具有改进的径缩一致性的非织造幅面料的制作方法

文档序号:1722765阅读:225来源:国知局
专利名称:具有改进的径缩一致性的非织造幅面料的制作方法
技术领域
本发明涉及非织造幅面料,当该非织造幅面料接受径缩处理时,在幅面料的横向宽度上呈现改进的径缩一致性。与在中部区域比在两个边缘区域具有更低基重的传统的径缩后的非织造幅面料相比,最终形成的径缩后的非织造幅面料在其宽度上具有更均匀的基重。
背景技术
径缩后的非织造幅面料,包括径缩后纺粘幅面料、熔喷幅面料和其结合等,常利用图1示意表示的工艺制成。具有起始宽度A的非织造幅面料12在其机器方向通过第一辊对16和第二辊对26之间,第一辊对16可以是以第一表面速度运行的第一对轧辊,第二辊对26可以是以比第一表面速度快的第二表面速度运行的第二对轧辊。第一和第二辊对之间的表面速度差导致较窄(径缩)的非织造幅面料22的成形,该较窄的非织造幅面料22具有小于起始宽度A的径缩的宽度A’。第二平均表面速度是第一平均表面速度的约1.05-1.7倍,适当的约为第一平均表面速度的约1.1至1.5倍,最好约为第一平均表面速度的约1.2至1.4倍。
径缩的非织造幅面料22通常包括与起始非织造幅面料12的纤维相比更致密紧凑和在机器方向更成一直线的纤维,该起始非织造幅面料12的纤维更随机的排列。在使纤维致密紧凑和成一直线的同时,径缩处理通常不会拉伸单根纤维。径缩可以在纤维的熔化温度下借助加热实施,该加热例如是通过在第一和第二辊对之间设置炉或其它热源。在径缩处理期间或之后,径缩后的非织造幅面料22还可以热定形,因此,径缩的幅面料变的有些稳定。在径缩条件下稳定的非织造幅面料被称为“可逆径缩”。通过施加小的伸展力,可逆径缩的非织造幅面料克容易地在横向伸展,并当伸展力释放时,倾向于变回到更窄径缩的构造。
起始非织造幅面料12包括边缘区域13和15,中部区域11。径缩的非织造幅面料22包括边缘区域23和25,和中部区域21。由于径缩导致非织造纤维变的更致密紧凑,和更成一直线,同时不会显著地拉伸单根纤维或使其变窄,径缩后的非织造幅面料22通常具有比起始非织造幅面料12更高的基重。
如图1容易可知,与中部区域11内的纤维相比,起始非织造幅面料的边缘区域13和15内的非织造纤维承受不同的变形,并在径缩处理的第一辊对16和第二辊对26之间运行更大距离。而且,中部区域11内的横向应力至少部分抵消,因为这些应力在两个横向上作用。在每个边缘区域13和15中的横向应力主要在一个方向,向内朝向幅面料的中心。这导致边缘区域纤维收皱和径缩增加。结果,径缩的非织造幅面料的边缘区域23和25内的纤维通常比中部区域21内的纤维更成一直线和更致密紧凑。结果,径缩的非织造幅面料在横向可以不一致,在两个边缘区域比在中部区域具有更高的基重,且在两个边缘区域比在中部区域具有更大的横向伸展能力。
因此,需要或期望提供一种制造具有更佳横向一致性的径缩的非织造幅面料的可径缩的非织造材料。还需要或期望径缩的非织造幅面料,并层压具有更佳横向一致性的包含的径缩的非织造幅面料。
定义如这里所使用的,术语“恢复”指在施加偏压力导致材料产生拉伸长度后在偏压力终止时已拉伸材料的收缩。例如,如果具有一(1)英寸的放松的未偏压的宽度的径缩材料在横向伸长50%即拉伸到一点五(1.5)英寸的宽度,该材料将伸长50%(0.5英寸),并将具有其放松宽度的150%的拉伸宽度。如果该典型的拉伸材料放松,并在偏压和拉伸力释放后恢复到一点一(1.1)英寸的宽度,则该材料将恢复到其一半(0.5)英尺伸长量的80%(0.4英寸)。恢复值可表示为[(最大拉伸尺寸减去最终样品尺寸)/(最大拉伸尺寸减去初始样品尺寸)]×100。
如这里所使用的,术语“非织造幅面料”指这样一种幅面料,该幅面料具有单个纤维或细线互层但非呈可识别的重复方式的结构。在过去,非织造织物幅面料由多种方法形成,例如熔喷法、纺粘法和结合粗梳成网法。
如这里所使用的,术语“微纤维”指平均直径不大于约100微米的小直径纤维,例如其平均直径从约0.5微米至约50微米,或更具体的是,微纤维的平均直径从约4微米至约40微米。
如这里所使用的,术语“纤维间结合”指为了形成相互粘附幅面料结构而在单个非织造纤维之间利用热结合或缠结产生的结合。纤维缠结在熔喷法中是固有的,但可以通过例如液力缠结法或针刺法产生或增加。一个或多个热结合步骤用于形成纺粘幅面料的大多数方法中。替代地或补充地,粘合剂用于增加期望的结合,并保持幅面料的结构粘结性。例如,可使用粉状粘合剂和化学溶剂结合。
如这里所使用的,术语“熔喷纤维”指这样形成的纤维,即通过将熔化了的热塑材料经过多个细的、通常圆形的、模具毛细管挤制,从而形成熔化了的细线或细丝,并进入高速气体(例如,空气)流中,该气流使熔化了的热塑材料的细丝变细以减少它们的直径,它可以减至微纤维直径。此后,熔喷纤维由高速气流携带,并且沉积在凝聚面上,以形成随机散布的熔喷纤维的幅面料。例如在授予Butin等人的3849241号美国专利中公开了这个方法,其公开内容在此提供作为参考。
如这里使用的,术语“纺粘纤维”指小直径纤维,这种小直径纤维通过将熔化的热塑材料从纺丝板的多个细的通常圆形毛细管挤压成细丝,然后挤压细丝的直径迅速降低而成形,例如,这是通过引出拉丝或其它公知的纺粘机构。例如参见授予Appel等的美国专利4,340563,授予Dorschner等的美国专利3,692,618,其描述了纺粘非织造幅面料的制造。这两篇专利的公开内容在此提供作为参考。
