富铝红柱石坯体及生成富铝红柱石坯体的方法

文档序号:1790938阅读:513来源:国知局
专利名称:富铝红柱石坯体及生成富铝红柱石坯体的方法
技术领域
本发明涉及富铝红柱石坯体及生成富铝红柱石坯体的方法。本发明特别涉及一种具有熔融联锁针状晶粒的富铝红柱石坯体和其制备方法。
背景技术
近来,对于柴油机排放的颗粒物质,欧洲和美国通过了更为严格的规章。为了应对这些规章,微粒过滤器将是必需的。
这些微粒过滤器将必须满足许多相互矛盾的严苛必要条件。例如,过滤器在仍保持绝大多数排放出的微米级柴油机颗粒时(通常排放颗粒的捕获率大于90%),必须具备足够的孔隙率(通常孔隙率大于55%)。当过滤器能够在再生前负载大量烟尘的同时,还必须具有足够的可渗透性,以便不会太快产生过量的背压力。过滤器必须能长时间抵挡腐蚀性的废气环境。过滤器必须具有起始强度,使其被放置在与废气体系相联接的容器中。过滤器必须能数千次地经受来自烧除排放到过滤器(再生)中的烟尘的热循环(保持适当的强度),其局部温度可高达1600℃。由于这些严格的标准,陶瓷过滤器已经成为开发柴油机颗粒过滤器材料的选择。
在早期,采用了烧结堇青石的陶瓷过滤器作为一种可能的柴油机颗粒过滤器。采用堇青石是由于堇青石的价格低廉,且可以在汽车废气排放系统中用作三元催化剂的载体。不幸的是,堇青石在数千次再生循环以后没有表现出高孔隙率、高渗透性和与保留强度相关的高烟尘载量以满足上述严格要求。
最近,碳化硅已经因为其高强度和在热循环后保持强度的能力,成为过滤器的研究热点。不过,碳化硅的不利之处在于必须采用昂贵的碳化硅微粉在高温下烧结。因为碳化硅被烧结,在过量背压形成前,形成的孔隙结构导致了烟尘载量有限。
因此,需要提供一种制备方法和一种陶瓷材料,其能够解决现有技术中的一个或一个以上难题,例如上述难题中的一个。

发明内容
本发明的第一方面是一种用于制备一种针状富铝红柱石组合物的方法,此方法包括a)生成含有存在于富铝红柱石中的元素的一种或多种前体化合物的混合物,其中前体化合物之一为粘土。
b)将混合物成型为多孔半成品型。
c)在含氟气体气氛下将步骤(b)的多孔半成品型加热到足以形成未处理的富铝红柱石组合物的温度,此组合物主要由基本为化学结合的针状富铝红柱石颗粒所组成,以及d)随后在选自水蒸气、氧气、空气、惰性气体或其混合物的热处理气氛下将未处理的富铝红柱石组合物加热到至少950℃的加热温度,持续一段足以形成富铝红柱石组合物的时间。
令人惊讶地,本方法能够生成具有足够强度并保持足够的强度以便能够承受在车辆寿命的全过程中经受的热循环的针状富铝红柱石。相反,用粘土制造,但未经本发明的热处理步骤的针状富铝红柱石组合物,当在空气中被加热至800℃2小时后,丧失了大量的未处理强度(也就是在上述步骤(c)后的强度)。
本发明的第二方面是一种生成具有更高强度的多孔针状富铝红柱石组合物的方法,包括a)生成含有存在于富铝红柱石中的元素的一种或一种以上前体化合物的混合物,其中混合物具有最大为2.95的Al/Si比。
b)将混合物成型为多孔半成品型。以及c)在单独提供的含氟气体气氛下,将步骤(b)的多孔半成品型加热到足以生成主要由基本为化学结合的针状富铝红柱石颗粒所组成的多孔富铝红柱石组合物,其中,富铝红柱石组合物具有最大为2.95到至少为2的整体Al/Si化学计量比,针状富铝红柱石颗粒具有至少为2.95的Al/Si化学计量比,富铝红柱石组合物具有最大为2vol%的结晶二氧化硅相。
本发明的第三方面是一种多孔富铝红柱石组合物,其主要由基本上为化学结合的针状富铝红柱石颗粒所组成,其中富铝红柱石组合物具有最大为2.95到至少为2的整体Al/Si化学计量比,针状富铝红柱石颗粒具有至少为2.95的Al/Si化学计量比,富铝红柱石组合物具有最大为2vol%的结晶二氧化硅相和一种分布在至少一部分富铝红柱石颗粒上的玻璃相,其中此玻璃相由硅镁和铁所组成。
