双神经因子连接的聚吡咯?聚乳酸平行导电多孔复合丝膜及其制备

文档序号:10705519阅读:1036来源:国知局
双神经因子连接的聚吡咯?聚乳酸平行导电多孔复合丝膜及其制备
【专利摘要】本发明涉及两种神经因子NGF和NT?3连接在聚吡咯?聚乳酸平行导电多孔复合丝膜及其制备方法。首先把直径为50~2000 nm平行多孔聚乳酸丝膜置于含有十二烷基磺酸钠、聚谷氨酸、FeCl3和吡咯的混合水溶液中,随后采用在位聚合法充分反应2~24小时,在平行丝膜表面均匀包覆上聚吡咯纳米颗粒,洗涤干燥后得到直径为60~2500 nm的导电聚吡咯包裹的聚乳酸纤维膜;然后采用碳二亚胺技术在这种平行导电多孔复合丝膜上先后连接NGF和NT?3两种神经因子蛋白,从而制得在电场刺激下能释放神经因子并促进神经轴突延伸及外周神经修复的导电复合丝膜。本发明具有简单易行、神经因子连接效率高、材料导电性好、神经修复时间短的特点。
【专利说明】
双神经因子连接的聚吡咯-聚乳酸平行导电多孔复合丝膜及其制备
技术领域
[0001]本发明涉及一种双神经因子连接的聚吡咯-聚乳酸平行导电多孔复合丝膜及其制备。
【背景技术】
[0002]与普通纳米纤维制备技术相比,静电纺丝技术的诞生为纳米纤维的制备提供了新的思路,它能制备出直径更小、纤维更长的纳米线,并提高其生物可降解性,因而被应用到很多领域。相比于无规的电纺纤维,平行的纤维由于具有各项异性而备受关注,如其纵向的拉伸强度高,其良好的平行结构还能引导细胞和组织生长。导电聚合物中聚吡咯的生物相容性好、导电率高及组织的力学匹配性好,是良好的生物电刺激给电介质。但是聚吡咯的脆性、难降解性和不易加工性限制了其在医学上应用。虽然可以通过聚吡咯纳米颗粒包覆在可降解的乳酸纤维丝上,以提高其加工性、体内分散性而排出体外;但聚吡咯的疏水性也不利于其神经细胞的粘附、分化和轴突的生长。对聚乳酸-聚吡咯复合丝膜而言,掺杂有十二烷基磺酸(DBS)和聚谷氨酸(PGlu)的导电聚吡咯颗粒,可以均匀包覆在聚乳酸纤维表面而形成导电壳层,在长时间的生物体内作用下可分散在血液中而被排出生物体外。张等人(Acta 8丨011^七6431丨3,2016,32,?46-56)报道,通过外层聚吡咯向神经模型细胞?(:12施加100?200 mV/cm的电刺激,能有效地提高细胞的活性,更易向特定功能分化,并促进其长出的轴突沿着导电复合纤维方向延伸。
[0003]通过连接上各种特异性生物物质,可以提高材料的表面亲水性、生物相容性和细胞粘附性,常见的方法有物理吸附、涂抹包被、电化学沉积以及化学活化接枝改性等方法。然而,普通物理吸附包被连接的生物物质往往因为连接的不牢而易脱落,化学沉积或电沉积方法虽然能够牢牢地将生物物质包被在材料上,但其操作难度大、技术要求高、且易使蛋白失活变性。化学活化法连接包被蛋白或者特异性因子可以定向完成需要的生物物质结合,具有目标明确、方法简单易操作、可重复操作等特点,已得到重视。使用碳二亚胺(EDC)法可以连接上神经生长因子(NGF)在聚吡咯材料上,从而使NGF-PPy复合材料能诱导神经轴突的生长。李晓光等人(8丨0111&丨64&18,2010,31,?2184-2192)报道,神经营养因子(见'-3)连接的可降解生物材料能促进神经损伤的再生修复。我们前期的研究(Electrochimi ca八(^&,2015,185,?172-177)表明,在电沉积制备的??7薄膜上同时连接抓?和阶-3两种神经因子,能较好地促进材料表面粘附细胞的神经轴突生长。但在这种电沉积薄膜上,神经细胞长出的轴突是各个方向发散性生长的,并且其轴突仍然比较短。因此目前还没有在平行导电聚合物丝膜化学活化法连接NGF和NT-3两种神经因子,以获得更长神经轴突生长的报道。本发明充分利用了聚谷氨酸掺杂聚吡咯包覆聚乳酸丝膜的平行多孔结构,并在酸性条件下活化,使其平行丝的表面最大效率地连接神经因子蛋白。相比单纯的平行结构丝膜诱导神经生长,由于同时引入NGF和NT-3两种因子后,这种导电多孔产品不但具有良好的神经细胞粘附性,而且还能促进神经细胞的分化,并在电刺激条件下促进轴突延伸的更长。
