无机材料粉末以及制造结构体的方法与流程

文档序号:26099127发布日期:2021-07-30 18:09阅读:183来源:国知局
无机材料粉末以及制造结构体的方法与流程

本发明涉及一种无机材料粉末以及使用该无机材料粉末的制造方法,该无机材料粉末适合作为通过增材制造技术制造由无机化合物形成的结构体的原料。



背景技术:

近年来,增材制造技术已经进步,并且已使用树脂粉末或金属粉末作为原料以粉末床熔融实现了精细且多样的结构体。在使用含有无机化合物的粉末作为原料的粉末床熔融中,为了熔化通常具有比金属更高的熔点的无机化合物,如同对金属那样,需要输入相应的能量。另外,当用激光照射含有该无机化合物的粉末时,与金属粉末不同,在含有无机化合物的粉末中发生光扩散,从而不能进行局部熔化。相应地,难以以高的成型精度进行成型。作为对策,使用了通过仅烧结含有无机化合物的粉末而不熔化粉末来确保成型精度的技术,因此不能获得精细的结构体。

在这些情况下,在非专利文献1中,提出了一种从含有无机化合物的粉末获得结构体的技术,该技术涉及通过使用al2o3-zro2共晶体系来降低粉末的熔点。

引文列表

非专利文献:

非专利文献1:physicsprocedia5(2010)587-594



技术实现要素:

技术问题

然而,在非专利文献1的结构体的表面上发现了大量的突起物(数百μm),因此没有获得足够的成型精度。此外,还存在如下问题:在面内方向和堆叠方向中的每一个方向上,在有待用激光照射的部位周围已完成通过激光照射而成型的位置,通过再次吸收激光而被加工,因此对成型精度有不利影响。

为了解决这些问题而做出本发明,并且在增材制造方法中,特别是在粉末床熔融中通过熔化含有无机化合物的粉末来实现高成型精度。

问题的解决方案

根据本发明的一个方面,提供了一种有待用于通过激光照射进行成型的增材制造方法中的无机材料粉末,该无机材料粉末包含:作为基材的无机化合物;和吸收剂,其中该吸收剂对于具有包括在所述激光中的波长的光具有比基材更高的光吸收能力,并且是选自以下的至少一种:ti2o3、tio、sio、zno、锑掺杂的氧化锡(ato)、铟掺杂的氧化锡(ito)、mno、mno2、mn2o3、mn3o4、feo、fe2o3、fe3o4、cu2o、cuo、cr2o3、cro3、nio、v2o3、vo2、v2o5、v2o4、co3o4和coo。

根据本发明的另一方面,提供了一种有待用于通过激光照射进行成型的增材制造方法中的无机材料粉末,该无机材料粉末包含:作为基材的无机化合物;和吸收剂,其中所述吸收剂对于具有包括在所述激光中的波长的光具有比所述基材更高的光吸收能力,并且是选自以下的至少一种:过渡金属碳化物、过渡金属氮化物、si3n4、aln、硼化物和硅化物。

根据本发明的又一方面,提供了一种制造结构体的方法,该方法包括重复以下步骤:步骤(i):将上述无机材料粉末放置在要用激光照射的位置的步骤;和步骤(ii):用激光照射无机材料粉末的预定位置以烧结、或者熔化并凝固无机材料粉末的步骤。

发明的有益效果

通过使用本发明的无机材料粉末,能够实现具有高成型精度的成型,因为通过对激光具有高的光吸收能力的吸收剂减少了激光的扩散。

附图说明

图1是用于说明含有吸收剂的无机材料粉末和不含吸收剂的粉末各自的升温过程的概念图。

图2是使用粉末床熔融的成型设备的示意图。

图3是采用包覆法的成型设备的示意图。

具体实施方式

下面参照附图描述用于实施本发明的方式。

首先,描述用于实施本发明的一种方式(下文称为“该实施方案”)中的无机材料粉末(下文有时简称为“粉末”),以及包含在其中的基材和吸收剂。基材和吸收剂各自是由无机化合物形成。

无机材料粉末是可以被认为独立颗粒的颗粒的集合,并且是由多种化合物形成。每个颗粒可以是通过烧结多个颗粒获得的产物,并且可以是非结晶的或结晶的。在该实施方案中,粉末由多种化合物形成包括例如多种颗粒的混合物的情形,每种颗粒是由一种化合物形成,或者一种颗粒的情形,或者多种颗粒的混合物,各自由多种化合物形成。吸收剂被定义为如下化合物:在结构体的制造过程中该化合物对有待照射的激光具有相对较高的光吸收能力,相比于粉末中所含的其它化合物而言(不包括以小于1000ppm的含量比率即杂质水平包含的化合物)。吸收剂优选对有待在结构体的制造过程中照射的激光中包括的具有特定波长的光具有10%以上的光吸收能力,更优选40%以上的光吸收能力,更加优选60%以上的光吸收能力。

可使用通用光谱仪来测量吸收剂的光吸收能力。用认定的波长(制造过程中要照射的激光的波长和/或其附近的波长)照射装载在样品盘中的吸收剂粉末,并使用积分球测量反射。将不存在样品时的反射用作参比数据,并且可以由与其的比率计算光吸收能力。

(无机材料粉末)

根据该实施方案的无机材料粉末含有多种化合物,并且含有至少一种作为吸收剂的化合物。具体地,粉末中含有的每个颗粒可以由一种化合物形成,或者一个颗粒可以由多种化合物形成。下面对不同情形进行逐一说明。