令人惊讶的是,第三方面的组合物在空气中被加热到800℃两个小时后,虽然组合物具有至少55%到最大为85%的孔隙率,但仍具有至少为15Mpa的保留强度。保留强度是在针状富铝红柱石在空气中被加热到800℃两个小时后的弯曲强度。如果需要的话,可以利用本发明的第一方面的最后一步处理这些针状富铝红柱石组合物以获得更进一步的改进的保留强度。
本发明的第四方面是一种富铝红柱石组合物,其主要由基本上为化学结合的针状富铝红柱石颗粒所组成,其中富铝红柱石组合物具有分散在至少一部分针状富铝红柱石颗粒上的玻璃相,所述玻璃相含有实质上并入此玻璃相中的铁和镁。
现已发现一种用前体如粘土制得的富铝红柱石组合物,该前体中含有铁和镁杂质引起在富铝红柱石组合物的玻璃相中的这些元素的沉淀物,这个现象似乎降低了这些杂质在热循环下的强度。当使用本发明的第一方面的方法时,通过向玻璃相中加入镁和铁的方法,可以基本上清除这些沉淀物,并且沉淀物在热循环下(例如在空气中加热至800℃两个小时)不会再次生成。
可以在任何适于富铝红柱石的用途中使用本发明的富铝红柱石坯体。例子包括过滤器、难熔材料、热和电绝缘体、用于金属或塑料复合坯体的补强材料、催化剂和催化剂载体。
富铝红柱石组合物本发明的富铝红柱石组合物由基本上为化学结合的针状富铝红柱石颗粒所组成。富铝红柱石颗粒组成了至少90%的富铝红柱石组合物,这是可取的。优选富铝红柱石颗粒组成了组合物体积的至少95vol%,更优选至少98vol%,再优选至少99vol%。富铝红柱石组合物,除富铝红柱石颗粒外,几乎均含有玻璃相,其由氧化物形式的硅、铝和金属杂质所组成。通常玻璃相位于富铝红柱石颗粒的表面和交叉颗粒表面。
针状富铝红柱石颗粒是具有大于2(例如长度是宽度的两倍)的长径比的颗粒。在富铝红柱石组合物中的针状富铝红柱石颗粒可取地具有至少为5的平均长径比。优选地,平均长径比至少为10,更优选为至少15,再优选至少为20,最优选为至少40。
基本上所有的富铝红柱石组合物的颗粒是化学结合到坯体的其它富铝红柱石颗粒上的。这意味着最多1vol%的富铝红柱石颗粒未能化学结合到其它富铝红柱石颗粒上。优选地,基本上所有的富铝红柱石颗粒是化学结合的。化学结合通常是颗粒烧结或熔融到一起。熔融和烧结发生在颗粒界面,其通常包括Si、Al和其混合物的无定形氧化物(玻璃)相态(也就是无序相态)。如上所述,此玻璃相还可以含有其它金属氧化物杂质。
可以通过适当的技术,例如在抛光截面上的显微镜检查法,确定其微结构。例如,可以通过对坯体抛光截面的扫描电子显微镜(SEM)照片测定平均富铝红柱石颗粒尺寸,其中可以通过Underwood在Quantitative Stereology,Addison Wesley,Reading,MA,(1970)所描述的截距法测定平均颗粒尺寸。
在本发明的一个优选实施例中,富铝红柱石组合物在空气中被加热到800℃两个小时后,其强度至少为15MPa,组合物具有至少55%到最大85%的孔隙率。重申一下,在空气中加热到800℃两个小时后的强度在这里指的是保留强度。已经发现,保留强度可以很好地指示组合物耐受热循环和在柴油机颗粒过滤器应用中的振动的能力。
为了达到此保留强度,通常必须保留至少50%的原富铝红柱石化强度。原富铝红柱石化强度是在随后的热处理之前的针状富铝红柱石的强度。之所以这样,是因为对于柴油机颗粒过滤器来说必须的高孔隙率严格限制了具有足够高的原富铝红柱石的强度的能力。对于不引入例如过量的背压力而实现其功能的过滤器来说,高孔隙率是必须的(也就是说,55%或更高的孔隙率,优选至少57%的孔隙率)。保留强度有选为原富铝红柱石化强度的至少70%,更优选为至少85%,再优选为至少90%,最优选为至少95%。令人惊讶的是,本发明的方法可以导致等于或大于原富铝红柱石化强度的保留强度。
组合物,当用作柴油机颗粒捕捉器时,应具有足以承受柴油机颗粒捕捉器环境的保留强度。通常,此保留强度为至少15MPa。优选地,保留强度为至少17MPa,更优选保留强度为至少19MPa,再优选为至少20MPa,最优选为至少25MPa。通常通过将从随后被富铝红柱石化的挤压蜂巢上切割的杆材的四点弯曲方法测定保留强度。可以采用公知的技术(例如ASTM C1161描述的方法)进行强度测量。