[0004]

【发明内容】

[0005]本发明提供了一种双神经因子连接的平行导电多孔聚吡咯-聚乳酸复合丝膜及其制备方法。
[0006]本发明注意到,在合成包覆层聚吡咯时利用合适的掺杂剂,既可以使聚吡咯-聚乳酸平行多孔丝膜具有优良的导电性,还能提高材料的亲水性和细胞粘附性,并为导电纤维上连接多种神经因子提供活性基团。由此在本发明中提出一种新的制备特异性神经粘附及促进神经轴突引导延伸生长的技术方案。其中,利用化学氧化法在位聚合沉积聚谷氨酸及十二烷基磺酸共掺杂的导电聚吡咯纳米颗粒包覆在平行多孔聚乳酸丝表面,获得平行导电多孔丝膜,并通过H)C法先后连接NGF及NT-3两种神经因子,该方法包括以下步骤:a)将聚乳酸溶于N,N-二甲基甲酰胺与二氯甲烷(DMF与DCM)的混合溶剂中,配成电纺丝液,再将纺丝液喷射于高压电场,并由高速旋转鼓收集而获得平行多孔聚乳酸丝膜,b)用化学氧化在位聚合沉积法包覆聚吡咯壳层,并同时进行共掺杂DBS和聚谷氨酸;c)将导电复合丝膜浸泡在EDC活化液中,然后将材料置于NGF溶液中避光反应连接;d)将连接NGF的膜再进行活化,然后进行NT-3反应连接;e)重复上述两种神经因子的连接,以提高其连接量。
[0007]在本发明的方法中,所述聚乳酸浓度可以是0.5?2.0mg/mL,优选为0.65?1.5mg/mL。所述DMF = DCM比例是为0.01?0.3/1,优选比例为0.05?0.2/1;所述聚谷氨酸和DBS的浓度可以分别为3.5?42 mM和3.5?56 mM,优选浓度分别为7?28 mM和7?42mM。这两者的掺杂比例不能过高也不能太低,不然就会影响聚吡咯层的导电性、亲水性和细胞粘附性及接枝基团数量。
[0008]在本发明的方法中,所述I3BS缓冲液的pH可以为4.0?6.0,优选为4.5?5.5。活化液中包含的碳二亚胺与N-羟基琥珀酰亚胺(EDC和NHS)浓度可以分别为0.1?0.3 M和
0.02?0.15 M,优选浓度分别为0.15 -0.25 M和0.035 -0.1 M。可以采用超声振荡方法让活化液以及反应液充分浸润丝膜,以达到每根丝膜表面上的所有位点都被活化并连接上NGF或NT-3,其连接反应的时间为0.3?2小时。
[0009]在本发明的方法中,可以在室温条件下将步骤a)所得的平行丝膜需要在室温环境下自然干燥0.5~2天,使纺丝溶剂充分挥发。吡咯沉积液需要充分搅拌分散,也可借助超声分散5-30 min等方式让沉积液完全浸润在丝膜表面。
[0010]在本发明的方法中,为得到接枝量最大的神经因子复合产物,在步骤e)中需对已经接枝过的导电丝膜进行洗涤、活化和再连接操作。用pH=7.2?7.4的PBS轻轻地将丝膜清洗两遍,此过程是为了将部分未连接上NGF或NT-3的羧基充分暴露出来,然后用EDC和NHS进行振荡活化处理0.2?1.0小时,再将活化好的平行导电多孔丝膜置于前一次连接的剩余神经因子溶液中,继续振荡反应0.2?2小时。连续几次连接,再经PBS液清洗后得到神经因子连接量大的平行导电丝膜。
[0011]依据本发明方法可以在室温下制备得到NGF和NT-3连接的平行导电多孔聚吡咯-聚乳酸纳米丝膜。本发明具有方法简单易行,神经因子的连接量大,产物环境友好且具有良好导电性和细胞粘附性等优点。由于纳米导电丝表面修饰连接有神经生长因子,因此不但大大提高了其生物相容性和神经修复性,还能赋予导电聚吡咯-聚乳酸纳米纤维独特的诱导性能。
【附图说明】
[0012]结合附图对本发明作进一步说明,其中
图1是聚乳酸-聚吡咯平行导电多孔纳米纤维丝膜的扫描电镜图。
