改善的多孔莫来石体及其制备方法

文档序号:1941939阅读:379来源:国知局
专利名称:改善的多孔莫来石体及其制备方法
技术领域
本发明涉及莫来石体(mollite body)以及形成莫来石体的方法。特别地,本发明涉及含有融合的联锁针状颗粒(fused interlocked aciculargrains)的莫来石体以及形成其的方法。
背景技术
最近,在欧洲和美国通过了关于柴油发动机释放的颗粒物质更加严格的条例。为了满足这些条例,颗粒过滤器是必需的。
这些颗粒过滤器不得不满足多重矛盾的严格要求。例如,过滤器必须含有足够的孔率(通常大于55%的孔率),而同时仍需截留绝大部分微米大小的柴油机释放颗粒(通常可以捕获大于90%的释放颗粒)。所述过滤器还必须具有足够的可通透性以便不会很快的产生极大的回压,同时仍能够在再生前负载大量的烟黑。所述过滤器必须可以经受长时间的腐蚀性排放环境。所述过滤器必须具有起始强度(initialstrength)以便可以被放置到与排放系统连接的容器中。所述过滤器必须可以经受燃烧掉过滤器中所捕获的烟黑(再生)的上千次循环的热循环(即,保持足够的强度),其中局部温度可达到1600℃。根据这些严格的标准,通常陶瓷过滤器是开发柴油机颗粒过滤器所选择的材料。
在早期,由于堇青石低廉的价格和作为汽车排放系统的三路催化剂载体,开发出烧结的堇青石陶瓷过滤器来作为一种可能的柴油机颗粒过滤器。不幸的是,堇青石不具备高孔率、高通透性和高烟黑负载以及与之相关的上千次再生循环之后可保持强度的性能以来满足上述的严格要求。
最近,由于碳化硅具有高强度以及经过热循环之后还能保持强度的能力,而引起用其作为过滤器的兴趣。然而,碳化硅不得不经受如使用昂贵的精细碳化硅粉末在高温下的烧结过程。由于碳化硅被烧结,所以在过量的回压产生之前,所产生的孔结构仅具有有限的烟黑负载。
另外,美国专利5,098,455描述了使用交织生长在一起的莫来石作为柴油机颗粒捕获装置(trap)。这些莫来石过滤器并不能满足柴油机过滤器例如耐热冲击(thermal shock resistance)的要求标准。
因此,期望可以提供形成的方法以及能够解决如上述问题之一的在先工艺中一个或多个问题的陶瓷材料。

发明内容
本发明的第一个方面是制备针状莫来石组合物的方法,该方法包括a)形成一个或多个含有存在于莫米石中的成分的前体化合物和性能增强化合物的混合物,该性能增强化合物包括选自镁、钙、铁、钠、钾、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、硼、钇、钪、镧或其组合物的成分。
b)使混合物成型为多孔的新鲜形状(green shape)c)在含有含氟气体的空气中加热步骤(b)中形成的多孔的新鲜形状到足够的温度以形成莫来石组合物,该组合物主要包括本质上是化学结合的针状莫来石颗粒。
本发明的第二个方面是主要由本质上是化学结合的针状莫来石颗粒组成的多孔莫来石组合物,其中该莫来石组合物含有至少部分为莫来石颗粒的相,其中该相包括至少一个选自铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、硼、钇、镧或钪的成分。
令人惊讶的是,与缺乏这些成分的条件下制备的莫来石组合物相比,存在于上述相中的成分会使多孔针状莫来石结构具有提高热冲击系数(thermal shock factor)。另外,相对于在缺乏这些成分的条件下制备的莫来石组合物,在本发明中的一些组合物,如含有铈的组合物中,可以形成具有更好的强度、更大的密度以及仍有更高的通透性的莫来石组合物。
本发明的莫来石体可以用于任何适于莫来石的应用中。例子包括过滤器、耐火材料、热和电绝缘体、金属或塑料合成车身的增强物、催化剂和催化剂载体。
