使用气体预热法的低温cnt生长的制作方法

文档序号:1714104阅读:153来源:国知局
专利名称:使用气体预热法的低温cnt生长的制作方法
技术领域
本发明一般地涉及连续合成碳纳米管的系统、方法和设备。背景碳纳米管(CNT)显示出令人印象深刻的物理性质。最强的CNT具有高碳钢的大约八倍的强度、六倍的韧性(即杨氏模量),和六分之一的密度。因此,研发具有这些期望性质的复合材料内的CNT具有重要意义。复合材料是宏观尺度上形式或组成不同的两种或更多种成分的多相组合。复合材料的两种成分包括增强剂和树脂基体。在纤维基复合材料中,纤维用作增强剂。树脂基体将纤维保持在期望的位置和方向,同时也用作复合材料内纤维之间的负荷转移介质 (load-transfer medium)。由于其优越的机械性质,CNT被用于进一步增强复合材料中的纤维。为实现复合材料纤维性能的益处,纤维和基体之间应当存在良好的界面。这可以通过使用表面涂布——通常称为“上浆”来实现。上浆提供纤维和树脂基体之间的物理-化学连接,并对复合材料的机械性能和化学性能具有很大的影响。可以在纤维的制造期间实施上浆至纤维。一般而言,传统的CNT合成要求700°C至1500°C范围内的高温。但是,其上要形成CNT的许多纤维和上浆剂受到传统方法中CNT合成通常所要求的高温的不利影响。 期望的是用于提供低温流线(in-line) CNT合成的可选方法和系统。发明概述根据本发明的一个方面,用于合成碳纳米管(CNT)的方法包括以下步骤提供生长室,所述生长室被加热至足够高以促进碳纳米管生长的第一温度;使基底通过所述生长室;和将原料气引入所述生长室,所述生长室被预热至足以将所述原料气的至少一些分解为至少游离碳自由基的第二温度,从而在所述基底上引发碳纳米管的形成。根据本发明的另一方面,合成碳纳米管(CNT)的方法包括以下步骤提供生长室, 所述生长室被加热至第一温度;使基底通过所述生长室;提供预热至第二温度的原料气; 和将预热的原料气引入所述生长室,其中选择所述第二温度以达到期望的所述生长室内的温度分布型以在所述基底上形成碳纳米管。根据本发明的又一方面,用于合成碳纳米管(CNT)的系统包括生长室,所述生长室接收其上放置有催化剂的基底;加热器,用于加热所述生长室至第一温度,所述第一温度足够高以促进碳纳米管在所述基底上生长;和气体预热器,其将原料气加热至第二温度并将所述原料气弓I入所述生长室以在所述基底上合成碳纳米管。
附图简述

图1是根据本发明的一个实施方式使用气体预热用于低温CNT生长的系统的示意图;图2是根据本发明的另一实施方式使用气体预热用于低温CNT生长的系统的示意图;图3图解根据本发明的一个实施方式的图2的系统的示例性组件;图4图解根据本发明的一个实施方式的图3的生长室的示意性透视图;图5图解根据本发明的一个实施方式的图3的生长室的横截面图;图6A是根据本发明的一个实施方式使用气体预热在低温下生长CNT的方法的工艺流程图;图6B是根据本发明的一个实施方式使用气体预热在低温下生长CNT的方法的另一工艺流程图;图7是根据本发明的又一实施方式使用气体预热用于低温CNT生长的系统的示意图;图8图解根据本发明的一个实施方式的气体预热器设计(layout)示意图;图9图解根据本发明的另一实施方式的气体预热器设计的示意图;图10图解根据本发明的又一实施方式的气体预热器设计的示意图;图11图解根据本发明的又一实施方式的气体预热器设计的示意图;图12图解根据本发明的又一实施方式的气体预热器设计的示意图;和图13图解根据本发明的一个实施方式用于生产并入CNT的纤维(CNT infused fiber)的系统的流程图。详述本申请一般地涉及连续合成CNT的系统、方法和设备。CNT可以被有利地合成在各种基底上以生产并入碳纳米管的(“CNT-infused”)基底。并入CNT的基底可以用于多种功能,包括例如作为上浆剂以免受潮湿、氧化、磨损和挤压的损坏。CNT-基上浆剂也可以用作复合材料中基底和基体材料之间的界面。CNT也可以用作涂布基底的几种上浆剂中的一种。此外,例如,并入在基底上的CNT可以改变基底的各种性能,如导热性和/或电导性、和 /或抗张强度。用于制造并入CNT的基底的方法可以提供给CNT基本上一致的长度和分布以在被改性的基底上均勻地赋予其有用的性能。此外,本文公开的方法可以产生可缠绕维度的并入CNT的基底。本文公开的系统和方法也使得使用各种上浆剂和基底如聚芳族聚酰胺纤维成为可能,所述聚芳族聚酰胺纤维包括Kevlar,其不能承受在一些传统的碳纳米管合成方法中使用的高操作温度。此外,至少部分地由于生长室内相对较低的温度,本发明的系统和方法可以允许廉价的基底用于形成并入CNT的复合材料。本系统和方法的进一步的优势是, 通过适当调整预热原料气的流速、碳浓度、基底供应速度、生长室的温度和预热原料气的温度,可以获得CNT的连续合成,促进带有CNT的复合材料的大规模生产。可以在动态基底上实施连续合成法,所述动态基底如通过入口进入生长腔、行进穿过生长腔和从生长腔的出口退出的基底。在一些实施方式中,在外部加热器中预热工艺气体(process gas),并且通过预热的工艺气体预热原料气,然后立即将原料气引入生长室。这减少了热损失和游离碳自由基的损失,这些损失来自碳自由基与系统组件的表面的反应(例如,在工艺设备上形成积碳)。本文公开的方法允许沿丝束、带材、织物和其他3D织造的结构的可缠绕长度,连续产生具有一致长度和分布的CNT。虽然通过本发明的方法,不同的垫、织造的和非织造的织物以及类似物可被功能化,但在母体丝束、线或者类似物进行CNT功能化之后从这些母体材料产生这种更高度有序的结构是可能的。例如,由并入CNT的纤维丝束可产生并入CNT 的织造织物。如在本文使用,术语“基底”意图包括在其上CNT可以被合成的任何材料,并且可以包括但不限于碳纤维、石墨纤维、纤维素纤维、玻璃纤维、金属纤维、陶瓷纤维、芳族聚酰胺纤维或者包含其组合的任何基底。基底可以包括纤维或者排列的丝例如纤维丝束 (通常具有大约1000至大约12000根纤维)和平面基底如织物、带或其它纤维宽幅织物 (broadgoods),以及在其上可以合成CNT的材料。如本文使用,术语“可缠绕维度”指的是基底具有至少一个长度不被限制的维度, 允许材料储存在卷轴或者心轴上。