[0013]图2显示出聚吡咯-聚乳酸纳米纤维同时连接NGF和NT-3的荧光显微镜照片,为便于观察神经因子的连接,NGF和NT-3分别被绿色荧光素FITC和红色罗丹明RITC标记。
[0014]图3为在外加电场与丝轴一致、200mV/cm的电刺激下PC12细胞培养2天的显微镜照片,箭头指示为外加电场的方向。
【具体实施方式】
[0015]下面将结合实施例对本发明作进一步说明,这些实施例只是为了更好地理解本发明,并且在任何情况下都不应该将其解释为限制本发明的范围,本发明的范围由所附的权利要求书所限定。
[0016]本发明中平行导电聚吡咯-聚乳酸纳米纤维的制备及其NGF和NT-3的连接是通过高压静电纺丝、化学氧化聚合和m)C-NHS法实现的。图1是聚乳酸-聚吡咯平行多孔丝膜的扫描电镜图,可见本发明制备的丝膜具有平行度好、聚吡咯包覆层连续性好等优点。图2是聚吡咯-聚乳酸平行丝膜连接NGF和NT-3后的荧光显微镜照片。由该图可知荧光素标记的NGF或NT-3都很均匀的连接在了纳米纤维丝的表面,其接枝总量也很高。
[0017]本发明提供的平行导电聚吡咯-聚乳酸纳米纤维的制备及其NGF和NT-3的连接由于对设备、条件、试剂等无特殊要求,因此易于进行实验且产量高。以下是本发明的示例性的具体实施方案,通过这些实施方案可以更充分地理解本发明的上述及其它优点。
[0018]实施例1
将0.3g粘度为?2.3dL的聚乳酸溶于3.6 mL二氯甲烷,再将0.4 mL的N,N二甲基甲酰胺加入已溶解的聚乳酸溶液中,超声15分钟再继续磁力搅拌12小时使其充分混溶。把溶解好的聚乳酸溶液装入注射栗,设置栗的推进速率为0.5?2.0 mL/h,纺丝电压为10?15 kV,纺丝距离控制在8?25 cm,收集转鼓直径为12 cm,转鼓速度为400?2000 r/min,电纺时间3小时可得平行多孔聚乳酸纳米丝膜。配制含有DBS和聚谷氨酸浓度分别为14 mM和14 mM的混合溶液,再于磁力搅拌下加入100 mL的吡咯单体,持续搅拌、超声形成悬浊液,将丝膜浸入已于4 °C预冷0.5小时的吡咯溶液中,然后在4 °C下缓慢滴加已于4 °C预冷0.5小时的38 mM氯化铁溶液并反应12小时,得到平行导电多孔聚吡咯-聚乳酸复合丝膜纤维。配制好pH为5.0、浓度分别为0.2 M和0.05 M的EDC-NHS混合溶液,然后将导电平行多孔丝膜放入并浸泡活化0.5小时,再将其置于配制好的浓度为500 ng/mL的NGF或NT-3的I3BS溶液中避光反应连接I小时,重复活化和连接蛋白两到三次,连接完成后用PBS溶液清洗复合丝膜两遍后并避光低温保存。
[0019]实施例2
将3.6 mL二氯甲烷和0.4 mL N,N二甲基甲酰胺混合均匀,再将0.3 g粘度为?2.3dL的聚乳酸溶解于混合液中,超声半小时再搅拌12小时,然后将溶液加入注射栗,设置相应参数为:栗的推进速率为0.5?2.0 mL/h,电压为10?15kV,纺丝距离控制在8?25 cm,收集转鼓直径为12 cm,转鼓速度为400?2000 r/min,电纺3小时。丝膜在含有DBS、聚谷氨酸和吡咯单体浓度分别为14 mM、28 mM和100 mL的溶液中浸润0.5小时,在预冷使混合微乳液和氯化铁溶液都保持在4 °C时,将氯化铁溶液滴加到微乳液中并振荡反应12小时。用pH为5.0、EDC和NHS浓度分别为0.2 M和0.05 M的混合溶液活化导电丝膜0.5小时,再将其置于1000ng/mL的NGF或NT-3荧光标记溶液避光振荡I小时,重复活化及再连接过程两到三次,然后用PBS溶液清洗丝膜两遍,最后避光低温保存并进行荧光观察。
【主权项】