本发明的详述内容莫来石组合物莫来石组合物由本质上是化学结合的针状莫来石颗粒组成。该莫来石颗粒至少约占莫来石组合物的90%。优选莫来石颗粒至少约为95%,更优选至少约为98%,甚至更优选至少约为99%的组合物体积。除了莫来石颗粒,该莫来石组合物还含有由二氧化硅和可以以结晶沉淀存在于玻璃中的处于氧化物形式的金属混杂物组成的玻璃相。通常,该玻璃相位于颗粒表面和交叉颗粒的表面。
针状莫来石颗粒是具有大于2纵横比的颗粒(例如,长是宽的2倍)。理想地,存在于莫来石组合物中的针状莫来石颗粒具有平均至少约为5的纵横比。优选地,平均纵横比至少约为10,更优选至少约为15,甚至更优选至少约20且最优选至少约为40的平均纵横比。
基本上,莫来石组合物中的所有颗粒均是与莫来石体中的其它莫来石颗粒进行化学结合的。这意味着莫来石颗粒体积中最多约1%的颗粒没能与其它莫来石颗粒进行化学结合。优选,基本上所有莫来石颗粒是化学结合的。通常,当颗粒被烧结或被熔合在一起时发生化学结合。熔合和烧结发生在颗粒的接触面,该接触面通常由硅以及可能也含有铝的不定形的氧化(玻璃)相(即,无序相)组成。
存在于莫来石组合物中的该相包括至少一种选自铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、硼、钇、镧或钪的成分。所述一种或多种成分可以以其自身的玻璃结构存在或可以以结晶沉淀的形式存在于先前所述的由硅组成的玻璃相中。
在优选实施方案中,该相包括镁、钙、钇或其组合的氧化物和钕、铈、硼、铁或其组合的氧化物。特别优选的氧化物的组合物是钕/镁、钕/钙、硼/镁、硼/钙、铈/镁和铈/钇。
最优选的组合是钕/镁,其可以提供极好的强度和热冲击抗性。已发现当使用此组合物时,可以制备高强度的多孔结合物。据认为这是由于每个成分对组合物所赋予的好的影响。特别地,组合物中优选的钕/镁重量比例为大约0.1至大约10。更优选的比例是至少约为0.2,甚至更优选至少约为1以及最优选至少约为2,及更优选最多约为7并且最优选最多约为5的比例。
另一最优选的组合是铁/镁。特别地,组合物中优选的铁/镁重量比为大约0.1至大约10。更优选的比例是至少约为0.2,甚至更优选至少约为0.6和最优选至少约为0.8,及优选最多约为5,更优选最多约为2和最优选最多为1.5的重量比。特别优选的的重量比为1。
据观察,上述成分的组合可以形成具有提高的热冲击系数的针状莫来石。已发现含有这些成分组合的莫来石致使该针状莫来石基本不含有具有扫帚柄结构的莫来石颗粒。含有扫帚柄结构的莫来石颗粒的特征在于是由于较大针状莫来石颗粒含有多个从其末端生长出来的较小颗粒而使其形成象扫帚柄的结构。基本上不含有这些扫帚柄的颗粒意思是针状莫来石含有颗粒数目上最多为10%的扫帚柄颗粒。这是与在缺乏性能增强化合物条件下制备的针状莫来石进行比较的,该针状莫来石通常含有在数目上大于10%的扫帚柄状颗粒。优选在数目上最多约为5%,更优选最多约为3%,甚至更优选最多约为2%和最优选最多约为1%的扫帚柄状颗粒。还优选基本上不含有扫帚柄状颗粒,而仅仅含有整洁的针状颗粒的针状莫来石(即,颗粒不含有从其末端生长出的较小颗粒)。
可以采用合适的技术,如用显微镜在抛光面上鉴定此显微结构。例如,采用扫描电子显微镜(SEM)通过该莫来石体的一抛光面来鉴定莫来石颗粒的平均大小,其中平均颗粒的大小可以根据1970年Underwood在《Quantitative Stereology》,Addition Wesley,Reading,MA中描述的截取方法进行测定。扫帚柄状颗粒的形成通常采用一些扫描电子显微镜对一个断裂莫来石表面放大500到1000倍的条件下测定。可以采用已知的,如那些在电子显微镜领域已知的化学分析方法鉴定至少部分莫来石颗粒为此相的组合物。