“可缠绕维度”的基底具有至少一个这样的维度,该维度指示使用分批或者连续处理进行CNT并入,如在本文所示。商业可得的可缠绕维度的一个基底通过具有800的特(tex)数值(1特=lg/1, 000m)或者620码/lb的AS4 1 碳纤维丝束(Grafil, Inc. , Sacramento, CA)举例说明。具体地,例如,可以以 5、10、20、50 禾口 1001b. (对具有高的重量的卷轴,通常是3k/UK丝束)卷轴获得商业的碳纤维丝束,尽管更大的卷轴可能需要专门订购。如在本文使用,术语“碳纳米管”(CNT,复数是CNTs)指的是许多富勒烯族碳的圆柱形同素异形体的任一种,包括石墨烯(grapheme)、蒸汽生长碳纤维、碳纳米纤维、单壁 CNT (SffNT)、双壁CNT (DffNT)、多壁CNT (MWNT)。CNT可以被富勒烯类似结构封端或者是开口的。CNT包括包封其它材料的那些。如在本文使用,“长度一致”指的是在反应器中生长的CNT的长度。“一致的长度” 意味着CNT具有这样的长度,其公差是全部CNT长度的正负大约20%或者更少,因为CNT长度从大约1微米至大约500微米之间变化。在非常短的长度,诸如1-4微米,该误差可在范围从在全部CNT长度的大约正负20%直到大约正负1微米之间,即,稍微多于全部CNT长度的大约20%。如在本文使用,“分布一致”指的是基底上CNT的密度的一致性。“一致的分布”意味着在基底上CNT具有这样的密度,其公差大约是正负10 %覆盖率,覆盖率被定义为被CNT 覆盖的纤维的表面积的百分率。对具有5壁的Snm直径CNT这相当于士 1500CNT/ym2。这样的值假设CNT内部的空间是可填充的。如在本文使用,术语“并入的”意思是结合的和“并入”意思是结合的过程。这种结合可以包括直接共价结合、离子结合、η-η和/或范德华力-介导的(mediated)物理吸附。例如,在一些实施方式中,CNT可被直接结合至基底。结合可以是间接的,诸如CNT通过涂层和/或置于CNT和基底之间的中间过渡金属纳米颗粒并入至基底。在本文公开的CNT 并入的基底中,CNT可被直接地或者间接地“并入”基底,如上所述。CNT被“并入”基底的具体方式可被称作“结合基序(bonding motif)”。如在本文使用,术语“过渡金属”指的是周期表的d-块中的元素的任何元素或者合金。术语“过渡金属”也包括碱性过渡金属元素的盐形式,诸如氧化物、碳化物、氯化物、 氯酸盐、醋酸盐、硫化物、硫酸盐、氮化物、硝酸盐以及类似物。如在本文使用,术语“纳米颗粒”或者NP (复数是NPs)或者其语法等价物指的是尺寸在当量球形直径大约0. 1至大约100纳米之间的颗粒,尽管NPs形状不必是球形的。具体地,过渡金属NPs用作基底上CNT生长的催化剂。如本文所用,术语“原料气”指能够挥发、雾化、粉化或其他流态化并且能够在高温下分解或裂化为至少一些游离碳自由基以及在催化剂存在下可以在基底上形成CNT的任何碳化合物气体、固体或液体。如本文所用,术语“游离碳自由基”指能够增加CNT的生长的任何反应性碳种类。 不希望受限于理论,相信游离碳自由基通过联合基底表面上的CNT催化剂来增加CNT的生长以形成CNT。如在本文使用,术语“上浆剂(sizing agent) ”、“纤维上浆剂”或者仅“上浆”共同指的是在一些基底(如碳纤维)的制造中用作涂层的材料,以保护基底的完整性、提供复合材料中基底和基体材料之间的增强的界面作用力、和/或改变和/或增强基底的特定的物理性质。在一些实施方式中,并入基底的CNT可以表现为上浆剂。如在本文使用,术语“材料停留时间”指的是时间的量,在本文描述的CNT并入过程期间沿可缠绕维度的基底被暴露于CNT生长条件的不连续的点。该定义包括当使用多个 CNT生长室时的停留时间。如在本文使用,术语“线速度”指的是可缠绕维度的基底可被供给经过在本文描述的CNT并入方法的速度,其中线速度是CNT室(一个或多个)长度除以材料停留时间所确定的速度。参考图1,其图解了使用低温法合成CNT的系统100的示意图。根据本发明的一些实施方式,系统100包括生长室110、加热器120、基底源130、原料气源140、工艺气体源或载气源150、气体预热器160和控制器170。在一些实施方式中,生长室110是户外连续操作、流动通过的反应器。系统可以在大气压或稍高于大气压下运行。生长室110包括小体积腔(未显示),通过该腔基底连续地进入入口并从出口退出,从而促进CNT在基底上的连续合成。根据通过生长室的基底的大小和形状,腔可以具有矩形、圆形、椭圆形或类似的横截面。生长室的体积将至少部分地基于基底通过生长室时的初始大小和最终大小,考虑基于CNT的合成基底体积的增加。在一些实施方式中,生长室的体积小于或等于供给生长室110的基底的体积的大约7000%。例如,纤维丝束形式的基底允许从上游基底源130连续供给基底。生长室110可以连续接收含有原料气和任选地工艺气体(即,载气)的气体混合物进入室腔。可以通过大体上以H形配置安排的如图4所示的两个垂直构件435、445和 (图4的)两个水平构件455、465来形成生长室110。水平构件455、465与垂直构件435、 445限定小体积腔425,(图3的)基底315通过该腔425。在一些实施方式中,构件435、 445、455、465由不锈钢制成。在其它实施方式中,可以使用其它金属和/或合金,其能够经受高操作温度、不与通过腔425供给的成分反应、并且一般不能渗透这些成分。生长室110也可以连续接收纤维形式的基底315 (图幻,在控制器170控制的给定速率下,基底315可以被涂布以上浆剂和/或催化剂颗粒。基底可以通过腔425,腔425可以被控制器170保持在第一温度Tl。温度Tl足够高以确保CNT在基底上的生长,但并不高至不利地影响基底的物理和化学性能。在一些实施方式中,温度Tl可以足够高以除去任何纤维上浆剂。在其它实施方式中,温度Tl可以足够高以促进CNT的生长而不破坏或移除纤维上浆剂。例如,腔425可以被保持在大约450°C到大约650°C的温度下。再次参考图1,加热器120加热生长室110的腔425并保持生长室110的操作温度 Tl在预先设定的水平。可以通过控制器170控制加热器120。在一些实施方式中,加热器 120可以被单独的控制器控制,该控制器可以被连接至控制器170。