如前所述,组合物应该足够多孔(例如,至少55%的孔隙率)以便可以用作柴油机颗粒过滤器。但是,孔隙率不能大到以至于类富铝红柱石强度以及随后的保留强度太低,使得过滤器破裂或不能捕捉足够的颗粒物质(也就是说,最高85%的孔隙率)。孔隙率优选为至少56%,更优选为至少57%,再优选为至少60%,最优选为至少62%,到优选最大为80%,更优选为最大75%,最优选为最大70%。
此外,富铝红柱石组合物可取地具有一定的渗透系数,此渗透系数要尽可能高到能够降低背压力的积累,同时仍然能够保留足够的颗粒。渗透系数与孔隙率的总量和孔尺寸成比例,并且与内部连接的孔隙率的曲折程度是成反例的。通常,如利用达西等式确定的那样,渗透系数应该为至少1×10-13m2。渗透系数优选为至少2×10-13m2。
即使理论的Al/Si富铝红柱石化学计量比为3(3Al2O3·2SiO2),富铝红柱石组合物的整体Al/Si化学计量比可以是任何适宜的化学计量比,例如4Al/Si到2Al/Si。整体化学计量比的意思是在坯体中Al对Si的比率(也就是说,不是个别单独的颗粒)。坯体的整体化学计量比小于3,相应的氧化铝(Al2O3)对二氧化硅(SiO2)的化学计量比低于1.5,这是优选的。Al/Si整体化学计量比优选最大为2.95,更优选最大为2.9,再优选最大为2.85,最优选最大为2.8,到优选至少为2。可以通过任何适宜的技术,例如这些在本领域内公知的方法,包括如X-射线荧光,来测量整体化学计量比。
具有大于3.3的Al/Si化学计量比的富铝红柱石组合物是不那么优选的,因为它们可以形成显然而独立的的氧化铝小颗粒,其导致,例如,较低的渗透性和较大的起始背压力,以及在柴油机颗粒捕捉器用途中会加速背压力的累积。具有3左右(也就是,理论的富铝红柱石化学计量比)的整体Al/Si化学计量比的富铝红柱石组合物,尽管通常来说缺少堵塞的氧化铝颗粒不如较低的整体化学计量比那么优选。这是因为,具有非常接近3或高于3的整体Al/Si比的富铝红柱石组合物的强度低于具有较低整体Al/Si化学计量比的富铝红柱石组合物。对于更为多孔的组合物(也就是说,孔隙率高于55%)来说,这种强度上的差别通常更为明显。可以通过任何适宜的技术测定此整体化学计量比,例如那些在本领域内公知的技术(例如,X-射线荧光法)。
具有最大2.95到至少2的整体Al/Si化学计量比的富铝红柱石坯体,以及具有至少2.95的Al/Si化学计量比的富铝红柱石颗粒,是可取的。富铝红柱石颗粒更优选地具有在3到3.4的Al/Si化学计量比。已经令人惊讶地发现,采用例如在这里描述的方法的这种优选的富铝红柱石组合物生成一种富铝红柱石组合物,这种富铝红柱石组合物与那些具有更高的整体化学计量比的组合物相比,是一种初始强度更高的富铝红柱石组合物,且保留强度更高。为什么具有较低的Al/Si化学计量比的组合物具有较高的强度,还无法理解,但可能归因于生成了由更大量的二氧化硅组成的颗粒边界玻璃相,此二氧化硅基本上不含结晶二氧化硅相。更确切的说,组合物含有最多2vol%的二氧化硅结晶相,例如方英石。可以通过X-射线衍射或电子衍射的方法检测这些结晶二氧化硅相的量或是否存在。组合物优选含有最多1vol%的二氧化硅结晶相,更优选为最多0.5vol%,最优选基本不含二氧化硅结晶相。
通常,具有最多为2.95的Al/Si化学计量比的针状富铝红柱石的原富铝红柱石化强度为至少20MPa。当具有至少55%到最多85%的孔隙率时,此原富铝红柱石化强度为至少25MPa,更优选为至少28MPa,再优选为至少30MPa,最优选为至少32MPa。
由于采用粘土促进用于挤出蜂巢的可塑坯料的制备是可取的,针状富铝红柱石通常具有一定量的杂质,至少部分来自所用的一种或多种粘土中存在的杂质。通常,以坯体的重量为准,组合物中存在的杂质(也就是说,除了那些存在于上面列示的富铝红柱石配方中存在的元素以外的元素)的量通常最大为5%。杂质的总量优选最大为4%,更优选最大为3%,再优选最大为2.5%,最优选最大为2%。可以通过任何适宜的整体分析技术,例如那些在本领域内公知的方法(例如X-射线荧光),来测定杂质的量。