如这里使用的,术语“不同的纤维”指具有不同的聚合物成分和/或物理性能的纤维或纤维团,以便在定形径缩条件下,第一纤维团比不同纤维的第二纤维团有选择的更容易径缩。
如这里使用的,术语“径缩后的材料“指通过例如拉丝法或收皱法至少在一个维度已经收缩的任意材料。
如这里使用的,术语“可径缩材料”指可径缩的任意材料。
如这里使用的,术语非织造幅面料的“中部区域”定义为非织造幅面料的横向宽度的中部区域70%。“边缘区域”定义为在非织造幅面料的中部区域的两侧占宽度最外15%区域。
如这里使用的,术语“可逆径缩后的材料”指这样一种径缩后的材料,它在径缩时经过处理,以便赋予材料记忆性,这样,当施加力以便使材料伸展到其预先径缩尺寸时,当力终止时,径缩后和处理过的部分通常将恢复到其径缩尺寸。一种处理的形式是加热。一般来说,可逆径缩材料的伸展基本上限制在延伸到其预先径缩尺寸。因此,除非材料是弹性的,伸展太远超出其预先径缩尺寸将导致材料破坏。可逆径缩材料可包括多于一层,例如,多层纺粘幅面料,多层熔喷幅面料,多层结合粗梳成网幅面料,或任何其它适当的结合或其混合物,这在美国专利4965122中描述,其内容在此提供作为参考。
如这里使用的,术语“径缩百分比”指通过测量可径缩材料的预先径缩尺寸(宽度)与径缩后尺寸(宽度)之差,然后将该差除以可径缩材料的预先径缩尺寸确定的比率。
如这里使用的,术语“拉伸百分比”指通过测量拉伸后尺寸(在任意方向)的增加,并将该值除以初始尺寸(在相同方向)即(拉伸后尺寸的增加/初始尺寸)×100所确定的比率。
如这里使用的,术语“复合弹性径缩后结合材料”指具有至少在两个位置与径缩后的材料接合的弹性片的材料。弹性片在间断点可与径缩后的材料接合,或者可以与其完全结合。在实现接合时,弹性片和径缩后的材料成邻接构造。复合弹性径缩结合材料在通常平行于径缩后的材料的径缩方向的方向具弹性,并可以在径缩材料的断裂点的方向拉伸。复合弹性径缩结合材料可包括多于两层。例如,弹性片可具有与其两侧接合的径缩后的材料,以便三层复合弹性径缩结合材料形成径缩后的材料/弹性片/径缩后的材料的结构。可添加附加的弹性片,径缩后的材料层,和/或固有的伸展材料例如结合梳理成网幅面料。可使用其它弹性片和径缩后的材料的结合,例如美国专利5336545中所述,该专利在此提供作为参考。
如这里所使用,术语“聚合物”通常包括但不局限于,均聚物,共聚物,例如,嵌段、接枝、无规和交替共聚物,三元共聚物等,及其混合物和改性物。而且,除非特别限制,术语“聚合物”应包括材料的所有可能的分子几何结构。这些结构包括,但不局限于全同立构,间同立构和随机对称结构。
如这里所使用,术语“有选择地”覆盖术语“仅”和“较大程度”。
如这里所使用,术语“基本上由…构成”不排斥附加材料或方法步骤的存在,该附加材料或方法步骤不显著影响给定合成物或产品的期望特征。这类的典型材料包括但不限于颜料,防氧化剂,稳定剂,表面活性剂,蜡,流动性促进剂,溶剂,微粒和用来增加合成物的可加工性的添加材料。
如这里所使用,术语“包括”指权利要求为开放式,以包含除了提出之外的附加的材料或方法步骤。

发明内容
本发明涉及具有横向不一致性的可径缩的非织造材料,以便于在非织造幅面料的中部区域比在非织造幅面料的两个边缘区域更容易径缩,和/或在边缘区域相对于中部区域有选择地阻止径缩。与边缘区域相比在中部区域更容易径缩导致在中部区域有选择地大于正常的径缩,这足以全部或部分抵消由于利用传统的径缩方法产生的固有的边缘区域中的较大的径缩。通过相对于两个边缘区域改变中部区域的化学(即聚合物)成分和/或物理性能或者反之亦然,可实现导致中部区域容易径缩的横向不一致性。
本发明还涉及径缩后的非织造幅面料和层压制品,它具有更均匀的径缩,更均匀的基重,且横向细长,并且,它利用本发明的可径缩的非织造材料制成。
包括纺粘幅面料的许多非织造幅面料利用纤维间结合过程制成,该纤维间结合过程根据结合模式在不同位置将相邻的纤维结合在一起。在本发明的一个实施例中,通过改变中部区域和两个边缘区域之间的纤维间结合模式(或图案),以便于中部区域有选择地容易径缩的方式实现可径缩的非织造材料的横向不一致性。这可以通过在中部区域比在两个边缘区域提供较低百分比的纤维间结合区域来实现。这依次通过以下来实现,即a)提供在中部区域比在两个边缘区域导致相邻结合之间更多自由空间的结合模式,和/或b)在比结合边缘区域使用的温度和/或压力低的温度和/或压力下,通过结合中部区域来改变结合强度。
在本发明的另一个实施例中,纤维的物理性能在非织造材料的中部区域和两个边缘区域之间变化,以便在中部区域容易径缩。例如,可以在一个区域提供较薄(具有较低纤维但尼尔)的纤维,而在另一个区域提供较厚(具有高低纤维但尼尔)的纤维。而且,在中部区域可设置更随机或横向定向的纤维,而在两个边缘区域可设置更多机器方向定向的纤维。而且,在中部区域可设置更多圆形的纤维,而在两个边缘区域可设置更少圆形(具有不同形状)的纤维。而且,在中部区域可设置很少紧凑(具有较低松密度)的纤维,而在两个边缘区域可设置更多紧凑(具有较高松密度)的纤维。而且,卷曲的纤维可设置在边缘区域而不是在中部区域,以便有选择地降低边缘区域相对于中部区域的径缩。而且,在两个边缘区域可设置伴随挤制已经静电处理过以便产生更佳的成直线的纤维,而在中部区域可设置未经静电处理(较少成直线)的纤维。
