一种多奇异点处理系统的制作方法

文档序号:10992199阅读:333来源:国知局
一种多奇异点处理系统的制作方法
【专利摘要】本申请公开了一种多奇异点处理系统,该系统应用于具有多个关节的工业机器人,具体为根据工业机器人的多个关节的实时运动数据和预设的奇异值计算公式,对该工业机器人是否处于多奇异点状态进行判断;当判定所述工业机器人处于所述多奇异点状态时,对奇异值总量进行计算;最后根据得到奇异值总量对多个关节进行控制,以此避免多个奇异点同时出现,也就不会出现关节运动骤然变大现象的发生,从而能够避免工业机器人因关节运动速度骤然变大而出现停机或生产安全问题。
【专利说明】
一种多奇异点处理系统
技术领域
[0001] 本申请涉及机器人技术领域,更具体地说,涉及一种多奇异点处理系统。
【背景技术】
[0002] 工业机器人是工业自动化系统中重要的部件之一。当前,多个国家在工业机器人 技术上已经树立了各自的领先优势,尤其是在机器人本体的设计上,相关的基础技术已经 比较成熟,因而各个厂家开始在机器人应用领域投入更多的精力。
[0003] 工业机器人的奇异点处理方法是机器人应用领域中主要的技术难点之一。奇异点 问题是工业机器人必然遇到的技术点,其与结构有关,是一个无法回避的问题。以当前最常 见的6关节工业机器人为例,其起码包括三种奇异点,分别为腕部奇异点、肘部奇异点和肩 部奇异点。当第四和第六关节同轴时会出现腕部奇异点;当第二、第三和第五关节同轴时会 出现肘部奇异点;而当第一和第六关节同轴时则会出现肩部奇异点。且当工业机器人运动 至某一位姿时,甚至可能会遇到多个奇异点同时出现的状况,这时关节运动的速度会发生 骤然变大的现象,从而导致机器人停机甚至带来生产安全问题。 【实用新型内容】
[0004] 有鉴于此,本申请提供一种多奇异点处理系统,用于解决当多关节工业机器人遇 到多个奇异点同时,由于关节运动速度的骤然变大导致的停机或生产安全问题。
[0005] 为了实现上述目的,现提出的方案如下:
[0006] -种多奇异点处理系统,应用于具有多个关节的工业机器人,包括:
[0007] 实时监控模块,用于根据所述多个关节的实时运动数据和预设的奇异值计算公 式,对所述工业机器人是否处于多奇异点状态进行判断;
[0008] 多奇异点计算模块,用于当所述实时监控模块判定所述工业机器人处于所述多奇 异点状态时,对奇异值总量进行计算;
[0009] 多奇异点处理模块,用于根据所述奇异值总量对所述多个关节进行控制。
[0010]可选的,所述实时监控模块包括:
[0011] 实时检测单元,用于获取所述多个关节的实时运动数据;
[0012] 阈值计算单元,用于计算所述工业机器人在多个类型奇异点的奇异值等价公式;
[0013] 奇异点判断单元,用于根据所述奇异值等价公式和所述实时运动数据,对所述工 业机器人是否处于多奇异点状态进行判断;
[0014] 可选的,所述实时运动数据包括实时关节角度和实时时间。
[0015] 从上述的技术方案可以看出,本申请公开了一种多奇异点处理系统,该系统应用 于具有多个关节的工业机器人,具体为根据工业机器人的多个关节的实时运动数据和预设 的奇异值计算公式,对该工业机器人是否处于多奇异点状态进行判断;当判定所述工业机 器人处于所述多奇异点状态时,对奇异值总量进行计算;最后根据得到奇异值总量对多个 关节进行控制,以此避免多个奇异点同时出现,也就不会出现关节运动骤然变大现象的发 生,从而能够避免工业机器人因关节运动速度骤然变大而出现停机或生产安全问题。
【附图说明】
[0016] 为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以 根据这些附图获得其他的附图。
[0017] 图1为本申请实施例提供的一种多奇异点处理方法的流程图;
[0018] 图2为本申请提供的一种工业机器人的D-Η模型示意图;
[0019] 图3为本申请另一实施例提供的一种多奇异点处理系统的结构框图。
【具体实施方式】
[0020] 下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完 整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于 本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例,都属于本申请保护的范围。
[0021] 实施例一
[0022] 图1为本申请实施例提供的一种多奇异点处理方法的流程图。
[0023]本实施例提供的多奇异点处理方法应用于具有多个关节的工业机器人,本实施例 以具有6个关节的工业机器人为例对本申请提供的技术方案进行说明。
[0024]工业机器人通常是用D-Η模型进行结构建模,每两个关节之间的位置及姿态变换 都可以使用四个参数的D-Η矩阵进行模拟计算。因此,本申请中的具有6个关节的工业机器 人结构如图2所示,并且可以用六个D-Η关节变换矩阵来表示:
[0027] 其中,ci = cos(0i),si = sin(0i),i = l,2, . . .,5,6,0i为第i关节的关节转动角度, ai为关节i到关节i+Ι之间的连杆长度,di为关节i-Ι到关节i之间的连杆偏距。