如果富铝红柱石前体含有镁和/或铁的杂质,针状富铝红柱石组合物优选主要由基本上是化学结合的针状富铝红柱石颗粒所组成,其中富铝红柱石组合物在富铝红柱石颗粒的表面上含有玻璃相,所述玻璃相含有基本上混入到玻璃相中的铁和镁。当(最多)痕量的Mg和/或Fe的结晶沉淀物通过X-射线衍射或电子衍射的方法检出的时候,镁和铁基本上被混入到玻璃相中。优选地,结晶Mg和/或Fe结晶沉淀物无法通过电子衍射法进行检测。
富铝红柱石组合物基本上不含氟,这也是可取的。本发明的热处理也可以使氟减少,同时完成Mg和Fe混入玻璃相。通常,富铝红柱石化的富铝红柱石含有2到3wt%的氟。通常,那些在玻璃相中混有Mg和Fe的富铝红柱石组合物含有最多为组合物重量的0.75%的氟。在富铝红柱石组合物中,氟的量优选最多为0.5wt%,更优选最多为0.25wt%,再优选最多为0.1wt%,最优选至多为痕量。
例如,在柴油机颗粒捕捉器的用途中经历热循环后,现已发现在针状富铝红柱石中的铁和镁杂质会在针状富铝红柱石组合物的玻璃相中形成结晶沉淀物。通过这里描述的热处理的方法,这些沉淀物基本上可以被合并到玻璃相中,而且不会通过热循环而再度生成。如果存在沉淀物,会降低针状富铝红柱石的强度。
生成富铝红柱石在富铝红柱石组合物的制造中,将含有Al、Si和氧的前体化合物混合,形成能够生成富铝红柱石的混合物。在美国专利5194154、5198007、5173349、4911902、5252272、4948766和4910172中描述了可以使用的前体化合物。混合物可以含有其它化合物,例如填料(不会反应生成富铝红柱石的颗粒,但在生成后仍保留在富铝红柱石中)。混合物也可以含有有机化合物以促进混合物的成形(例如,粘合剂和分散剂,例如那些在Introduction to the Principles of Ceramic Processing.J.Reed,Wiley Interscience,1988中描述的化合物)。
通常,混合物由粘土(即,水合硅酸铝)和例如氧化铝、二氧化硅、三氟化铝、fluorotopaz和沸石的化合物组成。前体化合物优选选自粘土、二氧化硅、氧化铝及其混合物。最优选地,混合物由粘土和氧化铝组成。
在本发明的一个方法中,可以按比例选择前体化合物,以便可以按照如上所述的由2到4的任意Al/Si整体化学计量比来制造富铝红柱石。优选地,选择前体化合物,以便富铝红柱石坯体具有如前所述的至多2.95到2的Al/Si整体化学计量比。在第二种方法中,选择前体化合物以使混合物具有最大为2.95的Al/Si比。Al/Si比优选最大为2.9,更优选最大为2.85,最优选最大为2.8。在这里应当可以理解,Al/Si化学计量比指的是在实际形成富铝红柱石组合物的前体中的铝和硅。也就是说,如果氟源(例如)为AlF3,必须通过SiF4的量以降低在前体中用于化学计量比的SiO2的量,这里的SiF4通过来自AlF3的氟与二氧化硅生成SiF4的反应完全挥发。
可以通过任何适宜的方法,例如那些在本领域内公知的技术,制备此混合物。实施例包括球磨、螺条混合、立式螺杆混合、V型混料和研磨。可以以干法(也就是说,不存在液体介质)或湿法制备此混合物。
随后,通过任何适宜的方法,例如那些在本领域内公知的技术,将混合物成型为多孔的形状。实施例包括注射成型、挤出、等静压、粉浆浇铸、辊压和铸锭。各种方法在Introduction to the Principles ofCeramic Processing,J.Reed,Chapters 20和21,Wiley Interscience,1988中,均有更为详细的描述。