首先,对无机材料粉末中含有的每个颗粒由一种化合物形成的情形进行说明。当无机材料粉末含有三种化合物时,即al2o3、zro2和ti2o3(吸收剂),给出例如以下状态,其中无机材料粉末被配置为al2o3颗粒、zro2颗粒、和ti2o3颗粒的混合物。

接下来,对无机材料粉末中含有的每个颗粒由多种化合物形成的情形进行描述。当无机材料粉末含有三种化合物时,即al2o3、zro2和ti2o3(吸收剂),无机材料粉末可以由各自由al2o3、zro2和ti2o3形成的颗粒形成。作为替代,无机材料粉末可以由各自由al2o3和zro2形成的颗粒和各自由ti2o3形成的颗粒形成。当吸收剂与任何其它化合物一起被纳入相同颗粒中时,吸收剂优选被纳入到颗粒中以处于显示高的光吸收能力的状态。具体地,当吸收剂是ti2o3时,优选保持作为ti2o3的状态。即,优选防止以下状态的发生:在制备各自由al2o3和ti2o3形成的颗粒的过程中,所有ti2o3与al2o3反应从而转化为al2tio5等。

用作吸收剂的化合物特别优选处于单独形成颗粒的状态,而不管包含在无机材料粉末中的任何其它化合物如何被包含。这是因为,当用作吸收剂的化合物单独形成颗粒时,获得了相比于与任何其它化合物一起包含在相同颗粒中的状态而言相对更高的光吸收能力。另一个原因是,当吸收剂单独形成颗粒时,激光能够容易地到达吸收剂,从而能够有效地利用吸收剂的光吸收能力。

在粉末床熔融中使用再涂器形成粉末床层的情况下,或者在包覆法中从喷嘴喷射粉末的情况下,重要的是无机材料粉末具有与其相适应的流动性。相应地,根据该实施方案的无机材料粉末优选满足40[秒/50g]以下的流动性指数。为了保证这样的流动性,颗粒各自优选具有球形形状。然而,只要能够满足上述流动性指标,颗粒不需要各自具有球形形状。

从实现优选的流动性的观点来看,除吸收剂以外,含有的化合物包括基材的每个颗粒的粒径优选为5μm以上并且大于各自由吸收剂形成的颗粒的粒径。粒径更优选为5μm以上并且是各自由吸收剂形成的颗粒的粒径的5倍以上。粒径更加优选为10μm以上并且是各自由吸收剂形成的颗粒的粒径的5倍以上。另外,从获得高成型精度的观点以及从烧结或熔化的容易性的观点来看,粒径优选为200μm以下,更优选为150μm以下。下文中将无机材料粉末中所含的除吸收剂以外的化合物统称为“基材”。

同时,各自由吸收剂单独形成的颗粒的粒径优选处在10μm以下的范围内,并且优选为各自由基材形成的颗粒的粒径的1/5以下。当使用在该范围内的各自由吸收剂单独形成的颗粒时,通过吸收剂吸收激光而产生的热量有效地传递到基材从而促进已经照射过激光的部分中的粉末熔化。从吸收剂在无机材料粉末中的分散性和高堆积密度的观点来看,各自由吸收剂单独形成的颗粒的粒径优选尽可能小。同时,当各自由吸收剂单独形成的颗粒的粒径为1μm以上时,颗粒几乎不会通过照射激光而飞散到气氛中,因此其作为吸收剂所需的量能够可靠地保持在无机材料粉末中。相应地,各自由吸收剂单独形成的颗粒的粒径优选为1μm以上且10μm以下,更优选为1μm以上且小于5μm。

另外,从实现优选流动性的观点来看,各自含有吸收剂和基材的颗粒的粒径优选为5μm以上。粒径更优选为5μm以上并且是各自由包括在颗粒中的吸收剂形成的颗粒的直径的5倍以上。粒径更加优选为10μm以上并且是各自由颗粒中的吸收剂形成的颗粒的直径的5倍以上。另外,从获得高成型精度的观点以及从烧结或熔化的容易性的观点来看,各自含有吸收剂和基材的颗粒的粒径优选为200μm以下,更优选为150μm以下。

在各自含有吸收剂和基材的颗粒的粒径中,各自由吸收剂形成的颗粒的直径的计算方法如下:用扫描电子显微镜(sem)等测量由吸收剂形成的颗粒的面积,并通过计算得到该面积的圆等效直径。对各自由吸收剂形成的多个(100以上)颗粒的进行测量,并且采用它们的中值作为各自由吸收剂形成的颗粒的直径。

该实施方案中的粒径是指各颗粒的等效圆直径(heywood直径)。该无机材料粉末中所含颗粒的粒径不是各个颗粒单独的粒径,而是具有相同组成的一组颗粒的中值,并且不是指所述粉末不含尺寸不同于所述粒径的颗粒。另外,粒径的计算方法不仅适用于单晶状态的颗粒,而且适用于多晶状态或附聚状态的个体颗粒。

根据该实施方案的无机材料粉末优选不含任何树脂粘合剂。这是因为与粉末中所含的其它化合物相比,树脂粘合剂具有显著低的熔点,因此具有通过用激光照射而爆炸性燃烧的风险,从而导致在成型区域中存在空隙或缺陷。

此外,当粉末含有具有升华性的单质碳时,存在碳与氧结合从而作为气体逸出的风险,结果是被单质碳占据的体积变成空隙。此外,单质碳具有通过用激光照射升华从而快速气化的风险,从而不利地影响成型。具体地,存在如下风险:快速气化可能对无机材料的熔化/凝固部分施加应力,从而导致凝固部分以变形方式成型。相应地,粉末中所含的单质碳的量优选小,特别地相对于粉末中所含的多种化合物的金属元素而言摩尔比优选为1000ppm以下。