加热器120可以是能够保持生长室110在大约操作温度Tl的任何合适的设备。在一些实施方式中,加热器120可以包括包含在每个水平构件455、465中的加热线圈。水平构件455、465被很近地隔开以在其间具有小的间隙。因为水平构件455、465之间的间隙很小,间隙能够被均勻加热,在其中没有任何明显的温度梯度。加热器120可以加热水平构件455、465的表面,这又可以加热其间的间隙。在一些实施方式中,构件455、465之间的间隙可以是大约5毫米(mm)到大约 20mm。在另一实施方式中,水平构件455、465之间的间隙是大约9. 5mm。基底源130可以适于向生长室110连续供应基底。基底可以包括适于用作基底的以上列出的那些材料的任意一种。在一些实施方式中,基底可以包括涂布有上浆材料的 E-玻璃纤维。在其它实施方式中,基底可以包括其它纤维如廉价的玻璃纤维和碳纤维。在仍有其它实施方式中,基底可以是芳族聚酰胺纤维如Kevlar。可以以称作“丝束”的束的方式供应纤维。丝束可以具有介于大约1000至大约12000根纤维细丝。在一些实施方式中, 纤维细丝可以具有大约10微米的直径,尽管可以使用具有其它直径的纤维细丝。纤维也可以包括碳纱线、碳带、单向碳带、碳纤维编带、织造碳织物、无纺碳纤维垫、碳纤维板片、3D织造结构等。在一些实施方式中,基底可以被涂布以上浆剂。上浆剂的类型和功能变化广泛,并且包括但不限于,表面活性剂、抗静电剂、润滑剂、硅氧烷、烷氧基硅烷、氨基硅烷、硅烷、硅烷醇、聚乙烯醇、淀粉、及其混合物。这种上浆剂可用于保护CNT本身,或者为纤维提供并入 CNT的存在没有给予的进一步性质。在一些实施方式中,在CNT合成之前可以除去任何上浆剂。在一些实施方式中,可以通过在第一温度Tl加热的方式实现除去上浆剂。从源130供给生长室110的纤维可以被涂布以催化剂以引发CNT的合成。这样的催化剂可以采用纳米级颗粒催化剂的形式。所用的催化剂可以是过渡金属纳米颗粒,其可以是上述任意d-块过渡金属。另外,纳米颗粒(NPs)可以包括以元素的形式或者以盐形式及其混合物的d-块金属的合金和非合金混合物。这种盐形式非限制性地包括,氧化物、碳化物、氯化物、氯酸盐、醋酸盐、硫化物、硫酸盐、氮化物、硝酸盐及其混合物。非限制的示例性的过渡金属NPs包括Ni、Fe、Co、Mo、Cu、Pt、Au和Ag及其盐。在一些实施方式中,通过与任何隔离涂层沉积同时地,直接地施加或者并入CNT形成催化剂至基底,这种CNT形成催化剂被放置在基底材料上。从各个供应商,包括例如i^errotec Corporation (Bedford, NH), 许多这些过渡金属催化剂是商业可得的。不期望受限于理论,可用作CNT-形成催化剂的过渡金属M^s可以通过形成CNT生长种子结构来催化CNT的生长。在一些实施方式中,CNT形成催化剂可以保持在基底的底部,并且并入至基底的表面。在这种情况下,通过过渡金属NP颗粒催化剂首先形成的种子结构足够用于继续的非催化的接种CNT生长,而不使催化剂沿CNT生长的前沿移动,如在本领域中通常观察到的。在这种情况下,NP作为CNT与基底的连接点。在一些实施方式中, CNT生长催化剂可跟随生长的纳米管的前沿。在这样的情况中,这可以导致CNT与基底的直接结合。不管在CNT和基底之间形成的实际结合基序的准确性质如何,并入的CNT是坚固的并且允许并入CNT的基底表现碳纳米管性质和/或特性。基底可以在进入生长室110之前被涂布有催化剂。通过喷射或者浸渍涂布溶液或者通过例如等离子体方法的气相沉积,可完成在基底上放置催化剂的操作。在一些实施方式中,通过将基底浸渍在胶体溶液中或金属盐溶液如硝酸铁中,可将催化剂涂布在基底上。 在其它实施方式中,纤维可以通过硝酸镍或硝酸钴金属盐溶液。也可以使用其它催化剂溶液或应用。在一些实施方式中,CNT形成过渡金属纳米颗粒催化剂的商业分散体是可得的并且不经稀释即可使用,在其他实施方式中,催化剂的商业分散体可被稀释。是否稀释该溶液可以取决于待生长的CNT的期望密度和长度。用于施加催化剂至基底的催化剂溶液可包括任何溶剂,该溶剂允许催化剂均勻地到处分散。这种溶剂可非限制性地包括,水、丙酮、己烷、异丙醇、甲苯、乙醇、甲醇、四氢呋喃(THF)、环己烷或者任何其他溶剂,其具有控制的极性以产生CNT形成催化剂纳米颗粒的适当的分散体。CNT形成催化剂的浓度可在催化剂与溶剂之比为大约1 1至1 10000的范围。再次参考图1,原料气源140与气体预热器160流体联通,并且能够被控制器170 控制。在另一实施方式中,来自原料气源140和工艺气体源150的气体被混合,然后该气体混合物被供应至气体预热器160。原料气可以是能够挥发、雾化、粉化或其他流态化并且能够在高温下分解或裂化为至少一些游离碳自由基且在催化剂存在下可以在基底上形成CNT的任何碳化合物气体、 固体或液体。在一些实施方式中,原料气可以包括乙炔、乙烯、甲醇、甲烷、丙烷、苯、天然气或其任意组合。在一些示例性实施方式中,当包含乙炔的原料气被加热至温度T2 (例如,介于大约550°C和大约1000°C之间)并供给生长室110的腔425(见图4)时,至少一部分乙炔在基底上催化剂的存在下分解为碳和氢。较高的温度T2促进乙炔的快速分解,但可不利地影响基底和/或存在的任何上浆剂材料的物理和化学性质。通过在生长室110外部将原料气加热至较高温度T2,同时保持生长室在较低温度Tl,在CNT形成期间可以保持基底和任何上浆剂材料或其它涂层的完整性。使用原料气如乙炔可以减少对于分离过程的需要,该分离过程将氢引入生长腔 425,其可以被用于还原包含氧化物的催化剂。原料气的分解可以提供氢,氢可以将催化剂颗粒还原为纯颗粒或至少还原为可接受的氧化物水平。例如,如果催化剂是氧化铁,这样的氧化铁颗粒无益于CNT的合成,因为来自原料气的碳自由基可以与基底上的氧化物发生反应形成二氧化碳和一氧化碳,而不是形成CNT。氧化物的化学组成可以进一步防止游离的碳自由基扩散通过催化剂颗粒,从而防止或减少了 CNT的生长。这可以减少形成CNT可用的碳自由基的量并减小CNT的生长速率。来自乙炔的氢有效地从基底上的催化剂颗粒除去氧化物并防止游离的碳自由基与氧化物反应。工艺气体可以被用于从生长腔425(图4)除去氧,氧对于CNT的生长是有害的。