在本发明的第一方面的方法中,工艺的下一个步骤是在含有氟的气氛下,在足以形成富铝红柱石组合物的温度下,加热步骤(b)的多孔半成品型材。在气体气氛中,可以由例如SiF4、AlF3、HF Na2SiF6NaF和NH4F的氟源提供氟。氟源优选为SiF4。
在本发明的第二方面的方法中,工艺的下一个步骤是在单独提供的含有含氟气体的气氛下,加热到足以形成富铝红柱石组合物的温度。“单独提供”指的是含氟气体并非由混合物中的前体(例如,AlF3)提供,而是来自被泵入到加热混合物的炉子中的外部气源。此气体优选为含有SiF4的气体。
在任意一种方法中,优选将多孔坯体加热到一个第一温度,保持足够的时间以便将多孔坯料中的前体化合物转化为fluorotopaz,随后升温至足以生成富铝红柱石组合物第二温度。此温度可以在第一和第二温度之间往复变化,以确保富铝红柱石的完全生成。第一温度可以从500℃到950℃。第一温度优选为至少550℃,更优选为至少650℃,最优选至少725℃到优选最高为850℃,更优选为最高800℃,最优选为最高775℃。
第二温度可以是由例如SiF4的分压等变量决定的任何适宜的温度。通常,第二温度为至少1000℃到最大1700℃。第二温度优选为至少1050℃,更优选为至少1075℃,最优选为至少1100℃到优选为最高1600℃,更优选为最高1400℃,最优选为最高1200℃。
通常,在加热到第一温度的过程中,气氛为惰性(例如氮气)或真空,一直到至少500℃时,此时需要加入独立提供的含氟气体。在加热到第一温度的过程中,有机化合物和水被除掉。还可以在一个本领域中常用的独立加热步骤中去除这些物质,这些步骤描述在Introductionto the Principles of Ceramic Processing,J.Reed,Chapters 20和21,WileyInterscience,1988中。此独立加热步骤通常被称为烧除粘合剂(binderburnout)。
关于本发明第一方面的方法,在选自空气、水蒸气、氧气、惰性气体及其混合物的热处理气氛下,将步骤(c)的未经处理的富铝红柱石加热到至少950℃,保持一段足以生成富铝红柱石组合物的时间。惰性气体的实施例包括氮气和希有气体(即He、Ar、Ne、Kr、Xe和Rn)。热处理气氛优选为惰性气体、空气、水蒸气或其混合物。热处理气氛更优选为氮气、空气或含有水蒸气的空气。
热处理温度下保持的时间是所选热处理气氛和温度的一个函数。例如,在潮湿空气中的热处理(40℃下被水蒸气饱和的空气)通常需要在1000℃处理超过几个小时到48小时。相对来说,需要将环境空气、干燥空气或氮气(室温下具有20%到80%相对湿度的空气)加热到1400℃至少2小时。
通常,热处理温度下的时间为至少0.5小时,并且取决于所用的温度(也就是说,通常温度越高,时间越短)。热处理温度下的时间优选为至少1小时,更优选为至少2小时,再优选为至少4小时,最优选为至少8小时到优选为最多4天,更优选为最多3天,再优选为最多2.5天,最优选为最多2天。
为了确保任何Mg和/或Fe杂质混杂在针状富铝红柱石的玻璃相中,热处理温度优选为至少1000℃,更优选为至少1050℃,再优选为至少1100℃,最优选为至少1200℃到优选为至多1700℃,更优选为至多1600℃,最优选为至多1550℃。
富铝红柱石组合物特别可用作催化剂载体,例如用在汽车催化转换器上的氧化铝颗粒上的贵金属催化剂,通常被称作催化剂洗涂层。优选富铝红柱石颗粒具有至少为10的长经比。洗涂层在富铝红柱石颗粒的至少一部分上形成薄涂层,这也是优选的。一部分通常指被催化剂涂层覆盖的区域占颗粒面积的至少10%的情况。优选一个区域的几乎所有颗粒均被涂布。更优选地,组合物的几乎所有颗粒均被涂布。
薄层意味着催化剂洗涂层的厚度通常小于涂布颗粒的最小尺寸的平均值。通常,涂层的厚度至多为该平均值的一半,优选至多为涂布颗粒的最小尺寸的平均值的三分之一,最优选至多为其四分之一。