在本发明的另一个实施例中,中部区域的纤维的化学(即聚合物)成分与两个边缘区域的纤维的聚合物成分不同。具有较低刚性模量的聚合物纤维通常更容易径缩,且更适合中部区域。例如,聚丙烯纤维可设置在边缘区域内,同时中部区域可设有a)聚丙烯-聚乙烯共聚物纤维,b)聚乙烯纤维,c)聚丙烯纤维与聚乙烯纤维的混合物,d)聚丙烯和聚乙烯的混合物制成的纤维,和/或e)聚乙烯-聚丙烯双组分纤维。


图1是如上所述的传统的径缩法的示意图;以及图2和3是制造径缩结合层压件的方法的示意图。
具体实施例方式
参考图1,可径缩的非织造幅面料12具有一个中部区域11和两个端部13和15。中部区域11具有与两个端部13和15不同的物理性能和/或聚合物成分,因此,中部区域具有相对容易的径缩。
如上所述,中部区域定义为非织造幅面料的横向宽度的中间70%,两个边缘区域定义为中部区域两侧的横向宽度的最外15%。然而,这不意味着有选择地容易径缩后的非织造纤维和很难径缩的纤维之间的边界必须精确地位于中部区域的边缘17和19。这些边界可位于中部区域的边缘17和19的内或外,只要中部区域平均来说比两个边缘区域更容易径缩即可。
例如,有选择地容易径缩的纤维和较难径缩的纤维之间的边界可定位在从非织造幅面料12的边缘27和29向内的总距离为约2%至约40%(基于总横向宽度为100%),适当地,从边缘27和29向内的总距离为约5%至约30%,最好,从边缘27和29向内的总距离为约10%至约25%。对于均质非织造幅面料,主要径缩部分构成非织造幅面料的两侧的差不多外六英寸宽度,而不考虑起始幅面料宽度。这样,对于本发明,容易径缩和很难径缩的纤维之间的边界最好可以是距离起始材料的边缘约6英寸。
作为替换,物理性能和/或聚合物成分可从边缘27和29向内以梯度方式改变,在有选择地容易径缩后的非织造纤维和较难径缩后的非织造纤维之间没有精确地边界。不考虑是否存在边界或梯度,并且不考虑该边界置于何处,非织造幅面料12的中部区域11将平均来说比两个边缘区域13和15更容易径缩。
在本发明的一个实施例中,中部区域和两个边缘区域之间的纤维间结合模式以便于中部区域以更容易径缩的方式变化。例如,中部区域可具有比两个边缘区域更低百分比的纤维间结合(基于非织造织物的平面)。适合径缩后的非织造织物典型的具有约1-50%的纤维间结合面。根据本发明,中部区域11可具有一个总的纤维间结合面,该总的纤维间结合面比两个边缘区域13和15的总的结合面小至少约3%,适当的至少小约5%,最好至少小约7%。例如,如果两个边缘区域13和15(定义为在非织造幅面料12每侧上的靠外的15%)具有20%的平均结合面,那么中部区域11(定义为非织造幅面料12的中部区域70%)应具有17%或更小的平均结合面,适当的约15%或更小,最好约13%或更小。提供边缘区域13和15以便以有选择地增大结合的方式是,在非织造幅面料根据传统的制造技术已经成形和均匀地结合后,使边缘区域有选择地承受热气刀或类似的次要结合方法。在授予Arnold等的美国专利5707468中公开了热气刀,其内容在此提供作为参考。而且,如上所述,在中部区域的原始结合可在比两个端部更低的温度和/或压力下完成。
作为替换,在非织造纤维之间,中部区域11可设有较少限制的结合模式,两个边缘区域13和15可设有较多限制的结合模式。对于径缩,很少限制的结合模式可以是单个的结合是细长的并多数定向在机器方向。较多限制的结合模式可以是单个的结合是细长的并多数定向在横向。细长结合点可具有矩形或椭圆形,例如,可具有至少约2∶1的长度直径比,最好至少约4∶1。在一个实施例中,在中部区域11,具有4∶1的长度直径比的结合点可定向在机器方向,在两个边缘区域13和15,可定向在横向。在中部区域和两个边缘区域之间,定向可突然或增量地变换。在另一个实施例中,中部区域可具有大大分隔,且为大的点或圆点的点结合模式,边缘区域可具有更紧凑分隔,且为小的点或圆点的点结合模式,在任一种情况下,中部区域和两个边缘区域的平均百分比结合面可以相同,且中部区域将具有较容易的径缩。
作为替换,中部区域11可设有相比两个边缘区域13和15中的非织造纤维为较薄的非织造纤维(较小的平均但尼尔)。为了实现在中部区域有选择地容易径缩,中部区域11内的纤维应具有一种平均纤维但尼尔,该平均纤维但尼尔比在两个边缘区域13和15内的纤维的平均纤维但尼尔小至少约5%,适当的至少约10%,最好至少约20%。例如,如果两个边缘区域13和15内的平均纤维但尼尔为5.0,那么在中部区域11内的平均纤维但尼尔应为4.75或更小,适当的为4.5或更小,最好4.0或更小。与高平均但尼尔的纤维相比,具有较低平均但尼尔的纤维刚性低,易曲折,结果容易径缩。利用分别在中部区域和边缘区域内具有较窄和较宽开口的喷丝头,可提供不同的但尼尔。
作为替换,中部区域11可设有更随机或横向定向的纤维,两个边缘区域13和15可设有更多激情方向定向的纤维。例如,当制造非织造(例如纺粘或熔喷)幅面料时,当纤维离开喷丝头模时,边缘区域较中部区域可承受较高速度的卷吸和猝冷空气流。较高速度的空气导致纤维在边缘区域比在中部区域更成直线(机器方向的定向)。
作为替换,中部区域11可设有平均来说更圆的纤维,边缘区域13和15可设有平均来说不太圆(其它形状)的纤维。纤维的长度直径比是纤维最宽直径与最窄直径之比。完全圆的纤维具有1.0的长度直径比。为实现在中部区域有选择地容易径缩,中部区域11内的纤维平均长度直径比与边缘区域13和15内的纤维的平均长度直径比应小至少约0.5,适当的至少约0.75,最好至少约1.0。相信圆形纤维更倾向于径缩,但比平面或异形纤维更不倾向于物理变形或拉伸。