如果氧存在于生长腔425(图4)中,从原料气形成的碳自由基倾向于与氧反应形成二氧化碳和一氧化碳,而不是在基底上形成CNT。工艺气体可以包括不会有害地影响CNT生长过程的任何惰性气体。在一些实施方式中,工艺气体可以包括但不限于氮、氦、氩、或其任意组合。在一些实施方式中,原料气和工艺气体的流速由控制器170控制。在一些实施方式中,可以按照总气体混合物的大约0%至大约15%之间的范围提供原料气。本领域普通技术人员将认识到,控制器170可以适于独立地感测、监测和控制系统参数,系统参数包括基底供给速率、第一温度、第二温度、原料气供应和工艺气体供应的一种或多种。控制器170可以是一体化、自动化、计算机化的系统控制器,其接收参数数据并进行各种控制参数的自动化判断或手动控制安排,如本领域普通技术人员所理解的。在图1所示的一些实施方式中,原料气可以在气体预热器160中被预热至温度T2, 然后其被引入生长腔425(图4)。在一些实施方式中,T2的范围可以从大约550°C至大约 1000°C。气体预热器160位于生长室110的外部并运行以预热原料气、工艺气体或原料气和工艺气体的混合物,然后这些气体被引入生长室110。气体预热器160可以与生长室110 热隔绝以防止生长室110的无意加热。气体预热器160可以被热隔绝以防止加热的气体或气体混合物热损失至环境。气体预热器160可以包括能够将气体加热至温度T2的任何设备。在一些实施方式中,气体预热器160可以包括但不限于电阻加热喷灯(resistive heat torches)、在电阻加热陶瓷加热器内部加热的盘管、感应加热、气流中的热丝和红外线加热。在一些实施方式中,气体预热器160的一些或全部部件可以由金属特别是不锈钢构成。该金属尤其是不锈钢的使用可以使碳沉积(即,烟灰和副产物形成)。一旦碳沉积在设备壁上成为单层,碳容易沉积在其本身上。在气体预热器内窄通道中该过程可以以升高的速率发生。结果是,可以使用周期性清洁和维护来防止任何积碳阻碍原料气、工艺气体或两者的流动。现在参考图8,所图解的是预热器结构的实施方式。在所图解的实施方式中,扩散器280作为气体歧管606的部件被放入气体预热器160和生长室110之间。在一些实施方式中,原料气和/或原料气与工艺气体的组合通过气体入口 602进入气体预热器160。然后气体从气体预热器160通过导管604进入气体歧管606。导管604可以是隔热的并且由合适的材料构成以承受预热气体的温度和条件。额外的和任选的气体入口 610可以被提供在气体歧管606中以允许额外原料气、工艺气体或两者与来自气体预热器160的加热的气体结合,以提供在期望温度下的原料气体和工艺气体的期望气体混合物或者至生长室110的流速。然后气体歧管606中的气体混合物从气体歧管606通过扩散器280进入生长室110。 扩散器280允许气体混合物在生长室110中基底的限定部分上方均勻分布。在一种配置中, 扩散器280采用具有均勻分布的孔的板的形式,用于气体输送。如图8所示,扩散器280沿生长室110的选择部分延伸。在另一实施方式中,扩散器280沿生长室110的整个长度延伸。在一些实施方式中,扩散器280在垂直构件435、445(图4)的水平方向上放置在生长室110附近。在一些实施方式中,扩散器280在水平构件455、465(图4)的垂直方向上被放置在生长室110附近。在又一配置中,气体预热器160可以被并入扩散器观0。在一些实施方式中,积碳可以发生在气体预热器内,因为碳原料可以在加热期间分解。但是,原料气和/或原料气与工艺气体的组合的预热可以确保原料气被充分预热以及在进入生长室110 之前分解。预热器配置的另一实施方式示于图9。在该实施方式中,气体预热器160通过入口 602接收工艺气体并加热工艺气体。然后加热的工艺气体从气体预热器160通过导管604进入气体歧管606。然后原料气通过导管702与加热的工艺气体结合。原料气的温度可以低于加热的工艺气体的温度,在一些实施方式中,可以为环境温度。加热的工艺气体和原料气的结合可以提供温度为T2的气体混合物,然后混合物进入气体歧管606以分布至生长室 110。额外的和任选的气体入口 610可以被提供在气体歧管606中以允许额外原料气、工艺气体或两者与来自气体预热器160的加热的气体结合,以提供期望的气体混合物、温度或者至生长室110的流速。然后气体歧管606中的气体通过扩散器280从气体歧管606进入生长室110。在使用该配置的一些实施方式中,可以延迟加热原料气,直至原料气被提供至生长室110的点附近。该实施方式可以减少气体预热器160中和相关设备上形成积碳的量, 因此减少所需维护的量和频率。图10图解气体预热器的示例性实施方式。在该实施方式中,气体预热器160接收通过入口 602的气体。然后气体通过气体预热器160内的盘管802。由于加热元件供应热至盘管802的外部而使盘管802被加热。在一些实施方式中,供应至盘管802的热可以通过由电极804供电的电阻加热元件来提供。整个气体预热器可被罩住以使预热器与外部环境绝热。当气体通过盘管802时,气体被加热并在盘管内膨胀,然后通过出口导管604离开气体预热器160。盘管802的长度可以被调节以获得气体在气体预热器160内的期望停留时间,使得气体达到期望的温度。停留时间可以部分地基于气体流速、入口温度、出口温度和盘管几何形状(例如直径、长度)来确定。盘管可以由能够承受加热元件提供的温度的材料构成。在一些实施方式中,盘管可以由金属或金属合金如不锈钢构成。如上所述,当原料气在超过原料气组分的分解温度被加热时,积碳可形成在金属表面上。因此,进行周期性维护以防止盘管内形成堵塞。在一些实施方式中,涂层可以被沉积在容易积碳的表面上,防止形成或累积积碳。合适的涂层包括但不限于氧化铝、二氧化硅和氧化镁。图11图解气体预热器的另一实施方式。在该实施方式中,气体预热器160通过入口 602接收气体。然后气体通过气体预热器160内的膨胀扩散器806。膨胀扩散器806包括多个通过入口接收气体的膨胀腔804,在入口处气体被膨胀进入膨胀腔804。加热时,气体膨胀并通过出口流入邻近的膨胀腔。以这种方式,气体膨胀并流动通过一系列膨胀腔804 直至气体到达出口导管604。由于加热元件供应热至膨胀扩散器806,多个膨胀腔804被加热。