根据该实施方案的无机材料粉末绝不限于例如:该无机材料粉末是结晶状态还是非结晶状态,或者其混合。此外,粉末和成形结构体的组成不必完全彼此相同,并且可以彼此不同,特别是在例如氧化态或氮化态方面。

(吸收剂)

与包含无机材料粉末的基材相比,吸收剂对具有要用于成型的波长的光具有相对较高的光吸收能力。相应地,当根据该实施方案的粉末用于结构体的成型时,粉末中所含的吸收剂吸收激光从而产生热量。所产生的热量在已经用激光照射的部分中引起基材的烧结或熔化,从而使结构体成型。另外,与该实施方案的吸收剂截然不同,作为基材的化合物理想地包括金属氧化物。

在结构体的成型期间,一部分吸收剂与气氛中的气体或粉末中所含的其它化合物结合,或者通过其部分氧的去除而还原,从而转化为不同于粉末状态时的化合物,从而纳入到结构体中。当用作吸收剂的化合物被氧化或还原时,能够与激光相互作用的电子数目减少,从而降低光吸收能力。相应地,通过用激光照射而成型的区域对激光的光吸收能力低于用激光照射之前的光吸收能力。

现在,详细描述根据该实施方案的粉末中所含的吸收剂的作用和效果。

吸收剂的第一种作用和效果是吸收剂本身通过有效吸收在制造时使用的激光而温度升高,因此将热量传递给对应于激光的焦点尺寸的区域中存在的各自含有任何其它化合物的颗粒,从而引起温度升高。因此,能够有效地实现与激光的焦点尺寸相对应的局部加热,并且可以使成型区域(已经用激光照射过的区域)和非成型区域(没有用激光照射的区域)之间的界面部分明显从而提高成型精度。

吸收剂的第二种作用和效果是,在通过用激光照射而成型的区域中,吸收剂的光吸收能力由于组成变化而降低,因此其中已经完成了通过用激光照射而成型的区域被抑制从而不会通过再次吸收激光而改变。相应地,激光对如下区域的影响受到抑制:已完成了成型的区域、或者与已用激光照射的区域相同的粉末层相邻的区域、或者与粉末层的堆叠方向相邻的区域,并且能够增加对激光照射条件等的工艺裕度(margin)。结果,可以降低照射条件的波动对成型精度的影响。

如上所述,当通过使用根据该实施方案的粉末用激光选择性地照射来进行成型时,能够获得上述第一种作用和效果以及第二种作用和效果,因此能够实现高精度的成型。参考图1所示的概念图来描述这些作用和效果。

在图1中,横轴表示激光照射时间,纵轴表示已经用激光照射的区域的温度。a线是不含吸收剂的粉末的温度上升的概念模型,b线是含有吸收剂的根据该实施方案的无机材料粉末的温度上升的概念模型。除了不含吸收剂之外,所述不含吸收剂的粉末与根据该实施方案的无机材料粉末相同。图1仅为用于说明概念的示意图,并且升温过程不限于其中所示的线性过程。

如a线所示,不含吸收剂的粉末通过激光照射开始温度升高。同时,如b线所示,根据该实施方案的无机材料粉末在照射激光时,由于吸收剂的光吸收作用而立即开始升温。最终,当吸收剂的吸收能力因其组成的变化而降低时,表现出与用于说明不含吸收剂的粉末的温度升高的a线相同的斜率。即,达到相同的升温速率。

不含有吸收剂的粉末表现出a线的特性,具有低的光吸收能力,因此会引起激光的散射,结果是无法实现局部加热。相应地,加热效率差,因此,为了使已经照射过激光的区域中的粉末升温至熔化或烧结所需的温度,需要增加每单位体积的输入能量。因此,在已经用激光照射过的区域中的已经烧结、或者熔化并凝固的部分与其周围的粉末之间的温差不明显,并且在已经用激光照射过的区域的周边上产生大宽度和低密度的烧结部分。因此,加热广泛地延伸到与其相邻的非成型部分(未用激光照射的部分)中的粉末,因此不能获得空间成型精度。

同时,根据该实施方案的无机材料粉末表现出线b的特性,其具有良好的加热效率,因此能够实现局部加热。相应地,能够充分确保在已经用激光照射过的区域和相邻区域之间的温差,并且在已经烧结、或者熔化并凝固的部分附近的粉末中,仅产生小宽度的烧结部分,因此获得令人满意的成型精度。此外,在已完成通过激光照射而成型的部分中,光吸收能力降低从而表现出与不含吸收剂的粉末相似的特性,因此,即使因工艺条件的波动在成型已经完成的区域受到激光照射时,升温相对较小。相应地,该区域几乎不会受到影响。被激光照射的区域和已经用激光照射的区域由于这两个区域之间的热传导而通过熔合彼此结合,因此在较早成型区域和较晚成型区域之间的连接部或边界部的强度上不会出现问题。因此,在使用根据该实施方案的具有线b所示特性的无机材料粉末的成型中,能够获得上述两种作用和效果。