作为替换,与边缘区域内的纤维比,中部区域可设有不紧凑的纤维,并具有较低的平均松密度。为了实现在中部区域有选择地容易径缩,中部区域11应具有这样一种平均松密度,该平均松密度比两个边缘区域13和15的平均松密度小至少约5%,适当地小至少约10%,最好小至少约20%。较低松密度的纤维通常在其之间具有更大的空间,并且与较高松密度的更紧凑纤维相比更容易位移和径缩。以期望的方式改变松密度的一种方式是使边缘区域13和15有选择地接收压缩过程。这可以通过使边缘区域有选择地接收加压压延过程,或者通过使整个非织造织物接收辊形压延过程,以便在边缘区域提供较高的压力来实现。
作为替换,边缘区域13和15可设有卷曲的非织造纤维,中部区域11可设有很少或不卷曲的纤维(或卷曲与非卷曲纤维混合物)。卷曲纤维应具有每英寸至少四个卷曲的卷曲度,适当的每英寸至少六个卷曲,最好每英寸至少十个卷曲。对于本发明,具有零到小于每英寸四个卷曲的纤维被认为是不卷曲的。卷曲的纤维很少倾向于径缩,因为这些纤维在承受任意显著的的径缩张力之前必须基本上伸直成直线。已经直的纤维相互卷曲,在早期阶段径缩,最终更多的径缩。为了实现在中部区域11内有选择的容易径缩,中部区域11可设有至少60%未卷曲的纤维,边缘区域13和15可设有至少60%卷曲的纤维。作为替换,中部区域可设有不卷曲的纤维,同时,边缘区域设有至少20%卷曲的纤维。不考虑的所选择的百分比,在中部区域内的卷曲纤维的百分比和在两个边缘区域内的纤维的百分比之间的差应至少约10%,最好是至少约20%,较高百分比的卷曲纤维存在于边缘区域。
作为替换,边缘区域13和15可设有比中部区域11内的纤维更成直线的纤维。这可以通过在边缘区域内的纤维从喷丝头挤制出后并在与成形输送机接触之前,对该边缘区域内的纤维静电(例如电晕)处理来实现。在边缘区域内的纤维的电晕处理仅导致其相互静电吸引,这样更成直线。
在本发明的另一个实施例中,中部区域11内的非织造纤维的聚合物成分与两个边缘区域13和15内的非织造纤维的聚合物成分不同,因此,中部区域内的纤维平均来说比两个边缘区域内的纤维具有更低的刚性(较低的模量)。为实现中部区域内的有选择地容易径缩,中部区域11可设有具有第一聚合物成分的至少60%的纤维,边缘区域13和15可设有具有二聚合物成分的至少60%的纤维,第一聚合物成分比第二聚合物成分具有较低的模量。作为替换,中部区域可设有整体具有第一成分的纤维,边缘区域可设有具有第二成分的至少20%的纤维。不考虑所选择的百分比,具有较低模量的第一成分的中部区域内的纤维的百分比与具有第一成分的边缘区域内的纤维的百分比之差应至少约20%,适当的至少约30%,最好最少约50%。
例如,非织造幅面料12可由基本上结晶聚丙烯纤维(由聚丙烯或包含重量百分比为10%的乙烯的无规丙稀-乙烯共聚物形成),和包含超过10%乙烯的无定形或半结晶丙稀-乙烯共聚物纤维的结合形成,其中两种聚合物类型之间的乙烯含量差基于总聚合物重量为至少5%。根据本发明,中部区域应包含重量百分比比两个边缘区域(它应包含对应的较高含量的基本上结晶聚丙烯纤维)多至少20%的无定形或半结晶共聚物纤维(基于中部区域内的纤维混合物的总重量)。适当的,中部区域包含比两个边缘区域多至少重量百分比为30%的无定形或半结晶共聚物纤维,最好多至少50%。
类似的,非织造幅面料12可由如上所述的基本上结晶聚丙烯纤维和聚丙烯/聚乙烯双组分纤维的结合形成。双组分纤维均包含成两个相异相的重量百分比从10-90%的聚丙烯和重量百分比从10-90%的聚乙烯,适当的,为成两个相异相的每种成分的重量百分比占25-75%。双组分纤维可具有聚丙烯芯和聚乙烯鞘,或者,可具有并排构造,聚丙烯在一侧,聚乙烯在另一侧,或者可具有“海中岛”构造,其具有一种聚合物的不连续相和另一种聚合物的连续“基体”相。如上所述,基于中部区域内的总纤维重量,该中部区域将包含比两个边缘区域所包含的大至少20%,适当的大至少30%,最好大至少50%的双组分纤维。如果边缘区域包含100%的聚丙烯纤维和0%的双组分纤维,例如,中部区域将包含至少20%,适当的至少30%,最好至少50%的双组分纤维。如果边缘区域包含70%的聚丙烯纤维和30%的双组分纤维,中部区域将包含至少50%,适当的至少60%,最好至少80%的双组分纤维。
不考虑选择的是上述那个实施例或其变化,效果是使非织造幅面料12的中部区域11比边缘区域11和13相对容易径缩。这导致中部区域内有选择地更大的径缩,这足以影响在传统的径缩法期间发生的固有的边缘区域内的较大的径缩。最终的径缩的非织造幅面料22应具有基本上均匀的基重。特别是,当起始非织造幅面料在机器方向拉伸到其初始长度的至少约1.2倍,最好约1.25倍以便产生径缩时,中部区域的平均径缩后的基重应在两个边缘区域的平均基重的约±7%范围内,适当的在两个边缘区域的平均基重的的约±5%范围内,最好在两个边缘区域的平均基重的的约±3%范围内。
径缩后的非织造幅面料的一致性的另一个试验基于利用ASTMD5034测量的破坏时横向伸长量测量。在径缩后的非织造幅面料的两个侧边开始向内切割出测得为横向三英寸和机器方向一英寸的样品。类似的样品从径缩后的非织造幅面料的中心精确切割。每个样品置于INSTRON试验仪内,以便在每个爪内夹有一英寸样品,当爪相互张开时,可拉伸一英寸的横向宽度。