在一些实施方式中,供应至膨胀扩散器806的热可以由电阻加热元件808来提供。整个气体预热器可以被罩在合适的与外部环境绝热的外壳内。可以获得期望的气体在气体预热器160内的停留时间,使得气体在达到出口导管604之前或之时达到期望的温度。停留时间可以部分地基于气体流速、入口温度、出口温度和膨胀扩散器几何形状(例如膨胀腔直径、口几何形状)来确定。膨胀扩散器806可以由能够承受加热元件提供的温度的材料构成。在一些实施方式中,膨胀扩散器可以由金属或金属合金如不锈钢构成。如上所述,如果存在原料气,由于气体的加热,积碳可以形成在膨胀扩散器内。在该实施方式中,积碳可以形成在膨胀腔之间的口内。同样,可以进行周期性维护。图12图解气体预热器的又一实施方式。在该实施方式中,一系列热丝810穿过扩散器280分布。热丝810可以是可被加热至高于期望的预热温度T2的温度的电阻加热线圈或金属线,并且可以由控制器170来控制。即使当气体在短的时间期间靠近丝,丝的温度可以足够高以使通过丝的气体可以达到期望的温度。在一些实施方式中,热丝的温度可以在大约1000°C或更高,包括大约1100°C、大约1200°C、大约1300°C、大约1400°C和大约1500°C。原料气、工艺气体或两者的混合物可以通过一个或多个入口 602引入气体歧管。然后部分由于通过扩散器280构建的背压,气体可以扩散通过气体歧管的宽度,通过所述一系列热丝810,通过扩散器观0,并进入生长室110。在该实施方式中,在歧管内较少可能发生积碳,因为气体正好在进入生长室之前被加热。其它合适的预热器设计也可以与本文描述的方法和系统一起使用。在一些实施方式中,气体预热器可以被用于将原料气、工艺气体或原料气与工艺气体的混合物的温度升高至温度T2。在一些实施方式中,温度T2可以足够高以使至少一部分原料气在生长室的入口之前或入口处分解或裂解为至少一些游离碳自由基。在这样的实施方式中,温度T2可以在生长室和基底的温度Tl之上。较低的温度Tl可以保护基底和/ 或基底上任意涂层(例如,存在的任意催化剂和/或任意上浆剂)免受温度T2下可发生的任何降解。因此,原料气的预热可以允许使用在传统CNT生长法中使用的CNT高温下将会损坏的基底产生并入CNT的基底。在一些实施方式中,温度T2可以接近于温度Tl,以使在温度T2引入原料气没有不利地影响生长室内的温度分布型。在这样的实施方式中,T2可以在温度Tl的25%内,或者可选地,在温度Tl的40%以内,或者更高或更低。在该实施方式中,T2的温度可以在从大约400°C到大约1000°C的范围内。在一些实施方式中,温度T2可以被调节以在生长室内产生期望的温度分布型或梯度,或者T2可以被调节以减小生长室内任何温度梯度,产生更均勻的温度分布型。例如,T2可以被调节以在原料气进入生长室的点匹配生长室的温度。 不期望受限于理论,相信控制生长室内的温度梯度以达到期望的温度分布型可以帮助控制 CNT在基底上的生长速率和性质。现在回到图3,图解了用于在低温下基底上合成CNT的系统300。系统300包括生长室310、生长室加热器320和四个气体预热器360a、360b、360c、360d。在所示实施方式中, 两个气体预热器360a、360b被定位在生长室310的一侧,两个气体预热器350c、360d被定位在生长室310的另一侧。气体预热器360a、360b、360c、360d可以包括本文公开的任何配置。在示例性实施方式中,气体预热器360a、360b、360c、360d可以被配置为其中安置有管状盘管(未显示)的陶瓷加热器。在所示实施方式中,盘管由大约九(9)英尺的不锈钢制成,原料气和/或原料气与工艺气体的混合物通过该盘管流动并被加热。气体歧管相对于生长室310被放置在中心位置并且包括用于均勻地将气体混合物分布在生长腔425(图4)中的扩散器观0。预热的原料气与工艺气体的混合物从气体预热器360a、360b进入气体歧管并被允许在生长室310内均勻地扩散。气体供应线340a、340b 分别将气体混合物供应给气体预热器360a、360b的入口。催化剂放置在其上的基底315以给定速率被引入生长室310的入口,其中基底315经历加热至温度Tl (例如,大约500°C至大约600°C之间)。同时,加热至温度T2(例如,大约550°C至大约1000°C之间)的预热原料气和工艺气体被引入生长室310。原料气的至少一些可以分解以确保CNT在基底上生长。 具有合成CNT的并入CNT的基底317从生长室310的出口退出。在一些实施方式中,原料气和工艺气体的混合物的供给速率为大约15升/秒至大约20升/秒,两者皆可被控制器 170(图1)控制。现在参考图5,其图解了生长室310的侧视图。加热器565、567被安排在H形生长室310的顶部和底部侧。外部附加的并且隔热的模块585、587分别向生长室310提供输入隔热和输出隔热。模块585、587被放置在生长室的末端以防止生长室内部的热气体与生长室外部的富氧气体混合并形成可不利地影响进入或退出生长室310的基底的局部氧化条件。冷却惰性气体如氮气作为生长室310和外部环境之间的缓冲通过生长室入口处和出口处的端口 575、577被供应以防止不期望的热气体与环境混合。进入的冷气体可以进入内置有扩散器板的岐管以将冷气体扩散到相应的模块上。现在参考图7,其显示了使用气体预热器在低温下合成CNT的系统700的又一实施方式。除了以下不同,系统700类似于图2所示的系统200的实施方式。在系统700中,仅工艺气体经外部加热器被预热至较高的温度(例如大约800°C)。然后预热的工艺气体与原料气在扩散器观0中混合,原料气的温度可以在大约环境温度至大约250°C的较低温度范围内。因此,原料气被预热的工艺气体加热,然后立即被引入生长室110的生长腔425(图 4)。一般而言,在该实施方式中,任何预热器设计均可被用于加热工艺气体,包括以上描述的那些。延迟预热原料气的优点是,原料气的裂解(即,分解)在将原料气引入生长室110 时或附近之前不发生。如果原料气较早裂解,游离碳自由基可与扩散器观0的壁反应,减少了可用于在基底上生长CNT的碳自由基的量。在图6A中,图解了描述合成CNT的方法的流程图。在方框610,生长室被提供并被加热至第一温度Tl。第一温度Tl的范围可以在大约450°C至大约650°C。