现在,详细描述各种吸收剂。

适合作为吸收剂的化合物是金属氧化物,例如ti2o3、tio、sio、zno、锑掺杂的氧化锡(ato)、铟掺杂的氧化锡(ito)、mno、mno2、mn2o3、mn3o4、feo、fe2o3、fe3o4、cu2o、cuo、cr2o3、cro3、nio、v2o3、vo2、v2o5、v2o4、co3o4或coo。此外,还优选过渡金属碳化物、过渡金属氮化物、si3n4、aln、硼化物和硅化物。合适地,从其中选择对粉末中包含的其它化合物具有高亲和性的一种或多种化合物作为吸收剂。

(金属氧化物作为吸收剂)

许多金属氧化物对红外线具有低的光吸收能力,但ti2o3、tio、sio、zno、锑掺杂的氧化锡(ato)、铟掺杂的氧化锡(ito)、mno、mno2、mn2o3、mn3o4、feo、fe2o3、fe3o4、cu2o、cuo、cr2o3、cro3、nio、v2o3、vo2、v2o5、v2o4、co3o4和coo对红外线具有高的光吸收能力,因此适合作为吸收剂。

这些化合物中的每一种都吸收激光从而将其金属元素变为更稳定状态的化合价,从而成为对激光具有相对较低的光吸收能力的金属氧化物。例如,ti2o3吸收激光使其ti从三价变为四价,从亚稳态的ti2o3变为更稳定状态的tio2,从而对激光具有较低的光吸收能力。

在粉末含有金属氧化物作为基材的情形中,使用金属氧化物作为吸收剂是理想的,因为基材中所含的氧化物几乎不会被还原,并且几乎不会在所得的结构体中引起由于缺氧而致的特性劣化。此外,作为吸收剂的金属氧化物几乎不会因为通过激光照射引起的组成变化而产生气体,因此可以增加其在无机材料粉末中的添加量,以提高无机材料粉末整体的光吸收能力。

各自含有吸收剂的颗粒可以各自含有其它氧化物而不是含有单一化合物。例如,即使当各自含有sio作为吸收剂的颗粒各自含有稳定状态的sio2时,sio也充当吸收剂。可以使用惰性气体熔融法测量含有sio的吸收剂的氧量。另外,对于含有sio2的含sio吸收剂,可以由x射线衍射中的sio和sio2各自的峰比率计算它们的比率。这种计算方法不仅适用于两种化合物的混合物,也适用于三种以上化合物的混合物。然而,为了获得高的吸收效率,在金属氧化物作为吸收剂的情形中,吸收剂的主要成分(50mol%以上)优选地选自sio、ti2o3、tio、zno、锑掺杂的氧化锡(ato)、铟掺杂的氧化锡(ito)、mno、mno2、mn2o3、mn3o4、feo、fe2o3、fe3o4、cu2o、cuo、cr2o3、cro3、nio、v2o3、vo2、v2o5、v2o4、co3o4和coo。

(过渡金属碳化物作为吸收剂)

过渡金属具有开放壳层的d轨道或f轨道,因此过渡金属碳化物很可能与激光相互作用。相应地,过渡金属碳化物对激光具有高的光吸收能力,并且能够抑制在无机材料粉末中的光扩散,此外可以将通过吸收激光产生的大量热量传递给基材,从而能够以小的输入热量实现局部熔化。即,在制造过程中,即使以低功率输出或通过高速扫描进行激光照射时,也能够成型精密的结构体。另外,过渡金属碳化物对激光具有高的光吸收能力,因此即使以小的添加量也能充分发挥吸收剂的功能。

此外,作为吸收剂的过渡金属碳化物的一部分通过氧化被转化成气体,例如一氧化碳或二氧化碳。然而,与单质碳不同,过渡金属碳化物不具有升华性,因此通过温和的反应气化。相应地,过渡金属碳化物几乎不引起成型失败,因此适合作为吸收剂。通过激光照射使基材的一部分碳化而产生的碳化物可被纳入到结构体中。

适合作为吸收剂的过渡金属碳化物的实例包括tic、zrc、nbc、vc、hfc、wc、mo2c、tac、wc-tic、wc-tac和wc-tic-tac。

(过渡金属氮化物作为吸收剂,以及si3n4或aln作为吸收剂)

过渡金属具有开放壳层的d轨道或f轨道,因此过渡金属氮化物很可能与激光相互作用。相应地,过渡金属氮化物对激光具有高的光吸收能力,并且能够抑制粉末中的光扩散,此外将通过吸收激光产生的大量热量传递到基材从而使得能够以小的输入热量实现局部熔化。即,在制造过程中,即使以低的功率输出或通过高速扫描进行激光照射时,也能够成型精密的结构体。另外,过渡金属氮化物对激光具有高的光吸收能力,因此即使以小的添加量也能充分发挥吸收剂的功能。另外,过渡金属氮化物是优选的,因为过渡金属氮化物的熔点高,因此在基材熔化之前能够保持其形状作为吸收剂,因此起到吸收剂的功能。

适合作为吸收剂的过渡金属氮化物的实例包括tin、zrn、vn、nbn、tan、cr2n和hfn。

si3n4作为吸收剂是理想的,因为si3n4吸收激光从而与气氛或基材中的氧反应,所产生的氧化物被纳入结构体中。aln是优选的,因为aln吸收激光从而与气氛或基材中的氧反应,并且所得氧化铝被纳入结构体中。

过渡金属氮化物、si3n4和aln各自的氮元素的一部分可以与气氛中的氧结合从而转化为气体,例如氮氧化物。然而,过渡金属氮化物、si3n4和aln各自不具有升华性,因此即使转化为气体时也仅发生温和的反应。相应地,几乎不会发生成型失败。可以将通过激光照射工艺氮化部分基材而产生的氧氮化物和/或氮化物纳入到结构体中。