[0028] 通过计算矩阵乘法可以得到机器人基座到机器人末端的变换矩阵:
[0030] 本申请中的多奇异点处理方法具体包括如下步骤,如图1所示。
[0031] S101:根据多个关节的实时运动数据和预设的奇异值计算公式,对工业机器人是 否处于多奇异点状态进行判断。
[0032] 具体对机器人是否处于多奇异点状态进行判断包括如下子步骤:
[0033] 步骤1:获取工业机器人的多个关节的实时运动数据。
[0034] 实时运动数据包括反映工业机器人当前状态的实时关节角度Θ,,以及用于反映当 前时刻的实时时间t。
[0035] 步骤2:计算工业机器人在多个类型奇异点的奇异值等价公式。
[0036] 根据工业机器人的雅克比矩阵计算出工业机器人不同种类奇异点的奇异值等价 公式,具体包括腕部奇异点、肘部奇异点和肩部奇异点,分别如下:
[0037] 腕部奇异点:kw=05
[0038] 肘部奇异点:ke = a2S2+a3C2C3-a3S2S3+d4S2C3+d4C2S3
[0039] 肩部奇异点:ks = a3C3+d4S3
[0040] 步骤3:根据奇异值等价公式和实时运动数据,对工业机器人是否处于多奇异点状 态进行判断。
[0041 ]针对三种奇异点分别选取奇异点阈值Tw、Te、Ts,那么进行判断:
[0045] 在取奇异点阈值1\?、1\3、1时,求解01,选取最大值作为关节角度阈值 :
[0046] (0i)max=max{0i(Tw), 9i(Te), 9i(Ts)}
[0047] 奇异点阈值处理单元检测€]^8?、打38(3、;^383的值,当判断公式为 :
[0048] flagw&flagw&f lagw=0时,
[0049] 此时,工业机器人运动将遇到多奇异点问题,从而判定工业机器人。
[0050] S102:当工业机器人处于多奇异点状态时,计算奇异值总量。
[0051] 当判断出工业机器人遇到奇异点问题后,需要对不同奇异点的影响程度进一步计 算,以便多奇异点处理模块进行进一步处理。设定奇异值总量:
[0052] P = kw2+ke2+ks2
[0053] 对奇异值总量P取微分:
[0054] 其中,

[0057] 当m = 0,n = 0时,奇异值总量P取极值,解出(θ2)η?η和(93)min。
[0058] 然后根据解出的结果计算奇异值总量?^"。
[0059] 采用DLS(阻尼最小方差)算法进行奇异值控制:
[0060] J,=JT(JJT+p2I)-1
[0061] 其中,J为机器人雅克比矩阵,J'为加入阻尼因子后的雅克比矩阵,P2为阻尼因子。 [0062] 代入(0i)max,可计算得到P腹:
[0063] Pmax = P((9i)max)
[0064] 对阻尼因子的控制中加入奇异值总量控制:
[0066] S103:根据奇异值总量对多个关节进行控制。
[0067] 根据解出的加入阻尼因子后的雅克比矩阵J',解出关节运动角度,然后根据该关 节运动角度驱动工业机器人运动。
[0068] 从上述技术方案可以看出,本实施例提供了一种多奇异点处理方法,该方法应用 于具有多个关节的工业机器人,具体为根据工业机器人的多个关节的实时运动数据和预设 的奇异值计算公式,对该工业机器人是否处于多奇异点状态进行判断;当判定所述工业机 器人处于所述多奇异点状态时,对奇异值总量进行计算;最后根据得到奇异值总量对多个 关节进行控制,以此避免多个奇异点同时出现,也就不会出现关节运动骤然变大现象的发 生,从而能够避免工业机器人因关节运动速度骤然变大而出现停机或生产安全问题。
[0069] 实施例二
[0070] 图3为本申请实施例提供的一种多奇异点处理系统的结构框图。
[0071] 如图3所示,本实施例提供的多奇异点处理系统应用于具有多个关节的工业机器 人,本实施例以具有6个关节的工业机器人为例对本申请提供的技术方案进行说明,具体包 括实时监控模块10、多奇异点计算模块20和多奇异点处理模块30。
[0072] 实时监控模块10用于根据多个关节的实时运动数据和预设的奇异值计算公式,对 工业机器人是否处于多奇异点状态进行判断。具体包括实时检测单元11、阈值计算单元12 和奇异点判断单元13。
[0073] 实时检测单元11用于获取工业机器人的多个关节的实时运动数据。
[0074] 实时运动数据包括反映工业机器人当前状态的实时关节角度Θ,,以及用于反映当 前时刻的实时时间t。
[0075] 阈值计算单元12用于计算工业机器人在多个类型奇异点的奇异值等价公式。
[0076] 具体为根据工业机器人的雅克比矩阵计算出工业机器人不同种类奇异点的奇异 值等价公式,具体包括腕部奇异点、肘部奇异点和肩部奇异点,分别如下:
[0077] 腕部奇异点:kw=05
[0078]肘部奇异点:ke = a2S2+a3C2C3-a3S2S3+d4S2C3+d4C2S3
[0079] 肩部奇异点:ks = a3C3+d4S3
[0080] 奇异点判断单元用于根据奇异值等价公式和实时运动数据,对工业机器人是否处 于多奇异点状态进行判断。