存在于莫来石组合物相中的成分的量取决于性质、所希望的微结构和所选择的成分而在很宽的范围内变化。通常,莫来石组合物中单一成分或多种成分的总量约为莫来石组合物体积的0.01-12%之间,其中的体积为作为氧化物的成分的体积。存在于莫来石组合物中的单元成分或多种成分的总量为莫来石组合物的体积的优选至少约为0.1%,更优选至少约为0.5%,以及最优选至少约1%,和优选最多约10%,更优选最多约为5%,以及最优选最多为2%,其中的体积是作为氧化物的成分的体积。存在于莫来石组合物中的成分的量可以采用任何合适的体积分析技术,例如那些在本领域熟悉的技术(如,X-射线荧光)进行测定。
通常,莫来石组合物具有至少约40%到最多约85%的孔率。优选,莫来石组合物具有至少约45%的孔率,更优选至少约50%,甚至更优选至少约为55%,以及最优选至少约为57%的孔率,和优选最多约为80%,更优选最多约为75%,以及最优选最多约为70%的孔率。
当被用作柴油机颗粒捕获装置时,莫来石组合物应该具有足够的保留强度(retained strength)以便承受柴油机颗粒过滤器的环境。保留强度是指组合物在空气中被加热到800℃保温2小时之后的弯曲强度。通常,保留强度至少约为15MPa。优选的保留强度至少约为17MPa,更优选的保留强度至少约为19MPa,甚至更优选至少约为20MPa和最优选至少约为25MPa。保留强度通常通过从莫来石蜂窝状结构中切下来的棒的4点弯曲(4point bending)来测定。强度的检测可以采用已知的,例如由ASTM C1161描述的技术来进行测定。
另外,所期望的莫来石组合物应具有尽可能高的通透性系数,以便降低累积的回压,但是仍可以截留大量的颗粒。通透性系数,例如,是与孔隙的总量和孔的大小成比例的,而与相互连接的孔隙的弯曲度成反比。通常,当用Darcy’s方程测定时,通透性系数应该至少为1×10-13平方米。优选的通透性系数至少约为2×10-13平方米。令人惊讶的是,当铈存在于莫来石组合物中时,相对于以相同方法在缺乏性能增强化合物情况下而制备的莫来石组合物,强度、密度和通透性均有所提高。
更另人惊讶的是,相比较于不含有所述成分以及含有相同孔率的莫来石组合物而言,含有上述成分的莫来石组合物具有改善的热冲击系数。通常,热冲击系数至少约为200℃,更优选至少约为300℃,最优选至少约为400℃。热冲击系数(TSF)以下列方程式给出
其中CTE是以(1/℃)形式给出的热膨胀系数。莫来石的CTE为5×10-6/℃。
即使理论上Al/Si莫来石的化学计量是3(3Al2O3·2SiO2,莫来石组合物的整体(bulk)Al/Si化学计量可以是任何合适的化学计量,例如4Al/Si到2Al/Si。最适合的整体化学计量依赖于诸如前体和使用的方法等因素,并可以由本领域技术人员容易测定。整体化学计量是指莫来石体中铝与硅的比例(即,不是每个单独的颗粒)。优选莫来石体的整体化学计量小于3.1,其与氧化铝(Al2O3)对二氧化硅(SiO2)的化学计量小于1.55相关。优选的Al/Si整体化学计量最大为3.05,更优选最大约为3.0,以及最优选最大约为2.95,并优选至少约为2.2。整体化学计量可以采用任何合适的技术,例如包括例如X-射线荧光在内的那些本领域熟悉的技术进行测定。
形成莫来石在制备莫来石组合物的过程中,将包括铝、硅和氧的前体化合物与性能增强化合物混合而形成可以形成莫来石的混合物。在美国专利5,194,154;5,198,007;5,173,349;4,911,902;5,252,272;4,948,766和4,910,172中描述了可以使用的前体化合物,其在此作为参考。混合物也可以包含有机化合物以便促进混合物的成形(例如,粘合剂和分散剂,如在《Introduction to the Principles of Ceramic Processing》J.Reed,Wiley Interscience,1988中所描述的)。
通常,混合物由粘土(即,水合硅酸铝)和如氧化铝、二氧化硅、三氟化铝、氟黄玉和沸石的前体化合物组成。优选,前体化合物选自粘土、二氧化硅、氧化铝或其混合物。最优选,混合物由粘土和氧化铝组成。