(硅化物作为吸收剂)

硅化物适合作为吸收剂,因为硅化物具有窄带隙和接近金属的特性,因此具有高的光吸收能力。此外,硅化物不含与其它成分结合从而气化的成分,因此通过用激光照射几乎不产生任何气体。此外,硅化物吸收激光从而与气氛或基材中的氧反应,并且所得氧化物被纳入结构体中。相应地,几乎不会发生成型失败。为此,优选硅化物。

适合作为吸收剂的硅化物的例子包括tisi2、zrsi2、nbsi2、tasi2、crsi2、mosi2、wsi2、fesi2和hfsi2。术语“硅化物”是指由金属和硅形成的物质,并且上述的sic和si3n4不包括在硅化物中。

(硼化物作为吸收剂)

硼化物不含与其它成分结合而气化的成分,因此几乎不会通过激光照射而产生任何气体。此外,硼化物吸收激光从而通过与气氛或基材中的氧反应产生氧化物。此外,所得氧化物熔化从而被纳入结构体中,因此几乎不会发生成型失败。因此,硼化物是优选的。

另外,在期望获得非结晶结构体或导电结构体的情形中,优选使用硼化物作为吸收剂。适合作为吸收剂的硼化物的例子包括tib2、zrb2、vb2、nbb2、tab2、crb、mob、wb、lab6和hfb2。

(吸收剂的配置)

根据该实施方案的粉末中所含的吸收剂的构成元素比率可以通过结合以下方式来确定:sem-edx、tem-edx、电子束衍射、x射线衍射、icp-aes、icp-ms、x射线荧光分析、惰性气体熔化法等。sem-edx是指扫描电子显微镜-能量色散x射线光谱法,tem-edx是指透射电子显微镜-能量色散x射线光谱法,icp-aes是指电感耦合等离子体原子发射光谱法,以及icp-ms是指电感耦合等离子体质谱法。

该实施方案中的吸收剂优选具有在规定的化学计量比附近的组成,但容许从化学计量比的±30%之内的构成元素比率误差,以金属元素归一化。例如,即使当吸收剂的构成元素比率为si:o=1:1.30时,吸收剂为sio的情形也包含在该实施方案中。从获得足够的光吸收能力的观点来看,构成元素比率的误差更优选在化学计量比的±20%之内。

为了获得足够的成型精度,在用激光照射之前的吸收剂的光吸收能力优选不同于在用激光照射之后的组成变化的吸收剂的光吸收能力,相差1.2倍以上,更优选相差2倍以上。即,通过用激光照射吸收剂,其光吸收能力优选降低至激光照射之前的5/6倍以下,更优选降低至1/2倍以下。根据吸收剂的光吸收能力设定激光照射条件,因此,当光吸收能力降低至激光照射之前的5/6倍以下时,即使在相同照射条件下用激光照射已完成成型的区域,该区域也不会受到影响以至于使成型精度劣化。

此外优选的是,在用激光照射吸收剂之前的吸光能力为50%以上,并且在用激光照射之后的组成变化的吸收剂的光吸收能力为40%以下,更优选在用激光照射之前的光吸收能力为60%以上,在用激光照射之后的组成变化的吸收剂的光吸收能力为20%以下。此外,组成变化的吸收剂充当形成结构体的至少一部分的化合物,并且可以通过如下方式确定光吸收能力:将吸收成分限定为不包括反射成分的余量,通过用积分球测量反射,通过将化合物的粉末(不必是从结构体中提取的粉末)装入样品盘并用通用光谱仪照射认定的波长(制造过程中要照射的激光波长和/或在其附近的波长)。

在该情形中,“吸收剂的光吸收能力”是吸收剂单独的光吸收能力。

由于光吸收能力的这种降低,通过用激光照射而已经被烧结、或者熔化并凝固的部分在随后用激光照射时几乎不受影响,因此凝固部分的形状得以保持。因此,可以按设计容易地成型精确的三维结构体。

至少一个由吸收剂单独形成的颗粒需要包括在激光的焦点尺寸中。当激光的焦点尺寸为10μm直径时,被激光熔化的区域可被视为直径10μm的半球。在该情形中,当熔化区域中存在直径为1μm的由吸收剂单独形成的一个颗粒时,各自由吸收剂单独形成的颗粒在熔化区域中的存在比例为约0.5体积%。相应地,无机材料粉末中的吸收剂的含量优选为0.5体积%以上。对于各自包含吸收剂和基材的颗粒,类似的讨论适用于各自由颗粒中的吸收剂形成的颗粒的直径为1μm的情形。

同时,为了获得优异的成型精度,无机材料粉末中的吸收剂含量优选为10体积%以下。这是因为向无机材料粉末中添加大量吸收剂会降低成型精度。可以想象,这是因为已经用激光照射的部分的温度快速上升,熔融材料向周边分散。特别是当使用过渡金属碳化物、过渡金属氮化物或si3n4或aln作为吸收剂时,对激光的光吸收能力与作为吸收剂的金属氧化物一样高,因此可以通过少量的光照射来进行局部熔化。即,虽然吸收剂以小至0.5体积%以上且10体积%以下的添加量包含在无机材料粉末中,但能够充分地表现出其作为吸收剂的功能。