而且,径缩后的非织造幅面料应具有为其初始长度的至少约1.2倍,最好约1.25倍的径缩后机器方向长度。对于现有技术的径缩后的非织造幅面料,在中部区域和边缘样品之间存在破坏时横向伸长量的实质变化。承受较大径缩的边缘样品具有比中部区域样品显著高的破坏时横向伸长量。对于本发明,两个边缘样品具有的破坏时横向伸长量应比中部区域样品的破坏时横向伸长量高不超过20%,适当的不超过10%,最好不超过5%。对于该说明书和附后的权利要求书,中部区域样品破坏时横向伸长量和两个边缘样品的最高破坏时横向伸长量之间的差额百分比被定义和称为“破坏时横向伸长量不一致系数”当然,径缩后的非织造幅面料应具有至少约9英寸,最好至少约15英寸的径缩后的宽度,为了测量使用。
图1的方法的其它方面是传统的,在上面描述在本发明的背景部分中。加热设备(未图示),例如炉,可布置在第一辊对16和第二辊对26之间。幅面料典型的在进入炉之前开始径缩。炉可用于帮助径缩和使整个非织造幅面料热固,从而产生可逆径缩的径缩后的非织造幅面料22。炉内的温度应足够高,以便使非织造纤维软化,并增加其柔韧性,但没有高到或者a)使纤维融化,或b)使纤维软化到一定程度,以便径缩法导致单个非织造纤维显著的拉伸,变窄和/或破坏。当非织造纤维由聚烯烃制成时,例如,炉内的非织造幅面料所达到的最高温度应为纤维的熔化温度下至少约20℃,适当地,应为纤维的熔化温度下至少约25℃,最好,应为纤维的熔化温度下至少约30℃。最佳径缩温度典型的为纤维的熔化温度下约30-60℃。当非织造幅面料例如是纺粘聚丙烯幅面料时,期望的径缩温度约为105-140℃。
可径缩的材料12可以由例如公知的非织造方法形成,如熔喷法,纺粘法,或粗梳成网粘合幅面料法,并直接经过辊对16,而不会首先存储在进给辊上。
可径缩材料12可以是例如非织造材料,例如纺粘幅面料,熔喷幅面料,和粗梳成网粘合幅面料。如果可径缩材料12由可处理同时可径缩以便在处理后,施加力以便将径缩后的材料伸展到其径缩前大尺寸的任意材料制成,在力终止时,材料通常恢复到其径缩后的尺寸。一种处理的方法是加热。一些聚合物例如聚烯烃,聚酯,和聚酰胺可在适当的条件下热处理,以赋予其记忆性。典型的聚烯烃包括一种或多种聚乙烯,聚丙烯,聚丁烯,乙烯共聚物,丙烯共聚物,和丁烯共聚物。发现是有用的聚丙烯包括例如从Himont公司以商品标示PF-304购得的聚丙烯,从Exxon-Mobil化学公司以商品标示Escorene PD-3445购得的聚丙烯,和从Shell化学公司以商品标示DX-5A09购得的聚丙烯。还可以使用聚乙烯,包括从Dow化学公司购得的ASPUN6811A和2553线性低密度聚乙烯,以及不同的高密度聚乙烯。这些材料的化学特征从其相应的制造商处可获得。
在本发明的一个实施例中,可径缩材料12是多层材料,它具有例如与至少一层熔喷幅面料,粗梳成网粘合幅面料或其它适当的材料接合的至少一层纺粘幅面料。例如,可径缩的材料12可以是多层材料,它具有基重为每平方码从约0.2至约8盎司(osy)的纺粘聚烯烃第一层,一个基重为从约0.1至约4osy的熔喷聚烯烃层,一个基重为从约0.2至约8osy的纺粘聚烯烃第二层。
作为替换,可径缩材料12可以例如是单层材料,例如基重为从约0.2至约10osy的纺粘幅面料,或者基重为从约0.2至约8osy的熔喷聚烯烃。
可径缩材料12还包括由两种或多种不同纤维的混合物或者纤维和微粒的混合物制成的复合材料。这种混合物可以通过向气流中添加纤维和/或微粒形成,该气流中承载熔喷纤维,因此,在纤维收集在收集装置上之前,发生熔喷纤维和其它材料(例如木浆,人造短纤维或微粒,例如超强吸收材料)的邻近缠结混杂,以形成随机散布的熔喷纤维和其它材料的粘附幅面料,这例如在美国专利4100324中公开,其公开内容在此提供作为参考。
如果可径缩的材料12是纤维非织造幅面料,纤维应利用前述“DEFINITION”纤维间结合中描述的一种或多种结合法通过纤维间结合来接合。
可径缩材料12的初始宽度与在张拉后的宽度之间的关系确定了可逆径缩后的材料12的伸展极限。例如,参见图1,如果期望制备可逆径缩后的材料,该可逆径缩后的材料可拉伸到伸长量的150%(即其径缩后宽度的250%),并可恢复到其可径缩宽度的约25%内,具有宽度“A“例如250cm的可径缩材料拉伸,以便它径缩到约100cm的宽度A’,以达到约60%的径缩百分比。在张拉时,它被热处理,以保持可逆径缩后构造22。生成的可逆径缩材料具有约100cm的宽度A’,并可拉伸到可径缩材料的至少初始250cm尺寸“A”,以便伸长量或拉伸百分比约为150%。在拉伸力释放以便恢复约83%之后,可逆径缩后的材料可恢复到其100cm的径缩后宽度的25%内(即约125cm的宽度)。
本发明的权利要求要求覆盖适合在横向拉伸至少75%的均匀径缩材料,并覆盖了拉伸75%后恢复至少50%,然后放松。
图2示意表示了制备本发明的径缩结合层压制品的程序100,该层压制品包括两个径缩纺粘幅面料和其之间的弹性薄膜。在该过程中,弹性薄膜在两个径缩纺粘幅面料之间挤压成形。纺粘幅面料的中部区域具有设计成有选择地提高这些区域内径缩性的成分和/或物理性质。
参见图2,第一和第二纺粘幅面料112和212由进给辊101和201解卷。第一纺粘幅面料112穿过第一辊对16,包括轧辊114和118,以第一表面速度转动;并通过第二辊对226,包括轧辊224和228,以比第一表面速度高的第二表面速度转动。借助炉129,在第一辊对116和第二辊对226之间的纺粘幅面料的径缩受不同的表面速度的影响。炉129将整个非织造幅面料加热到纺粘纤维的熔化温度之下的约20-60℃的温度。