性能增强化合物可以是任何氧化物化合物或是当莫来石组合物在空气中加热的过程中可形成氧化物的化合物,其中该化合物包括选自镁、钙、铁、钠、钾、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、硼、钇、钪、镧或其组合物的成分。由于所列出的成分不包括铝和硅,所以所需要的化合物不是前体化合物(即,不是粘土和氧化铝)。性能增强化合物可以是氧化物、无机金属盐(例如,氯化物、氟化物、硝酸盐、氯酸盐和碳酸盐)或如醋酸盐的有机金属化合物。优选的化合物是氧化物、硝酸盐、醋酸盐、碳酸盐或其组合。最优选的化合物是氧化物。在特别优选的实施方案中,性能增强化合物是滑石(水合硅酸镁)。由于滑石中存有硅,所以当使用滑石作为性能增强化合物时,必须调整存在于前体化合物中的硅的含量。
优选地,一种或多种性能增强化合物是包含选自铁、镁、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、硼、钇、钪、镧或其混合物的成分的化合物。更优选地,成分是钕、硼、钇、铈、铁、镁或其混合物。
在本发明的优选实施方案中,性能增强化合物是一种含有钕、铈、铁和硼或其混合物的第一化合物,以及含有镁、钙、钇、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钪、镧或其混合物的一种或多种第二化合物。
可以按比例选择前体化合物,以使所得到的莫来石具有如前文所述的从约为2到4的Al/Si整体化学计量。优选地,选择前体以使莫来石体具有如前文所述的最大约为2.95到2的Al/Si整体化学计量。这里所理解的Al/Si化学计量是指实际上形成莫来石组合物的前体中的氧化铝和二氧化硅。也就是说,例如,如果氟来源是AlF3,那么存在于对于化学计量实际应用而言的前体中的SiO2的量会被降低,即被AlF3与SiO2反应生成一定量的SiF4的氟的反应而消耗掉(volatalized off)。
加入混合物中的性能增强化合物的量通常根据混合物的体积而约为0.01%-12%,或者选择足够提供前述莫来石中氧化物含量的量。优选的化合物的量至少约为混合物的体积的0.1%,更优选至少约为0.5%,和最优选至少约为1.0%,以及优选最多约为10%,更优选最多约为5%,和最优选最多约为2%。
可以采用如那些在本领域已知的合适方法来制备混合物。例子包括球、研磨螺条混合、垂直螺杆混合、V-混合和磨碎混合。混合物可以制备成干状(即,没有液体介质)和湿状。
然后,可以使用如本领域已知的合适方法使混合物成形为多孔形。例子包括注(射塑)模、挤出、等压挤压、滑移浇铸、辊轴粉料挤粒和带浇铸。在《Introduction to the Principles of Ceramic Processing》,J.Reed,第20和21章,Wiley Interscience,1988中对每个方法进行了描述。
然后,在含有氟的空气中且在足以形成莫来石组合物的温度下加热成形的多孔形。可以从诸如SiF4、AlF3、HF、Na2SiF6、NaF和NH4F等来源中以气态形式提供氟。优选的氟的来源是SiF4。优选地,氟是分别提供的。“分别提供”是指含氟的气体并不是由混合物中的化合物提供的(例如AlF3),而是来自注入到加热混合物的熔炉中的额外气体。优选地,该气体是含有SiF4的气体。
通常,在该方法中,在第一温度加热多孔体至足够的时间以便使多孔体中的前体化合物转换成氟黄玉,然后提高到足够形成莫来石组合物的第二温度。温度可以在第一和第二温度之间循环以确保完全形成莫来石。第一温度可以约为500℃-950℃。优选的第一温度至少约为550℃,更优选至少约为650℃并最优选至少约为725℃,以及优选最高约为850℃,更优选最高约800℃和最优选最高775℃。