此组合物还特别可以用作用于汽车动力用途(例如,柴油机引擎)和固定能源用途(例如,发电厂)的颗粒(烟尘)捕捉器和氧化(即废气)催化剂。当富铝红柱石组合物用作柴油机颗粒捕捉器时,如上所述,至少一部分的富铝红柱石颗粒用催化剂涂布。当然,无需任何催化剂,此组合物本身可以用作烟尘捕捉器。
具体实施例方式
实施例实施例1由Al/Si化学计量比为2.65的前体压制杆材。通过将44份重(pbw)的球状粘土(Todd Dark级,Kentucky-Tennessee Clay Company,Mayfield.KY)与56pbw的kappa-氧化铝,287pbw的7wt%羟丙基甲基纤维素水溶液(METHOCEL J75MS-N,The Dow Chemical Co.,Midland,MI)、3pbw丙三醇和190pbw去离子水混合的方法制备前体。随后用氢氧化四甲胺将浆料pH调到10.4。球状粘土在使用前在110℃下干燥48小时。通过将氢氧化铝(P3三水铝石,Alcoa,Pittsburgh,PA)加热到1000℃1小时的方法制备kappa-氧化铝。然后通过在10小时内加热到1100℃,在1100℃保持1小时,然后在5小时内冷却,将杆材素瓷过火以去除有机粘合剂(即METHOCEL)并且干燥粘土。
随后将素瓷过火的杆材放置在炉内衬有镍箔的石英管反应器中。在真空下将杆材加热到720℃。在这个点上,以每克样品0.44sccm的速率将SiF4气体加入到反应器中,直到管内压力为600托(80KPa)。随后以每分钟3℃的速度将反应器加热至995℃。当反应器到达850℃时,SiF4的压力降低到300托(40KPa),并保持在这个压力。当反应器到达995℃时,加热速率降低到每分钟1℃。在反应器压力保持在300托(40KPa)的同时继续加热直到反应器温度达到1120℃。当SiF4的转化基本结束时,使反应器排气,并冷却至室温。随后在空气中将杆材加热到1400℃2小时。
如通过四点弯曲(ASTM C-1161)法测定的那样,杆材的平均强度为28MPa。如通过测量杆材的重量和尺寸所确定的,杆材的平均孔隙率为68%。这些数据,以及制造杆材的加压压力,列示在表1中。
实施例2和3如表1中所示,除改变Al/Si比率和/或采用的加压压力外,以与实施例1相同的方法制备实施例2和3。强度和孔隙率列示在表1中。
对比实施例1和2如表1中所示,除改变Al/Si比率和/或加压压力外,以与实施例1相同的方法制备杆材。这些对比实施例的孔隙率和原富铝红柱石化的强度列示在表1中。热处理过(即,在富铝红柱石化以后加热到1400℃的处理)的强度数据表明,具有低于或等于2.95的化学计量比的针状富铝红柱石组合物,与那些在给定孔隙率具有大于2.95的Al/Si化学计量比的组合物相比,具有根本上改善的强度。
实施例4由具有2.95的Al/Si化学计量比的前体生成蜂巢。蜂巢直径为5.6英寸(14.224cm),长为6英寸(15.24cm),其孔穴密度为每平方英寸(cpsi)175孔穴(每平方厘米27孔穴)。通过将51份重(pbw)的球状粘土(Todd Dark级)与49pbw的kappa-氧化铝混合的方法制备前体。球状粘土在使用前在110℃下干燥48小时。通过将氢氧化铝加热到1000℃1小时的方法制备kappa-氧化铝。将水和有机粘合剂加入到球状粘土和氧化铝的混合物中,生成可挤出材料。挤出蜂巢在1100℃下1小时解粘合并进行煅烧。
将解粘合并煅烧过的蜂巢放置在石英管反应器中,并在与实施例1中描述的条件相似的条件下进行加工。
如在实施例1中描述的杆材那样,从蜂巢上切下长度为二英寸(5.08cm)×2孔穴×5孔穴的杆材,并按照相似的方法测量强度。六根该杆材的平均强度为42.9MPa(原富铝红柱石化强度)。进一步在空气中将六根杆材热处理至800℃2小时,这些杆材的平均强度为28.7MPa(保留强度)。通过重量和尺寸的测量,测定杆材的平均孔隙率。平均孔隙率为57%。这些数据,以及弹性模量,列示在表2中。
实施例5和6从实施例4的相同蜂巢上切割杆材,并且在空气中加热至800℃2小时之前,按照表1中所示进行热处理。这些杆材的保留强度列示在表2中。