第二纺粘幅面料212穿过第三辊对216,该辊对包括轧辊214和218,以第三表面速度转动,并穿过上述第二辊对226,包括轧辊224和228,以第二表面速度转动。第二表面速度高于第三表面速度,因此,在滚对216和226之间影响径缩。如图所示,整个非织造幅面料212没有利用炉加热。然而,第二纺粘幅面料212(类似第一纺粘幅面料112)具有中部区域,该中部区域具有设计成相对于两个边缘区域有选择地增加中部区域的径缩的物理性能和/或聚合物成分。
为了制造径缩结合层压制品230,熔融弹性体经过模喷嘴挤压出,以形成挤制弹性薄膜136。挤制弹性薄膜136直接沉积在张拉径缩纺粘幅面料122和222之间,全部三层在辊对226内设在一起。在薄膜离开模喷嘴134后,挤制弹性薄膜136可与径缩材料122和222接触不超过约0.1-1.0秒,适当的约0.25-0.5秒内,最好约0.3-0.45秒内。
弹性体的薄膜可以在从约180-300℃的温度下挤制,该温度适当的约为200-250℃。
光压力作用在辊对226中,以便将弹性薄膜136(在相对未张拉状态)结合到张拉径缩后的非织造幅面料212和222上。轧辊224和228可以或者不可以轧花,不需要加热,并且可以冷却(例如到约10-30℃的温度),以便在径缩后的纺粘幅面料之间压制弹性薄膜。由于径缩的非织造幅面料的延展性,生成的径缩结合层压制品230可在横向拉伸。在松弛时,由于弹性薄膜的缩进影响,层压制品230将基本上返回到其初始制造构造。在授予Haffner等的美国专利5514470中公开了利用熔融弹性薄膜制造径缩结合层压制品的进一步细节,该专利的内容在此提供作为参考。
图3表示用于本发明的制造层压制品的替代方法300。在该方法中,预成形可延展或弹性薄膜与径缩的非织造幅面料结合。可延展薄膜是可象弹性薄膜一样拉伸但没有必要回缩的薄膜。非织造幅面料312的中部区域具有设计成相比两个边缘区域在中部区域有选择地增加径缩的聚合物成分和/或物理性能。
参见图3,非织造幅面料12(例如,纺粘-熔喷-纺粘层压制品)从进给辊301解卷绕。非织造幅面料12穿过第一辊对316,包括以第一表面速度转动的轧辊314和318;和第二辊对326,包括以高于第一表面速度的第二表面速度转动的轧辊324和328,以便形成径缩的非织造幅面料322。
可延展或弹性薄膜136从进给辊130解卷绕,并以基本上未张拉状态与张拉的径缩后的非织造幅面料322结合,这两种材料穿过第二辊对326。一个或两个辊324和328可以利用本领域公知的技术加热,以便影响可延展或弹性薄膜与径缩后的非织造幅面料之间的结合。在授予Morman等的美国专利5883028中公开了将预制薄膜与径缩的非织造幅面料结合的过程的进一步细节,该专利的内容在此提供作为参考。由于径缩后的非织造幅面料的影响,生成的层压制品330具有横向延展性。当伸展力去除时,如果薄膜是弹性的,层压制品330基本上返回到其制造构造。如果薄膜仅仅可伸展但无弹性,层压制品将不会显著恢复。
薄膜136(图2或3)可以由任意材料制成,该材料可以制成板形。通常,任意适当的可延展或弹性薄膜成形树脂或包含其的混合物可用于薄膜。
例如,薄膜136可由具有通式A-B-A’的弹性嵌段共聚物制成,这里A和A’均是包含部分苯乙烯例如聚(乙烯芳烃)的热塑聚合物端块,B是弹性聚合物中块,例如共轭二烯或低烯烃聚合物。薄膜136可以例如由从Shell化学公司以商标KRATON G购得的(聚苯乙烯/聚(乙烯丁烯)/聚苯乙烯)嵌段共聚物制成。一种这样的嵌段共聚物可以是例如KRATON G-1657。
其它可使用的典型的弹性材料包括例如聚氨酯弹性材料,例如从B.F.Goodrich & Co.以商标ESTANE购得的聚氨酯弹性材料,和例如聚酯弹性材料,例如从E.I.Dupont De Nemours & Company.以商品标识Hytrel购得的聚酯弹性材料。例如在授予Morman等的美国专利4741949中公开了聚酯弹性材料形成的弹性板,该专利在此提供作为参考。
聚烯烃可单独用于制造可延展薄膜,或可以与弹性聚合物混合,以提高薄膜成分的加工性能。聚烯烃必须是当承受升高的压力和升高的温度适当结合的条件下可挤制,成单独或混合形式的聚烯烃。有用的聚烯烃材料包括例如聚乙烯,聚丙烯和聚丁烯,包括乙烯共聚物,丙稀共聚物,和丁烯共聚物。特别有用的聚乙烯可从U.S.I.化学公司以商品表示Petrothaene NA601(也被称为PE NA601或聚乙烯NA601)获得。可利用两种或多种聚烯烃。弹性聚合物和聚烯烃的可挤制的混合物在例如Wisneski等的美国专利4663220中公开,该专利在此提供作为参考。
薄膜136还可以是压敏弹性粘合板。例如,弹性材料本身可以是有些粘的,或可替代的,相容的粘结树脂可以添加到上述可挤制的弹性成分中,以提供例如可用作压敏粘合剂的弹性板,从而将弹性板与张拉的径缩的非弹性幅面料结合。考虑到粘结树脂和粘结可挤制弹性成分,注意到该树脂和成分在授予J.S.Keiffer和T.J.Wisneski等的美国专利4789699中描述,该专利1986年10月15日公开,名称为“环境温度可结合弹性非织造幅面料”,该专利在此提供作为参考。