在方框620,将基底通过生长室。温度Tl足够高以促进CNT在基底上合成,在预热的原料气的存在下,基底连续通过生长室,原料气在生长室中分解成至少游离碳自由基,但该温度没有高到使基底和/或基底上放置的任何上浆剂降解。在方框630,原料气被预热至第二温度T2,然后被引入生长室。第二温度T2的范围可以在大约550°C至大约1000°C。游离碳自由基在这样的温度下易于产生。可以使用本文描述的任何方法或设备加热原料气。例如,可以通过使原料气与加热至T2以上温度的工艺气体混合以使混合物在进入生长室时温度为T2来加热原料气。预热的原料气被引入生长室,当涂布以合适的催化剂颗粒时,其中分解的游离碳自由基在基底上聚集成CNT。已经指出,预热的原料气提升基底上催化剂颗粒的温度,这通过基底上催化剂颗粒上碳的体相扩散和表面扩散,可以增强快速CNT合成。但是,预热的气体不具有足够的热能来以任何明显的程度升高基底体相材料的温度。因此,当基底纤维移动通过生长室时,基底和任何任选的上浆剂的温度可以被保持为低于其降解温度。在一些实施方式中,温度Tl可能与基底和/或上浆剂的组成不相容,但CNT生长的速率和效率足以减少基底暴露于升高的温度Tl的停留时间。图6B图解描述合成CNT的方法的另一流程图。在方框640,生长室被提供并被加热至第一温度Tl。第一温度Tl的范围可以在大约450°C至大约650°C。温度Tl足够高以促进CNT在连续送入生长室的基底上的合成,但该温度没有高至使基底和基底上涂布的任何任选的上浆剂材料降解。在方框650,将基底通过生长室。在方框660,原料气被预热至第二温度T2,然后被引入生长室。第二温度T2的范围可以在大约400°C至大约1000°C。可以使用本文描述的任何方法或设备加热原料气。例如,可以通过使原料气与加热至T2以上温度的工艺气体混合以使混合物在进入生长室时温度为T2来加热原料气。该温度可以足够获得生长室内期望的温度分布型。在方框680,预热的原料气被引入生长室,以获得生长室内期望的温度分布型。然后,CNT可以在基底上形成以生成并入CNT的基底。在温度T2,预热的气体不具有足够的热能来以任何明显的程度升高基底的体相材料温度。因此,当基底纤维移动通过生长室时,基底和任何任选的上浆剂的温度可以被保持为低于其降解温度。现在参考图3和图4来描述该系统的示例性实施方式。生长腔425具有矩形横截面和大约0. 27立方英尺的体积。腔425接收涂布有氧化铁催化剂的基底纤维丝束,其通过使纤维丝束以大约1英尺/分钟的线速度通过1份(体积)大约8纳米大小的氧化铁纳米颗粒在200份(体积)己烷中的溶液来获得。纤维丝束以大约4英尺/分钟的线速度通过生长腔。生长腔425被保持在大约550°C。大约0.15至0.2升乙炔和大约15至20升氮气的工艺气体和原料气混合物被预热至大约650°C的温度。预热的气体以大约每分钟15. 15 升至大约每分钟20. 2升的速率被引入生长腔425。从生长腔425连续输出的纤维丝束具有的CNT在大约1.0%至大约2% (负载重量百分数)的范围。并入CNT的基底在腔425的出口退出生长室110。并入CNT的基底可以具有长度基本一致的CNT。在本文描述的方法中,基底在CNT生长室110中的停留时间可以被调节以控制CNT的生长并最终控制CNT的长度。这提供了控制生长的CNT的具体性能的方法。通过调节原料气和工艺气体的流速和反应温度,也可以控制CNT的长度。CNT性能的其它控制可以通过控制例如用于制备CNT的催化剂的大小来获得。例如,1纳米的过渡金属纳米颗粒催化剂可以特别被用于提供SWNT。 较大的催化剂可以被用于主要制备MWNT。此外,本文描述的CNT生长方法和系统可以提供CNT在基底上均勻分布的并入CNT 的基底。在一些实施方式中,假定CNT的直径大约8纳米、具有5个壁,最大分布密度可以高达大约55%,最大分布密度被表示为覆盖率百分比,S卩,被覆盖的纤维的表面积。该覆盖率通过考虑CNT内部的空间作为“可填充”空间来计算。通过改变表面上催化剂的分散以及控制气体组成和工艺速度,可获得各种分布/密度值。通常对于给定参数组,可以获得纤维表面上的大约10%以内的覆盖率百分比。较高的密度和较短的CNT对于提高机械性能是有用的,而较长较低密度的CNT对于提高热性能和电性能是有用的,尽管密度增加仍是有利的。较长的CNT生长时可以得到较低的密度。这可以是较高温度和更快生长的结果,使得催化剂颗粒产率较低。并入CNT的基底可以包括基底如碳细丝、碳纤维纱线、碳纤维丝束、碳带、碳纤维编带、织造碳织物、非织造碳纤维垫、碳纤维片和其它3D织造结构。细丝包括高纵横比纤维,其直径范围在大约1微米至大约100微米之间的大小。纤维丝束通常是紧密地联系在一起的细丝的束,并且通常被拧在一起以制出纱线。将CNT并入至基底的本发明方法允许具有一致性的CNT长度的控制,并且在连续的方法中允许用CNT以高的速度使可缠绕碳纤维材料功能化。生长室110中的材料停留时间在5至300秒之间,对于3英尺长的系统,连续的方法中的线速度可大概在大约0. 5ft/ min至大约36ft/min的范围以及更大。在一些实施方式中,大约5至大约30秒的材料停留时间可产生具有长度在大约1微米至大约10微米之间的CNT。在一些实施方式中,大约30 至大约180秒的材料停留时间可产生具有长度在大约10微米至大约100微米之间的CNT。 在仍进一步的实施方式中,大约180至大约300秒的材料停留时间可产生具有长度在大约 100微米至大约500微米之间的CNT。本领域技术人员明白,这些范围是近似的,并且通过反应温度以及载气和原料气体浓度和流速,也可调节CNT长度。在一些实施方式中,并入CNT的基底可以被用于形成复合材料。这种复合材料可以包括基体材料以形成具有并入CNT的基底的复合材料。在本发明中有用的基体材料可以包括但不限于树脂(聚合物)——热固性和热塑性的、金属、陶瓷和水泥。作为基体材料有用的热固性树脂包括邻苯二甲酸/马来酸型聚酯、乙烯基酯类、环氧树脂类、酚醛树脂类、 氰酸酯类、双马来酰亚胺和内亚甲基四氢化邻苯二甲酸封端的聚酰亚胺(例如,PMR-15)。 热塑性树脂包括聚砜、聚酰胺、聚碳酸酯、聚苯醚、聚硫醚、聚醚醚酮、聚醚砜、聚酰胺-酰亚胺、聚醚酰亚胺、聚酰亚胺、多芳基化合物和液晶聚酯。可用作基体材料的金属包括铝的合金,诸如铝6061、20M和713铝黄铜(aluminium braze)。可用作基体材料的陶瓷包括碳陶瓷诸如硅铝酸锂、氧化物诸如氧化铝和富铝红柱石、氮化物诸如氮化硅和碳化物诸如碳化硅。可用作基体材料的水泥包括金属碳化物(carbide base cermets)(碳化钨、碳化铬和碳化钛)、耐火水泥(钨-氧化钍和钡-碳酸盐-镍)、铬-氧化铝、镍-氧化镁-铁-碳化锆。上述基体材料的任何一种可被单独或者结合地使用。