例如,讨论了以下情形:其中在粉末中含有各自由吸收剂单独形成的颗粒的0.5体积%为1μm直径颗粒,以及其中在制造过程中要形成的粉末层的振实堆积密度为其真实密度的50%。当激光的焦点尺寸为10μm时,在无机材料粉末中含有直径为1μm的各自由吸收剂单独形成的颗粒的0.5体积%的状态对应于如下状态:如上所述,其中由吸收剂单独形成的一个颗粒或然地包括在要加热的区域中(直径等于焦点尺寸的半球的体积),并且吸收剂吸收红外线从而提供发热效果。当要照射的激光的焦点尺寸为100μm时,在粉末中含有直径为10μm的各自由吸收剂单独形成的颗粒的0.5体积%的状态对应于在要加热的区域中包括一个颗粒的状态。从上述可以清楚,重要的是根据制造过程中要照射到粉末的激光的焦点尺寸来选择各自由吸收剂单独形成的颗粒的粒径。对于各自包含吸收剂和基材的颗粒,与前述类似的讨论适用于各自由颗粒中的吸收剂形成的颗粒的直径为1μm或10μm的情形。

从热均匀性的观点来看,更优选以下状态:其中各自由吸收剂单独形成的两个或更多个颗粒或然地包括在激光的焦点尺寸中。在包含在无机材料粉末中的状态下,各自由吸收剂单独形成的多个颗粒之间的距离优选或然为100μm以下,更优选为50μm以下。此外,还优选调节激光的焦点尺寸使得能够实现这种情况。如上所述,从成形精度的观点看,考虑到激光的焦点尺寸优选为100μm以下,各自由吸收剂单独形成的颗粒的粒径优选为1μm以上且10μm以下。要照射的激光的焦点尺寸只需要根据期望的成型精度来确定,并且根据期望的成型精度可以为100μm以上。在该情形中,在激光的焦点尺寸中包括两个或更多个吸收剂颗粒的状态下,粒径可大于10μm。另外,对于各自含有吸收剂和基材的颗粒,类似的讨论也适用于各自由颗粒中的吸收剂形成的颗粒的直径。

当使用除金属氧化物以外的吸收剂作为吸收剂时,可以通过在吸收剂的表面上布置改性层来调节光吸收能力。改性层适当地是金属氧化物层。当使用具有极高的光吸收能力的吸收剂时,例如过渡金属碳化物或过渡金属氮化物,进入粉末的激光被靠近已经用激光照射的区域一侧上存在的吸收剂强烈吸收,因此在一些情形中,在远离已经用激光照射的区域的位置处几乎不被吸收剂吸收。作为结果,进入粉末的激光难以在粉末层中均匀地透射或扩散。在这种情形中,还优选通过在吸收剂的表面上布置改性层来调节光吸收能力。

(基材)

基材是除吸收剂以外的作为粉末的主要成分的化合物。基材与结构体的特性(例如强度)显著关联,因此根据应用适当地选择。相应地,合适的是:选择实现结构体所需特性所需要的一种或多种化合物作为基材;并根据基材对制造中要使用的激光波长的光吸收能力来选择用作吸收剂的化合物。当要制造的结构体不需要具有特定的特性时,还优选的是:预先选择适合于在制造结构体时要使用的激光波长的吸收剂组成;并且选择具有相对低的吸收激光波长的效果的金属氧化物作为用作基材的化合物。

基材优选以形成共晶组成的比率包含形成共晶的化合物。该共晶组成是在共晶状态图中所示的共晶点处的组成,但是在使用激光的制造过程中,以极快的方式重复加热状态和冷却状态,因此即使以偏离共晶点的组成也会形成共晶组织。相应地,该实施方案中的共晶组成优选被定义为其中形成共晶组织的组成范围,并且包括相对于共晶状态图的共晶组成为±10mol%的范围。

作为适用于基材的无机材料,可以使用氧化铝(al2o3)或氧化锆(zro2)(稳定的或部分稳定的)。此外,还可以使用二氧化硅(sio2)。另外,诸如堇青石(2mgo·2al2o3·5sio2)、锆石(zro2·sio2)、莫来石(3al2o3·2sio2)、氧化钇或钛酸铝的无机材料也是合适的。另外,也可以将选自其中的多种化合物混合并用作基材。

根据该实施方案的无机材料粉末由多种化合物形成,并且优选含有至少一种作为吸收剂的成分以及作为基材的选自氧化铝、氧化锆和二氧化硅的至少一种成分。此外,当形成共晶时,该结构体表现出微细组织以实现高强度,并且在制造过程中,获得了诸如降低基材熔点的效果。相应地,根据该实施方案的粉末更优选含有至少两种选自氧化铝、氧化锆和二氧化硅的成分作为基材。基材不限于形成共晶组成的比率,并且还可以使用例如质量比al2o3:zro2为85:15的基材,或质量比al2o3:zro2为70:30的基材。

当粉末包含氧化铝作为形成共晶的基材时,除了氧化铝之外,粉末优选包含各自由氧化铝和稀土氧化物的复合氧化物形成的颗粒。其具体实例包括:含有各自由氧化铝(al2o3)颗粒和氧化钆(gd2o3)的复合氧化物形成的颗粒的粉末;以及含有氧化铝颗粒和各自由氧化钆和氧化铝的复合氧化物(gdalo3)形成的颗粒的粉末。添加复合氧化物的效果不仅在这两种成分的共晶体系中获得,而且在三种以上成分的共晶体系中也类似地获得。

二氧化硅(sio2)优选作为基材,不管是非晶的还是结晶的。二氧化硅不限于与吸收剂一起用作含有两种化合物的粉末,还优选用作连同氧化锆、氧化铝等一起含有三种成分或四种成分的粉末。

(制造结构体的方法)