1.一种双神经因子连接的聚吡咯-聚乳酸平行导电多孔复合丝膜的制备方法,该方法包括以下步骤:a)将聚乳酸溶于N,N-二甲基甲酰胺与二氯甲烷(DMF与DCM)的混合溶剂中,形成浓度为0.5-2.0 mg/mL的纺丝液,其中DMF:DCM为0.01-0.3/1,并用转鼓收集的电纺丝技术制得平行多孔聚乳酸丝膜;b)将步骤a)所制的平行多孔丝膜浸泡在含有十二烷基苯磺酸钠(DBS)、聚谷氨酸(PGlu)和吡咯的混合水溶液中,然后将其置于冷冻摇床中,并缓慢滴加氯化铁溶液,然后在该温度下继续进行化学氧化聚合反应,制得PGlu掺杂的聚吡咯纳米颗粒包覆聚乳酸的平行多孔复合丝膜;c)将步骤b)中获得的平行导电多孔复合丝膜进行灭菌处理;d)用pH值为4.0?6.0的PBS缓冲液配置浓度分别为0.1?0.3 M和0.02?0.15 M的碳二亚胺与N-羟基琥珀酰亚胺(EDC与NHS)的混合活化液,将这种平行导电多孔复合丝膜放入混合活化液中进行活化,随后再将其浸入神经生长因子NGF的PBS溶液中,于室温下振荡连接NGF蛋白后用PBS缓冲液冲洗三次;e)将连接有NGF的平行多孔复合膜再次放在浓度分别为0.1-0.3 M和0.02-0.15 M的EDC和NHS混合液中进行活化,随后再将其浸入神经营养因子NT-3的I3BS溶液中,于室温下振荡连接NT-3蛋白后用I3BS缓冲液冲洗三次;f)重复步骤d)和e)的操作以提高两种神经因子在平行导电多孔复合丝膜上的连接量,最后用PBS缓冲液低温冲洗三次,制得连有NGF和NT-3两种神经因子的聚吡咯-聚乳酸平行导电多孔复合丝膜。2.根据权利要求1所述的制备方法,其特征在于,步骤b)中,化学氧化聚合反应液为包含吡咯单体、DBS、PGlu和FeCl3的水溶液,其中吡咯单体的浓度为6?70 mM、DBS的浓度为6?56 mM、PGlu的浓度为6?56 mM、FeCl3的浓度为17?190 mM,缓慢滴完氯化铁溶液的时间为10?50分钟,聚合反应温度为O?20 °C,聚合反应时间为2.0?24 h。3.根据权利要求1、2任一项所述的制备方法,其特征在于化学氧化在位聚合所获得聚吡咯-聚乳酸平行复合丝膜中,聚吡咯壳层厚度为20?120 nm,复合丝膜的导电性可达0.02?10 S/cm。4.根据权利要求1所述的制备方法,其特征在于,步骤c)中灭菌方法选择医用酒精浸泡和紫外灯照射两步法,其灭菌时间分别是I?60 min和4?48 h,紫外灯的功率为5?60 W,照射距离为1?50 cm。5.根据权利要求1所述的制备方法,其特征在于,步骤d)中配制的神经生长因子(NGF)在I3BS溶液中的浓度为0.05-5.0 #g/mL,平行导电多孔复合丝膜在EDC与NHS混合液中活化浸泡的时间为0.3-1.5小时,随后在NGF溶液中的浸泡连接时间为0.3?2小时。6.根据权利要求1所述的制备方法,其特征在于,步骤e)中配制的神经营养因子NT-3的PBS溶液的浓度为0.05?5.0 #g/mL,连接有NGF的平行导电多孔复合丝膜在EDC与NHS混合液中活化浸泡的时间为0.3-1.5小时,在NT-3溶液中的浸泡连接时间为0.5?2小时。7.根据权利要求1所述的制备方法,其特征在于,经过步骤d~f)后,这种平行导电复合丝膜上所连接的NGF量为I?40视/cm2,所连接的NT-3量为0.2?30 #g/cm2。8.根据权利要求1所述,其特征在于,连有两种神经因子的平行导电多孔丝膜可促进神经样细胞和神经干细胞分化长出轴突,还能促进神经轴突的快速延伸生长;在电场方向与丝轴一致、100?800mV/cm强度的电刺激条件下,可促进神经细胞长出I?2倍长度的神经轴突,并增加神经轴突沿丝轴(即电场)方向取向分布的比率。
【文档编号】A61L27/54GK106075571SQ201610511592
【公开日】2016年11月9日
【申请日】2016年7月4日
【发明人】黄忠兵, 周星星, 尹光福, 廖晓明, 蒲曦鸣
【申请人】四川大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1