可使用任何增粘剂树脂,它与弹性聚合物相容,并能承受高处理(例如挤制)温度。如果使用混合材料例如聚烯烃或增量油,粘结树脂还应与那些混合材料一致。通常,与氢结合石油树脂最好是粘结树脂,因为其具有更好的温度稳定性。REGALREZTM和ARKONTMP系列增粘剂是与氢结合石油树脂的实例。ZONATAKTTM501lite是萜烃的一个实例。REGALREZ石油树脂从Hercules Incorporated获得。ARKON P系列树脂从Arakawa Chemical(U.S.A)Incorporated获得。当然,本发明不限于使用这三种粘结树脂,也可使用其它粘结树脂,该粘结树脂与合成物的其它成分相容,并能承受高处理温度。
压敏弹性粘合剂可包括重量百分比例如从约40%至约80%的弹性聚合物,从约5%至约40%的聚烯烃,和从约5%至约40%树脂增粘剂。例如,特别有用的合成物包括重量百分比从约61%至约65%的KRATON G-1657,从约17%至约23%的聚乙烯NA-601,和从约15%至约20%的REGALREZ 1126。
薄膜136还可以是多层材料,其中它可包括两个或多个单独的粘附薄膜层。如果薄膜是弹性的,它可以在与径缩的非织造幅面料322结合之前在机器方向拉伸,以形成层压制品,该层压制品在机器方向和横向具有弹性。类似的层压制品在美国专利5116662中公开,该专利在此提供作为参考。
由于径缩后的非织造幅面料成分的改进的均匀性,本发明的层压制品具有改进的基重均匀性。当径缩后的非织造幅面料拉伸到其初始机器方向长度的至少约1.2倍,最好约1.25倍,从而导致径缩,本发明的层压制品在其中部区域(定义为层压制品的宽度的中间70%)应具有一个平均基重,该平均基重是两个边缘区域(定义为层压制品的每侧上的宽度的外部15%)的平均基重的约±7%。适当的,中部区域的平均基量应为两个边缘区域的平均基重的约±5%。最好,中部区域的平均基重应为两个边缘区域的平均基重的约±3%。
尽管这里公开的本发明的实施例是优选的,在不超出本发明的实质的前提下,本发明可作不同的修改和改进。本发明的范围由附后的权利要求书限定,所有落在本发明含义和等效范围内的改变均包含在本发明的保护范围内。
权利要求
1.一种可径缩的非织造幅面料,它包括一个中部区域和两个边缘区域;中部区域包括多个第一纤维;两个边缘区域包括多个与第一纤维不同的第二纤维;选择中部区域和边缘区域内的纤维,以便在中部区域提供有选择地更容易径缩。
2.如权利要求1所述的可径缩的非织造幅面料,其特征在于,第一纤维具有纤维间结合的第一区域百分比,而第二纤维具有纤维间结合的第二区域百分比,第二百分比低于第一百分比。
3.如权利要求2所述的可径缩的非织造幅面料,其特征在于,纤维间结合的第一区域百分比比纤维间结合的第二区域百分比小至少约3%。
4.如权利要求2所述的可径缩的非织造幅面料,其特征在于,纤维间结合的第一区域百分比比纤维间结合的第二区域百分比小至少约5%。
5.如权利要求2所述的可径缩的非织造幅面料,其特征在于,纤维间结合的第一区域百分比比纤维间结合的第二区域百分比小至少约7%。
6.如权利要求1所述的可径缩的非织造幅面料,其特征在于,中部区域包括更多定向在机器方向的细长纤维间结合键,两个边缘区域包括更多定向在横向的纤维间结合键。
7.如权利要求1所述的可径缩的非织造幅面料,其特征在于,中部区域包括较大且较远分隔的纤维间点结合键,两个边缘区域包括较小和较密分隔的纤维间点结合键。
8.如权利要求1所述的可径缩的非织造幅面料,其特征在于,中部区域内的纤维具有第一平均但尼尔,而边缘区域内的纤维具有第二平均但尼尔,第一平均但尼尔小于第二平均但尼尔。
9.如权利要求8所述的可径缩的非织造幅面料,其特征在于,第一平均但尼尔比第二平均但尼尔小至少5%。
10.如权利要求8所述的可径缩的非织造幅面料,其特征在于,第一平均但尼尔比第二平均但尼尔小至少10%。
11.如权利要求8所述的可径缩的非织造幅面料,其特征在于,第一平均但尼尔比第二平均但尼尔小至少20%。
12.如权利要求1所速的可径缩的非织造幅面料,其特征在于,中部区域内的纤维相对更随机或横向定向,且两个边缘区域内的纤维更多在机器方向定向。
13.如权利要求1所述的可径缩的非织造幅面料,其特征在于,两个边缘区域内的纤维比中部区域内的纤维更直。
14.如权利要求1所述的可径缩的非织造幅面料,其特征在于,中部区域内的纤维具有第一平均长度直径比,两个边缘区域内的纤维具有第二平均长度直径比,第一平均长度直径比小于第二平均长度直径比。
15.如权利要求14所述的可径缩的非织造幅面料,其特征在于,第一平均长度直径比比第二平均长度直径比小至少约0.5。
16.如权利要求14所述的可径缩的非织造幅面料,其特征在于,第一平均长度直径比比第二平均长度直径比小至少约0.75。
17.如权利要求14所述的可径缩的非织造幅面料,其特征在于,第一平均长度直径比比第二平均长度直径比小至少约1.0。
18.如权利要求1所述的可径缩的非织造幅面料,其特征在于,中部区域内的纤维具有第一平均松密度,两个边缘区域内的纤维具有第二平均松密度,第一平均松密度小于第二平均松密度。
19.如权利要求18所述的可径缩的非织造幅面料,其特征在于,第一平均松密度比第二平均松密度小至少约5%。
20.如权利要求18所述的可径缩的非织造幅面料,其特征在于,第一平均松密度比第二平均松密度小至少约10%。
21.如权利要求18所述的可径缩的非织造幅面料,其特征在于,第一平均松密度比第二平均松密度小至少约20%。
22.如权利要求1所述的可径缩的非织造幅面料,其特征在于,第一纤维不卷曲,而第二纤维卷曲,边缘区域内存在的第二纤维比中部区域内存在的高至少10%。