实施例该预言性实施例显示CNT如何能够在低温下以使用气体预热的连续工艺并入芳族聚酰胺纤维材料,其以机械性能、特别是界面特性如剪切强度的改进为目标。在该实施例中,在纤维上负载较短CNT为目标,其中具有特值800的Kevlar纤维丝束(从Du Pont of Wilmington, DE可得)被用作纤维基底。该芳族聚酰胺纤维丝束中单独的丝具有大约17 μ m的直径。图13描述根据本发明的例证性实施方式生产并入CNT的纤维的系统1300的流程图。系统1300包括芳族聚酰胺纤维材料输出和张紧站1302、纤维伸展站1308、等离子体处理站1310、涂层施加站1312、空气干燥站1314、第二涂层施加站1316、第二空气干燥站 1318、CNT并入站1320、CNT排列系统1322、树脂浴13 和旋转心轴1330,如所示相互连接。输出和张紧站1302包括输出筒管1304和张紧器1306。输出筒管运输芳族聚酰胺纤维材料1301至工艺;通过张紧器1306张紧纤维。对该实施例,以大约5ft/min的线速度处理芳族聚酰胺纤维。纤维材料1301被运输至纤维伸展站1308。当该纤维被制造时没有上浆剂,上浆剂清除工艺没有作为纤维伸展站1308的一部分被引入。纤维材料1301被输送至等离子体处理站1310。对该实施例,以“向下的”方式从距离伸展的芳族聚酰胺纤维材料12mm的距离,使用常压等离子体处理。气态原料由总惰性气流(氦气)1. 的量的氧组成。控制芳族聚酰胺纤维材料表面上的氧含量是增强随后涂层的粘附性的有效方式,并因此可期望用于增强芳族聚酰胺纤维复合材料的机械性能。等离子体增强的纤维1311被运输至涂层施加站1312。在该实施例中,氧化铁基催化剂和隔离涂层材料被结合至单一的‘混合’溶液中,并且被用于浸渍涂布构造中。‘混合,溶液是按体积计1份‘EFH-1,(从Ferrotec Corporation of Bedford,NH可得的氧化 ^SiI^Oii^ ) >5 ^v iAccuglass T-Il Spin-On Glass' (/人 Honeywell International Inc.,Morristown, NJ可得)、24份己烷、24份异丙醇和146份四氢呋喃。使用这种‘混合, 涂料的好处是其抑制在高温下纤维降解的影响。不被理论束缚,认为,由于催化剂Ws在高温(对CNT的生长至关重要的相同温度)的烧结,芳族聚酰胺纤维材料的降解被加大。通过用其自身的隔离涂层包封每一催化剂NP,有可能控制该影响。因为以机械性质而不是热 /电性质的提高为目标,保持芳族聚酰胺纤维基材料的完整性是期望的,因此‘混合’涂层可被使用。负载催化剂的和隔离涂层的芳族聚酰胺纤维材料1313被运输至空气干燥站 1314,以部分固化隔离涂层。空气干燥站发送加热的空气流经过伸展的全部芳族聚酰胺纤维。使用的温度可在100°C至大约350°C的范围。在空气干燥之后,负载催化剂和隔离涂层的芳族聚酰胺纤维1313被运输至涂层施加站1316,其与涂层施加站1312相同。相同的’混合’溶液被使用(按体积计1份 ‘EFH-1,、5 份 ‘Accuglass T-Il Spin-On Glass,、24 份己烷、24 份异丙醇和 146 份四氢呋喃)。对该实施例,包括多个涂层施加站的构造被利用以使等离子体增强的纤维1311上的 ‘混合’涂层的覆盖率最优化。负载催化剂和隔离涂层的芳族聚酰胺纤维1317被运输至空气干燥站1318,以部分固化隔离涂层,该空气干燥站与空气干燥站1314相同。在空气干燥之后,负载催化剂和隔离涂层的芳族聚酰胺纤维1317最终被送至CNT 并入站1320。在该实施例中,具有12英寸生长区域的矩形反应器被使用以利用在大气压力的CVD生长。类似于图8所示的系统的气体预热系统被用于预热生长气体至大约700°C的温度。总气流的97. 6%是惰性气体(氮气),其他2. 4%是碳原料(乙炔)。生长区域保持在大约550°C。对上面提及的矩形反应器,550°C是相对低的生长温度,但是,由于气体预热与隔离涂层提供的热防护,防止了芳族聚酰胺纤维的高温降解,但其允许CNT的生长。然后,并入CNT的纤维1321通过CNT排列系统1322,其中一系列冲模被用于机械地将CNT的轴排列在每个粗纱的方向上。末端具有0. 125英寸直径开口的锥形冲模被用于辅助排列CNT。通过CNT排列系统1322之后,排列好的并入CNT的纤维1323被输送至树脂浴 13M。树脂浴包括用于生产含有并入CNT的纤维和树脂的复合材料的树脂。该树脂可以包括但不限于商业可得的树脂基体如聚酯(例如,邻苯二甲酸聚酯)、改进的聚酯(例如,间苯二甲酸聚酯)、环氧树脂和乙烯基酯。树脂浴13M可以以各种方式实施,其中两个在以下描述。第一,树脂浴13M可以被用作刮刀辊浴,其中被放置在浴中的抛光的旋转圆筒(例如圆筒1325)在其转动时拾取树脂。刮刀(图13中未显示)压向圆筒以在圆筒1325上获得精确的树脂膜厚度并将多余的树脂推回浴中。当芳族聚酰胺纤维粗纱1323被拉到圆筒1325的顶部上时,其接触树脂膜并打湿。可选地,树脂浴13M被用作浸渍浴,其中芳族聚酰胺纤维粗纱723被浸没在树脂中,然后被拉过除去多余树脂的一组擦拭器或辊。离开树脂浴13M之后,将树脂浸湿的、并入CNT的纤维1323通过放置在输送机头 (未描绘)后的各种环、小孔和通常是多针“梳子”(未描绘)。梳子保持芳族聚酰胺纤维 1323分开直至其在旋转心轴1330上聚集为单个结合带。心轴用作要求复合材料具有增强机械强度的结构的模具。应当理解,上述实施方式仅是本发明的示例并且本领域技术人员可以想到上述实施方式的许多改变而不偏离本发明的范围。例如,在本说明书中,提供了许多具体细节以便提供对本发明的示例性实施方式的透彻描述和理解。但是,本领域技术人员将明白,没有一个或多个那些细节,或者用其他工艺、材料、组分等,也可以实现本发明。