表2中的数据显示,热处理至超过1000℃的温度(与实施例4相对的实施例5和6)进一步改进了针状富铝红柱石的保留强度。表2还显示,具有Al/Si比率为2.95的针状富铝红柱石的蜂巢可以具有高孔隙率和高强度。
表1Al/Si化学计量比对强度的影响

表2热处理对保留强度的影响

权利要求
1.一种用于制备一种针状富铝红柱石组合物的方法,此方法包括a)形成含有存在于富铝红柱石中的元素的一种或一种以上前体化合物的混合物,其中前体化合物的一种为粘土,b)将混合物成型为多孔半成品型,c)在含氟气体气氛下将步骤(b)的多孔半成品型加热到足以形成未处理的富铝红柱石组合物的温度,此组合物主要由基本为化学结合的针状富铝红柱石颗粒所组成,以及d)随后在选自水蒸气、氧气、空气、惰性气体或其混合物的热处理气氛下将未处理的富铝红柱石组合物加热到至少950℃的热处理温度,持续一段足以形成富铝红柱石组合物的时间。
2.根据权利要求1所述的方法,其中前体化合物是粘土和另一种选自氧化铝、二氧化硅、fluorotopaz、沸石、AlF3及其混合物的化合物。
3.根据权利要求2所述的方法,其中其它前体化合物选自氧化铝、二氧化硅、fluorotopaz、沸石及其混合物。
4.根据权利要求1所述的方法,其中前体化合物是氧化铝、二氧化硅和粘土。
5.根据权利要求1所述的方法,其中含氟气体是独立提供的SiF4。
6.根据权利要求1所述的方法,其中热处理温度为至少1000℃。
7.根据权利要求1所述的方法,其中热处理温度为至少1050℃。
8.根据权利要求1所述的方法,其中热处理温度为至少1100℃。
9.根据权利要求1所述的方法,其中热处理温度为至少1200℃。
10.根据权利要求1所述的方法,其中热处理气氛选自空气、惰性气体、水蒸气及其混合物。
11.根据权利要求10所述的方法,其中热处理气氛为空气或氮气。
12.根据权利要求1所述的方法,其中步骤(c)的加热为达到第一温度,随后达到较高的第二温度,其中在第一温度下生成fluorotopaz,在较高的第二温度下生成富铝红柱石。
13.根据权利要求8所述的方法,其中在第一温度下生成的fluorotopaz是在由独立提供的SiF4组成的气氛中生成的。
14.根据权利要求13所述的方法,其中第一温度为500℃到950℃。
15.根据权利要求14所述的方法,其中第一温度为至少725℃到750℃。
16.根据权利要求13所述的方法,其中第二温度为至少1000℃到最高1300℃。
17.根据权利要求1所述的方法,其中热处理时间为至少0.5小时。
18.根据权利要求1所述的方法,其中热处理时间为至少2小时。
19.根据权利要求1所述的方法,其中热处理时间为至少4小时。
20.根据权利要求1所述的方法,其中热处理时间为至少8小时。
21.根据权利要求1所述的方法,其中前体具有最高为2.95的Al/Si整体化学计量比。
22.根据权利要求21所述的方法,其中Al/Si整体化学计量比最高为2.9。
23.根据权利要求22所述的方法,其中Al/Si整体化学计量比最低为2。
24.一种生成具有更高强度的多孔针状富铝红柱石组合物的方法,包括a)生成含有存在于富铝红柱石中的元素的一种或一种以上前体化合物的混合物,其中一种前体化合物为粘土,其中混合物具有最大为2.95的Al/Si比;b)将混合物成型为多孔半成品型;以及c)在单独提供的含氟气体气氛下,将步骤(b)的多孔半成品型加热到足以生成主要由基本为化学结合的针状富铝红柱石颗粒所组成的多孔富铝红柱石组合物的温度,其中,富铝红柱石组合物具有最大为2.95到至少为2的整体Al/Si化学计量比,针状富铝红柱石颗粒具有至少为2.95的Al/Si化学计量比,富铝红柱石组合物具有最大为2vol%的结晶二氧化硅相。
25.根据权利要求24所述的方法,其中混合物的Al/Si比率最大为2.9。
26.根据权利要求25所述的方法,其中混合物的Al/Si比率最大为2.85。
27.根据权利要求24所述的方法,其中混合物的Al/Si比率最大为2.8。
