组织时,第二声换能器10中心 频率选为200~500kHz。
【主权项】
1. 一种去除热声效应影响的电导率磁声成像装置,包括,耦合剂槽(1),其特征在于,所 述的耦合剂槽(1)内分别设置有:用于支撑样本(3)的托盘(2),连接在所述托盘(2)的底端 用于驱动托盘(2)旋转的步进电机(4),分别设置在所述样本(3)两侧的第一声换能器(9)和 第二声换能器(10),其中,所述步进电机(4)的输入端通过贯穿耦合剂槽(1)的导线连接由 计算机(6)控制的驱动电路(5),所述第一声换能器(9)和第二声换能器(10)的信号输出端 均连接双通道前置放大器(8)的信号输入端,所述双通道前置放大器(8)的信号输出端通过 采集卡(7)连接计算机(6 ),所述样本(3)的上方还设置有激励线圈(12 ),所述激励线圈(12) 连接激励装置(11 ),所述激励线圈(12)的上方还设置有静磁铁(13)。2. 根据权利要求1所述的一种去除热声效应影响的电导率磁声成像装置,其特征在于, 所述的激励装置(11)包括有相连接的用于产生激励信号的信号发生器(111)和用于对所述 的激励信号进行放大的功率放大器(112),所述功率放大器(112)的输出端连接所述的激励 线圈(12)。3. 根据权利要求1所述的一种去除热声效应影响的电导率磁声成像装置,其特征在于, 所述的静磁铁(13)是通过能够移动的移动支架(14)设置在所述激励线圈(12)的上方。4. 一种用于权利要求1所述的去除热声效应影响的电导率磁声成像装置的成像方法, 其特征在于,包括如下步骤: 1) 由激励装置输出频率1MHz的脉冲正弦激励电压到激励线圈中作用于待测样本; 2) 由高共模抑制比的双通道前置放大器分别通过第一声换能器和第二声换能器采集 待测样本的磁声信号和热声信号; 3) 对磁声信号和热声信号数字化处理; 4) 采用时频分析方法对热声信号进行频域分析,得到热声信号的频域特性; 5) 根据热声信号的频域特性设计数字低通滤波器,利用数字低通滤波器去除磁声信号 中的热声信号,分离出单一的磁声信号; 6) 将基于洛伦兹力的磁声声源作为源项,建立磁声声源的声压波动方程,再基于时间反投影算法利用单一的磁声信号重 建待测样本的电导率,得到样本电导率分布图像。5. 根据权利要求4所述的去除热声效应影响的电导率磁声成像装置的成像方法,其特 征在于,步骤2)中在检测磁声信号时,在加载静磁场的条件下,施加可调幅值和频率的脉冲 激励作用于激励线圈,采用中心频率1MHz的超声换能器采集待测样本的磁声信号。6. 根据权利要求4所述的去除热声效应影响的电导率磁声成像装置的成像方法,其特 征在于,步骤2)中在检测热声信号时,通过可移动的支架移去静磁铁,在不加载静磁场的条 件下,施加可调幅值和频率的脉冲激励作用于激励线圈,采用中心频率200~500kHz的超声 换能器采集待测样本的热声信号。
【文档编号】A61B5/053GK106037638SQ201610325093
【公开日】2016年10月26日
【申请日】2016年5月17日
【发明人】刘志朋, 周晓青, 殷涛, 张顺起, 马任
【申请人】中国医学科学院生物医学工程研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1