23.如权利要求22所述的可径缩的非织造幅面料,其特征在于,边缘区域内存在的第二纤维比中部区域内存在的高至少20%。
24.如权利要求1所述的可径缩的非织造幅面料,其特征在于,第一纤维具有第一聚合物成分,第二纤维具有与第一聚合物成分不同的第二聚合物成分,中部区域内的纤维平均来说比两个边缘区域内的纤维较少刚性。
25.如权利要求24所述的可径缩的非织造幅面料,其特征在于,中部区域内存在的第一纤维比两个边缘区域内的高至少约20%。
26.如权利要求24所述的可径缩的非织造幅面料,其特征在于,中部区域内存在的第一纤维比两个边缘区域内的高至少约30%。
27.如权利要求24所述的可径缩的非织造幅面料,其特征在于,中部区域内存在的第一纤维比两个边缘区域内的高至少约50%。
28.如权利要求24所述的可径缩的非织造幅面料,其特征在于,第一纤维包括乙烯-丙稀共聚物,第二纤维包括聚丙烯。
29.如权利要求24所述的可径缩的非织造幅面料,其特征在于,第一纤维包括聚乙烯,而第二纤维包括聚丙烯。
30.如权利要求24所述的可径缩的非织造幅面料,其特征在于,第一纤维包括聚丙烯/聚乙烯双组分纤维,而第二纤维包括聚丙烯。
31.一种径缩后的非织造幅面料,它具有为初始的径缩前的长度的至少约1.2倍的长度,该径缩后的非织造幅面料包括一个中部区域和两个边缘区域;中部区域包括多个第一纤维并具有第一平均基重;两个边缘区域包括多个与第一纤维不同的第二纤维并具有第二平均基重;以及第一基重为第二基重的约±7%内。
32.如权利要求31所述的径缩后的非织造幅面料,其特征在于,第一基重为第二基重的约±5%内。
33.如权利要求31所述的径缩后的非织造幅面料,其特征在于,第一基重为第二基重的约±3%内。
34.一种径缩后的非织造幅面料,它具有至少约九英寸的径缩后的宽度,为初始径缩前长度的至少约1.2倍的长度,和不超过20%的横向不一致系数。
35.如权利要求34所述的径缩后的非织造幅面料,其特征在于,横向不一致系数不超过约10%。
36.如权利要求34所述的径缩后的非织造幅面料,其特征在于,横向不一致系数不超过约5%。
37.如权利要求34所述的径缩后的非织造幅面料,其特征在于,其包括径缩后的纺粘幅面料。
38.如权利要求34所述的径缩后的非织造幅面料,其特征在于,其包括径缩后的熔喷幅面料。
39.如权利要求34所述的径缩后的非织造幅面料,其特征在于,其包括径缩后的纺粘-熔喷-纺粘幅面料层压制件。
40.如权利要求34所述的径缩后的非织造幅面料,其特征在于,第一纤维具有纤维间结合的第一区域百分比,而第二纤维具有纤维间结合的第二区域百分比,第二百分比低于第一百分比。
41.如权利要求34所述的径缩后的非织造幅面料,其特征在于,第一纤维具有较少限制的纤维间结合型式,而第二纤维具有较多限制的纤维间结合型式。
42.如权利要求34所述的径缩后的非织造幅面料,其特征在于,中部区域内的纤维具有第一平均但尼尔,而边缘区域内的纤维具有第二平均但尼尔,第一平均但尼尔小于第二平均但尼尔。
43.如权利要求34所述的径缩后的非织造幅面料,其特征在于,中部区域内的纤维相对更随机或横向定向,而两个边缘区域内的纤维更多在机器方向定向。
44.如权利要求34所述的径缩后的非织造幅面料,其特征在于,中部区域内的纤维具有第一平均长度直径比,而两个边缘区域内的纤维具有第二平均长度直径比,第一平均长度直径比小于第二平均长度直径比。
45.如权利要求34所述的径缩后的非织造幅面料,其特征在于,中部区域内的纤维具有第一平均松密度,而两个边缘区域内的纤维具有第二平均松密度,第一平均松密度小于第二平均松密度。
46.如权利要求34所述的径缩后的非织造幅面料,其特征在于,第一纤维不卷曲,而第二纤维卷曲。
47.如权利要求34所述的径缩后的非织造幅面料,其特征在于,第一纤维具有第一聚合物成分,而第二纤维具有与第一聚合物成分不同的第二聚合物成分。
48.如权利要求34所述的径缩后的非织造幅面料,其特征在于,两个边缘区域内的纤维比中部区域内的纤维更直。
49.一种层压件,它包括包含一个中部区域和两个边缘区域的径缩后的非织造幅面料;幅面料的中部区域包括多个第一纤维;幅面料的两个边缘区域包括多个与第一纤维不同的第二纤维;和弹性或可延展薄膜与径缩后的非织造幅面料结合;其中,径缩结合的层压件包括具有第一基重的中部区域,和具有为第一基重约±7%内的第二基重的两个边缘区域。
50.如权利要求49所述的径缩结合层压制品,其特征在于,其包括两个径缩后的非织造幅面料,薄膜与该两个径缩后的非织造幅面料结合。
全文摘要
一种可径缩的非织造幅面料设有一个中部区域和两个边缘区域;中部区域比两个边缘区域有选择地容易径缩。中部区域内的非织造纤维具有与两个边缘区域内的非织造纤维不同的聚合物成分和/或物理性能。中部区域内的有选择更容易的径缩导致中部区域径缩到与两个边缘区域几乎相同的程度,如果开始的非织造幅面料完全均匀的话,边缘区域呈现比中部区域更大的径缩。还提供利用改进的可径缩的非织造幅面料制成的径缩后的非织造幅面料和径缩结合层压制品。
文档编号D04H1/70GK1610773SQ02822614
公开日2005年4月27日 申请日期2002年6月4日 优先权日2001年11月28日
发明者M·T·莫尔曼, C·J·莫雷尔 申请人:金伯利-克拉克环球有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1