根据该实施方案的无机材料粉末适用于增材制造方法,该方法涉及依照基于在要成型的结构体上的三维数据生成的切片数据通过用激光照射无机材料粉末来进行成型。具体而言,无机材料粉末用于使用粉末床熔融法或包覆法的制造方法中。在制造过程中,重复以下步骤(i)和步骤(ii)来制造结构体。

步骤(i):将无机材料粉末放置在要用激光照射的位置的步骤

步骤(ii):用激光照射无机材料粉末以烧结、或熔化并凝固所述无机材料粉末的步骤

该实施方案中的表述“烧结、或熔化并凝固”不一定将没有粉末熔化的情况定义为烧结,以及不一定将没有粉末保持未熔化的情形定义为熔化。该表述包括:粉末仅相互结合的烧结状态;局部包括未烧结部分的状态;液相烧结,其后存在熔融物质以包围粉末;和部分粉末保持未熔化的熔化状态。

另外,在根据该实施方案的制造方法中,还优选按照需要在用激光照射后进行热处理。在该情形中,加热装置不受限制,并且可以根据目的选择和利用电阻加热系统、感应加热系统、红外灯系统、激光系统、电子束系统等。热处理也适合于调节结构体的晶粒尺寸,以便例如提高结构体的精细度或强度。此外,在热处理时,还优选用釉料进行浸渍、涂覆等,该釉料不限于有机材料或无机材料。

当使用粉末床熔融进行成型时,通过将根据该实施方案的粉末铺展和整平以具有预定厚度然后用激光照射粉末进行步骤(i)和(ii)。当使用包覆法进行成型时,通过将根据该实施方案的粉末喷射到预定位置并用激光照射该预定位置来进行步骤(i)和(ii)。

用于成型的激光波长没有限制,但是优选使用调节到期望的焦点尺寸的激光,例如在透镜或光纤中,从10μm到2mm的直径。焦点尺寸是影响成型精度的参数之一,并且为了满足100μm(0.1mm)的成型精度,在一些情况下,线宽优选与之相当,并且焦点尺寸优选为100μm以下的直径。用激光照射不限于连续或脉冲的方式。对于激光,可以使用波长在1000nm附近的激光,例如nd:yag激光、yb光纤激光。

参考图2描述粉末床融合。有待用于该系统中的设备包括粉末容器11、成型台部分12、再涂器部分13、扫描器部分14、用于激光的光源15等。操作如下所述。当粉末容器11和成型台部分12适当地上下移动时,用再涂器部分13操纵粉末,并且将粉末铺展和整平从而在比认定的结构体更宽的区域上具有预定厚度。此外,通过使用从用于激光的光源15和扫描器部分14产生的激光,将结构体的一种横截面形状直接绘制在粉末层上。绘制区域被烧结或熔化并凝固。重复该操作以便堆叠结构体的横截面,从而使结构体成型。

参考图3描述包覆系统。包覆系统是涉及如下的技术:从包覆喷嘴21中的多个粉末供应孔22中的每一个喷射粉末,并用激光23照射各粉末被聚焦的区域,从而在期望位置处相继成型结构体,并且具有能够在弯曲表面等上进行成型的特征。

此外,在制造过程中,可以控制气氛。在制造过程中,不仅空气气氛,而且还优选采用以下气氛:含有氮气或其它惰性气体(如稀有气体)的惰性气氛,无机材料粉末中所含化合物易于被还原的气氛(如含有氢气的气氛)以及减压气氛,或氧气气氛。当进行这样的气氛控制时,可以在结构体的成型中使用包含偏离化学计量比的氧化或还原状态的化合物的粉末。

在如上所述的该实施方案的制造过程中,使用根据该实施方案的粉末能够实现稳定的成型,并且能够提供其中确保成型精度的结构体。

有待使用根据该实施方案的无机材料粉末制造的结构体不限于由结晶状态的无机材料制成的结构体。只要获得期望的物理性能数值,一部分或超过一半的结构体可以处于非晶状态。此外,通过上述制造工艺,可以制造包含例如由无机材料粉末的还原而产生的接近金属状态的区域的结构体。

[实施例]

描述根据该实施方案的无机材料粉末的具体实例。

对通过向由氧化铝(al2o3)和氧化钆(gd2o3)形成的基材中添加各种吸收剂而获得的粉末1至63,研究可实现的成型速率以作为实施例1至63。作为比较例1,还研究了不添加吸收剂的粉末78的成型速率。平均粒径为20μm和25μm的近似球形的粉末分别用于al2o3和gd2o3。对于粉末1至61的每一种吸收剂,使用平均粒径小于5μm的颗粒。对于粉末62和63的每一种吸收剂,使用平均粒径为20μm的粉末。在体积组成的计算中,使用以下作为真实密度,al2o3:3.95[g/cm3],gd2o3:7.40[g/cm3],ti2o3:4.49[g/cm3],tio:4.95[g/cm3],sio:2.18[g/cm3],zno(ga掺杂):5.50[g/cm3],ito:7.14[g/cm3],ato:6.60[g/cm3],tin:5.43[g/cm3],zrn:7.35[g/cm3],si3n4:3.17[g/cm3],tic:4.93[g/cm3],zrc:6.73[g/cm3],tisi2:4.04[g/cm3],zrsi2:4.86[g/cm3],mosi2:6.24[g/cm3],tib2:4.53[g/cm3],zrb2:6.09[g/cm3],lab6:4.72[g/cm3],和aln:3.26[g/cm3]。即便真实密度是稍有不同的值时,也不影响该实施方案的本质。