此外,在一些情况下,众所周知的结构、材料或操作未被显示或详细描述以避免使示例性实施方式的方面不清楚。应当理解,附图中所示的各个实施方式是示例性的,并且没有必要按比例画出。贯穿本说明书提及“一种实施方式(one embodiment)”或“一个实施方式(an embodiment)”或“一些实施方式(some embodiments) ”意味着与所述实施方式(一个或多个)结合描述的具体特征、结构、材料或特性被包括在本发明的至少一个实施方式中,但不必被包括在所有的实施方式中。因此,本说明书各处出现的短语“一种实施方式(one embodiment) ”或“ 一个实施方式(an embodiment) ”或“ 一些实施方式(some embodiments) ”不必全部指同一实施方式。此外,具体特征、结构、材料或特性可以在一个或多个实施方式中以任何合适的方式结合。因此,这类改变意图被包括在权利要求书及其等同物的范围内。
权利要求
1.合成碳纳米管(CNT)的方法,包括以下步骤提供生长室,所述生长室被加热至足够高以促进碳纳米管生长的第一温度; 使基底通过所述生长室;和将原料气弓I入所述生长室,所述生长室已被预热至足以将所述原料气的至少一些分解为至少游离碳自由基的第二温度,从而在所述基底上引发碳纳米管的形成。
2.根据权利要求1所述的方法,其中所述第二温度高于所述第一温度。
3.根据权利要求1所述的方法,其进一步包括将所述第一温度控制在大约450°C至大约650°C的范围内。
4.根据权利要求1所述的方法,其进一步包括将所述第二温度控制在大约550°C至大约1000°C的范围内。
5.根据权利要求1所述的方法,其中所述基底包括选自以下的至少一种材料碳纤维、 石墨纤维、纤维素纤维、玻璃纤维、金属纤维、陶瓷纤维、芳族聚酰胺纤维或其任意组合。
6.根据权利要求1所述的方法,其中所述基底被涂布有选自以下的至少一种材料催化剂和上浆剂。
7.根据权利要求1所述的方法,其进一步包括将工艺气体与所述原料气一起引入所述生长室。
8.根据权利要求7所述的方法,其中所述工艺气体和所述原料气被混合并且所述混合物被加热至所述第二温度,然后引入所述生长室。
9.根据权利要求8所述的方法,其进一步包括将加热的混合物扩散至所述生长室中。
10.根据权利要求7所述的方法,其中,通过将所述工艺气体加热至超过第二温度T2的温度,然后在低于T2的温度下与所述原料气混合来加热所述原料气,以将所述原料气的温度升高至所述第二温度。
11.合成碳纳米管(CNT)的方法,包括以下步骤 提供生长室,所述生长室被加热至第一温度;使基底通过所述生长室; 提供预热至第二温度的原料气;和将预热的原料气引入所述生长室,其中选择所述第二温度以达到所述生长室内期望的温度分布型以在所述基底上形成碳纳米管。
12.根据权利要求11所述的方法,其中所述第二温度在所述第一温度的大约40%以内。
13.根据权利要求11所述的方法,其进一步包括将工艺气体与所述原料气一起引入所述生长室。
14.根据权利要求13所述的方法,其中所述工艺气体和所述原料气被混合,得到的混合物被加热至所述第二温度,然后引入所述生长室。
15.根据权利要求14所述的方法,其进一步包括将加热的混合物扩散至所述生长室中。
16.根据权利要求13所述的方法,其中,通过将所述工艺气体预热至超过第二温度T2 的温度,然后与所述原料气混合来预热所述原料气,以将所述原料气的温度升高至所述第
17.合成碳纳米管(CNT)的系统,包括生长室,所述生长室接收其上放置有催化剂的基底;加热器,用于加热所述生长室至第一温度,所述第一温度足够高以促进碳纳米管在所述基底上生长;和气体预热器,其将原料气加热至第二温度并将所述原料气引入所述生长室以在所述基底上合成碳纳米管。
18.根据权利要求17所述的系统,其中所述第二温度足够将所述原料气的至少一些分解为至少游离碳自由基。
19.根据权利要求17所述的系统,其中所述第二温度在所述第一温度的大约40%以内并足以在所述生长室内达到期望的温度分布型。
20.根据权利要求17所述的系统,其中所述气体预热器包括置于所述生长室外部的加热器,该加热器可控制地加热所述原料气至所述第二温度。
21.根据权利要求17所述的系统,其中所述气体预热器包括位于所述生长室外部、可控制地加热工艺气体至超过所述第二温度的温度的加热器;和扩散器,其具有用于接收加热的工艺气体的输入和用于接收较低温度下的所述原料气的输入,并结合加热的工艺气体和所述原料气以提供扩散的输出至包括所述第二温度下的原料气的所述生长室中。
22.根据权利要求17所述的系统,其中所述基底包括选自以下的至少一种材料碳纤维、石墨纤维、纤维素纤维、玻璃纤维、金属纤维、陶瓷纤维、芳族聚酰胺纤维或其任意组合。
23.根据权利要求17所述的系统,其进一步包括用于控制以下的一个或多个的控制器所述生长室接收所述基底的速率、所述第一温度、所述第二温度和所述原料气供应。
24.根据权利要求17所述的系统,其中所述第一温度在大约450°C至大约650°C的范围内。
25.根据权利要求17所述的系统,其中所述第二温度在大约550°C至大约1000°C.的范围内。
26.根据权利要求17所述的系统,其中所述基底是其上具有上浆剂和铁基催化剂的纤维丝束。
27.根据权利要求17所述的系统,其中所述原料气包括选自以下的至少一种气体乙炔、甲醇、乙烯、甲烷、丙烷、苯和天然气。
28.根据权利要求21所述的系统,其中所述工艺气体包括选自以下的至少一种气体氮、氦和氩。
全文摘要
合成碳纳米管(CNT)的方法包括以下步骤提供生长室,所述生长室被加热至足够高以促进碳纳米管生长的第一温度;和使基底通过所述生长室;以及将原料气引入所述生长室,所述生长室已被预热至足以将所述原料气的至少一些分解为至少游离碳自由基的第二温度,从而在所述基底上引发碳纳米管的形成。
文档编号D01F9/12GK102333906SQ201080009432
公开日2012年1月25日 申请日期2010年2月26日 优先权日2009年2月27日
发明者H·C·马来茨基, T·K·沙赫 申请人:应用纳米结构方案公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1