第二温度可以是基于如SiF4分压等可变量的任何合适的温度。通常,第二温度至少约为960℃到最高约1700℃。优选地,第二温度至少约为1050℃,更优选至少约为1075℃和最优选至少约为1100℃,至优选最高约为1600℃,更优选最高约为1400℃和最优选最高约为1200℃。
通常,在加热到第一温度的过程中,气体是惰性的(例如,氮气)或真空的直至500℃,该温度是所期望的分别提供的含氟气体加入的温度。在加热到第一温度的过程中,可以除去有机化合物和水。这些成分也可以用《Introduction to the Principles of Ceramic Processing》J.Reed,Wiley Interscience,1988中所描述的本领域通用的单独的加热步骤除去。这个单独的加热步骤通常涉及粘合剂的烧尽(binder burnout)。
冷却和形成莫来石组合物之后,可以进一步对莫来石组合物进行加热处理以提高其保留强度。这个热处理过程可以在空气、水蒸气、氧气、惰性气体或其混合气中进行足以形成莫来石组合物的时间。惰性气体的例子包括氮气和稀有气体(即氦、氩、氖、氪、氙和氡)。优选的热处理气体是惰性气体、空气、水蒸气或其混合气。更优选的热处理气体是氮气、空气和含有水蒸气的空气。
热处理温度的时间是热处理气体、特定的莫来石组合物和所选择的温度的函数。例如,在湿空气(约40℃的含有饱和水蒸气的空气)中的热处理通常要求在1000℃时的处理从超过几个小时到48个小时。相反,理想地,在环境空气、干燥空气或氮气(在室温下含有20%-80%相对湿度的空气)的1400℃下加热至少约2小时。
通常,热处理温度的时间至少约为0.5小时并且依赖于所使用的温度(即,通常,温度越高,所使用的时间可以越短)。优选的热处理温度的时间至少约1小时,更优选至少约2小时,甚至更优选至少约4小时和最优选至少约8小时,以及优选最多约4天,更优选最多约3天,甚至更优选最多约2.5天和最优选最多约2天。
莫来石组合物可以特别用来作为催化剂的载体,例如氧化铝颗粒上的贵金属催化剂,典型地作为催化剂修补基面涂层而被引用在汽车催化转化器中。优选的莫来石颗粒具有至少约为10的纵横比。还优选修补基面涂层在至少部分莫来石颗粒上形成薄膜。该部分通常是指至少约10%的颗粒的面积被覆有催化剂涂层。优选基本上一个区的所有颗粒均被涂覆。更优选地,基本上组合物的所有颗粒均被涂覆。在其他可以使用莫来石组合物的催化剂应用中包括,例如,催化燃料。
薄膜是指催化剂修补基面涂层具有通常小于颗粒涂层的平均最小尺寸的厚度。通常,修补基面涂层的厚度最多约为颗粒涂层的平均最小尺寸的一半,优选最多约为三分之一,且最优选最多约为四分之一。
该组合物也可以广泛用来作为汽车能源装置(如柴油机引擎)和静止式能源装置(如发电站)的颗粒(煤烟)捕获器和氧化(即耗尽)催化剂。当用作柴油机颗粒捕获器时,莫来石组合物至少含有部分如上文所述的被催化剂包覆的莫来石颗粒。当然,在没有任何催化剂的情况下,组合物本身也可以作为煤烟捕获器。
实施例实施例1将具有约为2.95的Al/Si化学计量的莫来石前体压制成棒。通过将相当于前体总量11.6%重量的醋酸铈(Alpha-Aesar,Ward Hill,MA)溶解到含有5%重量的甲基纤维素的水溶液(METHOCEL A15LV,陶氏化学公司,Midland,MI)中制备所述前体。如表2所示,醋酸铈的含量相当于莫来石组合物中3.6%体积的氧化铈。然后,加入约57.2重量份(pbw)的Pioneer Kaolin(DBK公司,Dry Branch,GA)和约42.8pbw的kappa-氧化铝。表1中列出了Pioneer Kaolin的成分。通过在1000℃加热氢氧化铝(P3gibbsite,Alcoa,Pittsburgh,PA)1小时制备kappa-氧化铝。搅拌混合物约1小时然后在45℃下干燥。将干燥的混合物磨碎后再使其通过100目筛。在约5000-10000psi的压力下使用单轴压力机将磨碎的干燥混合物压制成棒。将棒加热至1100℃10小时,然后在1100℃保温1小时,接着冷却5小时来除去有机粘合剂(即METHOCEL)并对粘土脱水(即,烧成素瓷)。