将含有这些化合物的粉末各自以每层约20μm的厚度在al2o3基底上铺展并整平,然后用yb光纤激光照射。将各自堆叠20个层的状态相互比较。将激光固定为100μm的焦点尺寸和30w的激光功率。另外,激光照射速率如下变化:100mm/sec、200mm/sec、300mm/sec、400mm/sec、500mm/sec、600mm/sec、700mm/sec和1000mm/sec,并且在每种条件下以500μm的间距绘制各自长度为4.5mm的10条线。将两个或更少的线经历成型失败的上限照射速率定义为线熔化最高速率。线熔化最高速率对应于能够以线形状进行熔化的阈值速率,并且在实际制造过程中,以低于线熔化最高速率的照射速率照射激光。在用激光进行线照射的区域中,没有以连续线形状形成烧结、或熔化并凝固的区域的情形被判定为成型失败。结果如表1和表2所示。每层的厚度为约20μm,因此无机材料粉末包含等于或大于一个层厚度的颗粒。然而,过多的颗粒在堆叠初始阶段的铺展和整平期间被除去,并且在多次堆叠之后被掩埋在堆叠部分中。

[表1]

[表2]

在比较例1中,由于使用不含吸收剂的粉末78,因此能够以仅100mm/sec的速度以线状进行烧结、或熔化并凝固。即,在制造过程中,需要以较慢的速率照射激光,从而导致生产率低,因此粉末78不适合成型。此外,在比较例1的线状凝固部分中发现许多突起,因此无法获得足够的成型精度。其可想象的原因是,当用激光照射不含该实施方案的吸收剂的比较例1的粉末78时,光在粉末中随机扩散到激光照射的边缘之外,结果是粉末的熔化也在激光照射区域的外部进行。

接下来,对于粉末64至77,形成无机材料粉末的颗粒的组成和颗粒直径示于表3和表4中,并且形成无机材料粉末的颗粒相对于无机材料粉末的比率(体积)示于表5和表6中。接近球形的颗粒用于除吸收剂以外的化合物。粒径小于5μm的颗粒被用于吸收剂。表3和表4中的括号内数值代表形成颗粒的化合物的摩尔比。例如,zro2·y2o3(97.0:3.0)表示颗粒由摩尔比为97.0:3.0的al2o3和zro2形成。

[表3]

[表4]

[表5]

(各粉末的三维成型性能的测定)

接下来,对上述各实施例的粉末的三维成型性能进行研究。在研究中,使用3dsystems公司的prox(产品名称)系列的dmp100作为成型设备。在使用粉末1至77和粉末80至88的实施例64至149和使用不含吸收剂的粉末79的比较例2中,在表7或表8所示的成型条件下成型6mm×6mm的结构体。另外,在实施例64至149和比较例2中,将粉末层的厚度设为20μm,并使用氧化铝板作为基底。粉末层的厚度是指图2的成型台部分12下降的值。通过用激光照射,粉末层熔化并且在其厚度方向收缩,因此粉末层的表观厚度通常随着堆叠重复而逐渐增加,最终汇合到67μm至133μm的范围。另外,表3和表4中所示的粒径各自是一组颗粒的中值。相应地,含有表3和表4所示化合物的颗粒的平均粒径比制造过程中的粉末层更大,即20μm,但在使用上不成问题。使用由klatencor公司制造的alpha-stepd500(产品名称)测量能够成型的结构体的表面粗糙度ra以确定成型精度。结构体的侧面上的粗糙度比其正面上的粗糙度更大,因此在侧面上进行评价。另外,在测量表面粗糙度时的扫描宽度为1mm。

对于成型性能,进行以下评价。

a:以ra为20μm以下的高成型精度获得了符合规定尺寸的结构体。

b:正面或侧面上产生的粗糙度ra为20μm以上。

c:没有形成形状。

在上述评价中,a表示成型性令人满意,b表示成型性不那么令人满意,并且c表示成型性不令人满意。

[表7]

[表8]

如表7所示,在不含吸收剂的比较例2中,如同比较例1,一部分粉末熔化,得到了局部显著凹陷或突出的结构体。然而,比较例2中获得的结构体显著偏离了预期的立方体形状,并且没有获得预期的形状。

在使用根据该实施方案的粉末的成型过程中,实施例64至149的结构体各自为预期的立方体形状,并且各自允许测量侧面上的表面粗糙度。能够认识到,与相关技术中的粉末相比,使用根据该实施方案的粉末改善了表面粗糙度,并且提供了将ra改善至30μm以下的结构体,从而能够精确地成型结构体。在使用吸收剂含量为10体积%以下的粉末的实施例64至124和实施例127至149中,获得了ra小于28μm的甚至更高的成型精度,相比于使用吸收剂含量为50体积%的粉末的实施例125和实施例126而言。

[工业实用性]

本发明的粉末允许通过使用粉末床熔融或包覆系统以高成型精度制造陶瓷结构体,并且可用于需要具有复杂形状的零件的领域。

本发明不限于上述实施方案,并且在不脱离本发明的精神和范围的情况下,可以进行各种改变和修改。附加以下权利要求书以便公开本发明的范围。

本申请要求基于2018年12月21日提交的日本专利申请第2018-240158号和2019年12月5日提交的日本专利申请第2019-220766号的优先权,通过引用将其全部内容并入本文。

[附图标记列表]

11粉末容器

12成型台部分

13再涂器部分

14扫描器部分

15激光的光源

21包覆喷嘴

22粉末供应孔

23激光

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1