28.根据权利要求24所述的方法,其中前体化合物为粘土,另一种化合物选自氧化铝、二氧化硅、fluorotopaz、沸石及其混合物。
29.根据权利要求24所述的方法,其中前体化合物为氧化铝、二氧化硅和粘土。
30.一种多孔的富铝红柱石组合物,其主要由基本上是化学结合的针状富铝红柱石颗粒组成,其中富铝红柱石组合物具有最大为2.95到最小为2的整体Al/Si化学计量比,针状富铝红柱石颗粒具有至少为2.05的Al/Si比率,而且富铝红柱石组合物含有最大2vol%的晶体二氧化硅相和一种分布在至少一部分富铝红柱石上的玻璃相,其中玻璃相由二氧化硅、镁和铁组成。
31.根据权利要求30所述的富铝红柱石组合物,其中富铝红柱石组合物在空气中加热到800℃2小时后,具有至少为15MPa的保留强度,和至少55%到最大为85%的孔隙率。
32.根据权利要求31所述的富铝红柱石组合物,其中孔隙率最大为75%。
33.根据权利要求32所述的富铝红柱石组合物,其中保留强度最少为17MPa。
34.根据权利要求33所述的富铝红柱石组合物,其中保留强度最少为19MPa。
35.根据权利要求34所述的富铝红柱石组合物,其中保留强度最少为25MPa。
36.根据权利要求31所述的富铝红柱石组合物,其中富铝红柱石组合物基本不含结晶二氧化硅相。
37.一种富铝红柱石组合物,其主要由基本上是化学结合的针状富铝红柱石颗粒组成,其中富铝红柱石组合物含有分布在至少一部分针状富铝红柱石颗粒上的玻璃相,所述玻璃相含有实质上并入玻璃相的铁和镁。
38.根据权利要求37所述的富铝红柱石组合物,其中富铝红柱石组合物具有55%到85%的孔隙率。
39.根据权利要求38所述的富铝红柱石组合物,其中孔隙率为最小57%,到最大75%。
40.根据权利要求39所述的富铝红柱石组合物,其中富铝红柱石组合物在空气中被加热到800℃2小时后,具有至少15MPa的保留强度。
41.根据权利要求37所述的富铝红柱石组合物,其中富铝红柱石组合物含有占富铝红柱石组合物重量的最大1%含量的氟。
42.根据权利要求41所述的富铝红柱石组合物,其中氟的量最大为0.5%。
43.根据权利要求42所述的富铝红柱石组合物,其中氟的量最大为0.1%。
44.根据权利要求43所述的富铝红柱石组合物,其中最多含有痕量的氟。
45.一种由权利要求30的富铝红柱石组合物组成的柴油机颗粒捕捉器。
46.一种由权利要求31的富铝红柱石组合物组成的柴油机颗粒捕捉器。
47.一种由权利要求37的富铝红柱石组合物组成的柴油机颗粒捕捉器。
48.一种由权利要求38的富铝红柱石组合物组成的柴油机颗粒捕捉器。
49.根据权利要求45所述的一种柴油机颗粒捕捉器,其中富铝红柱石组合物在其上含有催化剂。
50.根据权利要求47所述的一种柴油机颗粒捕捉器,其中富铝红柱石组合物在其上含有催化剂。
51.一种汽车催化转换器,其由权利要求30的富铝红柱石组合物组成。
52.一种汽车催化转换器,其由权利要求31的富铝红柱石组合物组成。
53.一种汽车催化转换器,其由权利要求37的富铝红柱石组合物组成。
54.一种汽车催化转换器,其由权利要求38的富铝红柱石组合物组成。
全文摘要
描述了一种生成具有改进性质的针状富铝红柱石颗粒的多孔富铝红柱石组合物的方法,其中富铝红柱石在含氟气体存在下的某个时间生成。例如,现已发现可以在选自水蒸气、氧气、惰性气体或其混合物的气氛下将富铝红柱石加热到高温,或由具有最大为2.95的Al/Si比率的前体生成富铝红柱石组合物以得到改善的性质。
文档编号C04B26/28GK1642876SQ03806903
公开日2005年7月20日 申请日期2003年3月24日 优先权日2002年3月25日
发明者C·K·萨哈, A·J·派兹克, S·A·瓦林, A·R·小普吕尼耶, C·S·托德 申请人:陶氏环球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1