[0081 ]针对三种奇异点分别选取奇异点阈值Tw、Te、Ts,那么进行判断:
[0085] 在取奇异点阈值1\?、1\3、1^时,求解01,选取最大值作为关节角度阈值:
[0086] (0i)max=max{0i(Tw),0i(Te),0i(Ts)}
[0087] 奇异点阈值处理单元检测€]^8?、打38(3、;^383的值,当判断公式为 :
[0088] flagw&flagw&f lagw=0时,
[0089] 此时,工业机器人运动将遇到多奇异点问题,从而判定工业机器人。
[0090] 多奇异点计算模块20用于当实时监控模块10判定该工业机器人处于多奇异点状 态时,计算奇异值总量。
[0091] 当判断出工业机器人遇到奇异点问题后,需要对不同奇异点的影响程度进一步计 算,以便多奇异点处理模块进行进一步处理。设定奇异值总量:
[0092] P = kw2+ke2+ks2
[0093] 对奇异值总量P取微分:
[0094] 其中,
[0097] 当m = 0,n = 0时,奇异值总量P取极值,解出(02)min和(93)min。
[0098] 然后根据解出的结果计算奇异值总量?^"。
[0099]采用DLS(阻尼最小方差)算法进行奇异值控制:
[0100] J,=JT(JJT+P2I)-1
[0101] 其中,J为机器人雅克比矩阵,J'为加入阻尼因子后的雅克比矩阵,P2为阻尼因子。
[0102] 代入(0i)max,可计算得到p腹:
[0103] Pmax = P((0i)max)
[0104] 对阻尼因子的控制中加入奇异值总量控制:
[0106] 多奇异点处理模块30用于根据奇异值总量对多个关节进行控制。
[0107] 即根据解出的加入阻尼因子后的雅克比矩阵J',解出关节运动角度,然后根据该 关节运动角度驱动工业机器人运动。
[0108] 从上述技术方案可以看出,本实施例提供了一种多奇异点处理系统,该系统应用 于具有多个关节的工业机器人,具体为根据工业机器人的多个关节的实时运动数据和预设 的奇异值计算公式,对该工业机器人是否处于多奇异点状态进行判断;当判定所述工业机 器人处于所述多奇异点状态时,对奇异值总量进行计算;最后根据得到奇异值总量对多个 关节进行控制,以此避免多个奇异点同时出现,也就不会出现关节运动骤然变大现象的发 生,从而能够避免工业机器人因关节运动速度骤然变大而出现停机或生产安全问题。
[0109] 实施例三
[0110] 本实施例提供一种具有多个关节,具体为6个关节的工业机器人,该工业机器人设 置上述实施例提供的多奇异点处理系统,能够在该系统的控制下避免多个奇异点同时出 现,从而能够保证避免出现停机和安全事故。
[0111] 本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他 实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所公开的实施例的上 述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领 域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的 精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些 实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
【主权项】
1. 一种多奇异点处理系统,应用于具有多个关节的工业机器人,其特征在于,包括: 实时监控模块,用于根据所述多个关节的实时运动数据和预设的奇异值计算公式,对 所述工业机器人是否处于多奇异点状态进行判断; 多奇异点计算模块,用于当所述实时监控模块判定所述工业机器人处于所述多奇异点 状态时,对奇异值总量进行计算; 多奇异点处理模块,用于根据所述奇异值总量对所述多个关节进行控制。2. 如权利要求1所述的多奇异点处理系统,其特征在于,所述实时监控模块包括: 实时检测单元,用于获取所述多个关节的实时运动数据; 阈值计算单元,用于计算所述工业机器人在多个类型奇异点的奇异值等价公式; 奇异点判断单元,用于根据所述奇异值等价公式和所述实时运动数据,对所述工业机 器人是否处于多奇异点状态进行判断。3. 如权利要求2所述的多奇异点处理系统,其特征在于,所述实时运动数据包括实时关 节角度和实时时间。
【文档编号】B25J9/16GK205685337SQ201620076117
【公开日】2016年11月16日
【申请日】2016年1月25日 公开号201620076117.2, CN 201620076117, CN 205685337 U, CN 205685337U, CN-U-205685337, CN201620076117, CN201620076117.2, CN205685337 U, CN205685337U
【发明人】王业率, 边慧杰, 赵天光
【申请人】珠海格力电器股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1