将烧成的素瓷棒放入熔炉中含有衬镍箔的石英管反应器中。在真空下将棒加热到720℃。在这一点上,将SiF4气体以每克样品0.44sccm的速率导入到反应器中,直到管中的压力达到600托(80千帕)。然后以每分钟3℃的速度将反应器加热到995℃。当反应器的温度达到850℃时,将SiF4的压力降低到300托(40千帕)并且维持此压力。当反应器达到995℃时,将加热速率降低至每分钟1℃。在保持反应器压力为300托(80千帕)的条件下,继续加热直到反应器的温度达到1120℃。当SiF4的演变完全停止时,将反应器排空并冷却至室温。
采用4点弯曲(ASTM C-1161)测定棒的平均强度为36MPa。通过测量棒的重量和尺寸发现其平均孔率约为60%。弹性模数为约为23GPa。计算的热冲击系数为313℃。这些数据在表2和3中列出。另外,对这些组合物的渗透性也进行了测定,其渗透率约为4×10-13m2。
实施例2-12如表2和3所示,除了不同于醋酸铈的添加物之外,按照实施例1相同的方法制备实施例2-12。如果添加物不溶于水,则用少量的水将其充分分散然后与甲基纤维素水溶液混合。为了得到如表2和3中所述的最终孔率,制备棒的压力在约5000-10000psi之间变化。
对比实施例1和2除了没有加入添加物以及为了得到表2和3所示的孔率而使用的压力不同之外,对比实施例1和2与实施例1的制备方法相同。测量对比实施例1和2的渗透率,其分别为2×10-13m2和3×10-13m2。
根据表1,2和3中的数据,发现在给定的孔率和热抗冲击性(系数)的情况下,与没有添加物的莫来石组合物相比,每个含有添加物的多孔莫来石组合物的强度都有极大的提高。
另外,含有添加物的莫来石组合物不仅表现出更高的强度、热抗冲击性,而且在具有更高密度的同时还具有更好的渗透性(见与对比实施例1和2的比较的实施例1)。
表1粘土的化学成分

表260%的多孔莫来石组合物

表365%的多孔莫来石组合物

权利要求
1.一种制备针状莫来石组合物的方法,该方法包括a)形成一个或多个含有存在于莫来石中的成分的前体化合物和性能增强化合物的混合物,该性能增强化合物包括选自镁、钙、铁、钠、钾、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、硼、钇、钪、镧或其组合物的成分。b)使混合物成型为多孔的新鲜形状c)在含有含氟气体的空气中加热步骤(b)中形成的多孔的新鲜形状到足够的温度以形成莫来石组合物,该组合物主要包括本质上是化学结合的针状莫来石颗粒。
2.根据权利要求1所述的方法,其中所述的前体化合物是粘土和另外一种选自氧化铝、二氧化硅、氟黄玉、沸石、三氟化铝或其混合物的化合物。
3.根据权利要求2所述的方法,其中所述的其它前体化合物选自氧化铝、二氧化硅、氟黄玉、沸石或其混合物。
4.根据权利要求1所述的方法,其中所述的前体化合物是氧化铝、二氧化硅和粘土。
5.根据权利要求1所述的方法,其中所述的含氟气体是分别提供的SiF4。
6.根据权利要求1所述的方法,其中所述的性能增强化合物是氧化物、醋酸盐、碳酸盐或硝酸盐。
7.根据权利要求1所述的方法,其中所述性能增强化合物是滑石。
8.根据权利要求1所述的方法,其中所述的性能增强化合物是由含有选自铈、硼、铁或钕的成分的第一性能增强化合物,和含有选自镁、钙、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇、钪、镧或其组合物的成分的第二性能增强化合物组成的。
9.根据权利要求8所述的方法,其中所述的第二性能增强化合物的成分是镁、钙、钇或其组合物。
10.根据权利要求1所述的方法,其中所述的成分选自硼、钇、铈、钕或其组合物。
11.根据权利要求1所述的方法,其中所述的成分是钕和镁,莫来石组合物中钕/镁的重量比例为大约0.1到大约10wt%。
12.根据权利要求1所述的方法,其中所述的加热步骤(c)是先达到第一温度然后再达到更高的第二温度,其中在第一温度下形成氟黄玉,且在更高的第二温度下形成莫来石。
13.根据权利要求12所述的方法,其中所述的在第一温度下形成的氟黄玉是在含有分别提供的SiF4的空气中形成的。
14.根据权利要求13所述的方法,其中所述的第一温度为大约500℃至大约950℃。
15.根据权利要求14所述的方法,其中所述的第一温度为至少650℃至大约750℃。
16.根据权利要求13所述的方法,其中所述的第二温度为至少大约960℃至最高约为1300℃。
17.一种主要包括本质上是化学结合的针状莫来石颗粒的多孔莫来石组合物,其中该莫来石组合物含有至少部分为莫来石颗粒的相,其中该相由至少一个选自铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、硼、钇、钪、镧或其组合物的成分组成。
18.根据权利要求17所述的多孔莫来石组合物,其中所述的成分选自铈、钕、硼、钇或其组合物。
19.根据权利要求17所述的多孔莫来石组合物,其中所述的组合物含有钕和镁,且钕/镁的重量比例为大约0.1至大约10。
20.根据权利要求19所述的多孔莫来石组合物,其中所述的比例为大约0.2至大约5。
21.根据权利要求17所述的多孔莫来石组合物,其中所述的多孔莫来石组合物含有为大约50%至大约70%的孔率。
22.根据权利要求17所述的多孔莫来石组合物,其中所述的多孔莫来石组合物含有至少约为300℃的热冲击系数。
23.根据权利要求22所述的多孔莫来石组合物,其中所述的莫来石组合物含有至少约为400℃的热冲击系数。
24.一个含有权利要求17所述的莫来石组合物的柴油机颗粒过滤器。
25.根据权利要求24所述的柴油机颗粒过滤器,其中所述的莫来石组合物含有至少部分包覆在莫来石颗粒上的催化剂。
26.一个含有权利要求23所述的莫来石组合物的柴油机颗粒过滤器。
27.根据权利要求26所述的柴油机颗粒过滤器,其中所述的莫来石组合物含有至少部分包覆在莫来石颗粒上的催化剂。
28.一种由包含权利要求17所述的含有至少部分包覆在莫来石颗粒上的催化剂的莫来石组合物组成的催化剂。
29.根据权利要求28所述的催化剂,其中所述的催化剂是用于处理排放的汽车催化剂或催化燃烧器。
30.一种主要包括本质上是化学结合的针状莫来石颗粒的莫来石组合物,其中所述的莫来石组合物基本上不含有扫帚柄状的莫来石颗粒。
31.根据权利要求1所述的方法,其中所述的成分是铁和镁,且莫来石组合物中铁/镁的比例为大约0.5至大约1.5。
全文摘要
本发明涉及通过形成一个或多个前体化合物和性能增强化合物的混合物而制备的多孔莫来石组合物,其中该前体化合物中含有存在于莫来石中的成分(如粘土、氧化铝和二氧化硅)。性能增强化合物是含有选自镁、钙、铁、钠、钾、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、硼、钇、钪、镧或其组合物的成分的化合物。使混合物成形并形成多孔的新鲜形状,然后在含有含氟气体的空气中将其加热到足够的温度,以形成主要包括本质上是化学结合的针状莫来石颗粒的莫来石组合物。
文档编号C04B38/00GK1777566SQ200480010571
公开日2006年5月24日 申请日期2004年4月23日 优先权日2003年4月24日
发明者C·萨哈, S·艾伦, C·韩, R·T·尼尔森, A·R·小普吕尼耶, A·J·普齐科, S·A·瓦林, R·齐巴思, T·J·加拉格尔 申请人:陶氏环球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1