三角测量位置测量的光学平移的制作方法

文档序号:2432461阅读:360来源:国知局
专利名称:三角测量位置测量的光学平移的制作方法
技术领域
本发明通常涉及用于比如移动纸片(moving sheet)的非接触厚度 或纸张厚度测量的技术,并且更具体地涉及允许单点三角测量厚度传 感器(caliper sensor)光学平移点的方法,在该点处三角测量系统测量 目标的位移。本发明有助于厚度传感器的各种参数的最优化,并且允 许确定探询点(interrogation spot )应当处于的移动纸片上的期望位置。
背景技术
在连续的造纸机上制造纸的过程中,基于行进网造纸纤维和通过 重力排水以及通过纤维的吸引,由纤维(原料(stock))的水悬浮液 形成纸幅(a web of paper )。该纸幅(web)然后,皮转移至挤压部分, 在此通过压力和真空去除更多的水。该纸幅下一步进入干燥器部分, 在此蒸汽加热的干燥器和热空气完成干燥处理。该造纸机实际上是水 去除系统。造纸机的典型成形部分包括无尽行进的造纸纤维或线,其 在比如台辊,箔,真空箔和吸入箱的一系列水去除元件上行进。在造 纸纤维的上表面上运载原料,并且该原料在连续的去水元件上行进时 被去水,以形成纸张。最后,潮湿的纸片被转移至造纸机的挤压部分, 在此足够的水被去除以形成纸张。多个因素影响将最终影响制造出的 纸的质量的去除水的速率。
连续测量纸材料的某些特性,以便监控完成产品的质量是众所周 知的。这些在线测量常常包括纸张重量(basis weight),湿度含量和 纸片厚度,也就是纸张厚度。这些测量可以用于控制工艺变量,其目 标是保持输出质量和最小化由于制造过程中的干扰而必须被拒绝的产 品的数量。通过从边缘至边缘地周期性地横越片材的扫描传感器常常 可以完成在线纸片特性测量。
通常在片材离开主干燥器部分时或在巻带盘处采用扫描传感器测 量片材的厚度。这种测量可以用于朝向获得期望的参数调节机器操作。 存在用于测量比如移动纸幅或纸片的厚度的多个方法。最普通的技术
的两个包括利用接触滑道或滑轨(shoe)的直接厚度测量,其沿着纸幅 的两个表面滑过,以及非接触推理方法,其中通过纸幅的辐射吸收被 用于确定纸幅的每单位面积的重量,并且之后推断厚度,假定已知材 料的密度具有充分的精度。存在对这些方法的多个变形和改进,但这 些技术的每一个都具有潜在的缺陷。
接触方法受三个基本类型问题的支配。笫一,该方法局限于被测 量材料的强度。在比如薄纸(tissue)的易碎纸片的情况下,例如,存 在接触滑轨在纸片表面上伴随(snag)偏差的倾向,引起纸片中的裂 缝,或者甚至引起纸片被撕裂。第二,由于接触元件上的磨损或在纸 片破裂过程中引起的物理损坏,纸片自身可以损坏接触式厚度传感器。 对于横越纸片的厚度传感器,当传感器跨过纸片边缘时也会引起损坏。 第三,通过接触元件上污染物的累积也会不利地影响接触传感器的精 度,这可能发生在涂覆或填满纸片或包含回收材料的纸片的情况下。
该非接触推理厚度测量方法避免了接触方法的多个问题,但仍受 新的一组问题的支配。几篇专利已经建议相比较于其他可利用的方法, 用来测量移动幅的厚度的激光器的使用会是有前途的选择。 一种这样 的系统在Kramer的美国专利5, 210, 593中被描述,另 一种在Watson 的美国专利4, 276, 480中被描述。在这两种系统中,激光卡规设备 包括在纸幅的两侧上被定位的激光源,其光被导引至纸幅表面上,并 且接着被反射至接收器。接收的激光信号的特征之后被用于确定从每 一个接收器至纸幅表面的距离。这些距离被加在一起,并从对于两个 激光接收器之间的距离已知的值减去该结果。结果表示纸幅的厚度。
用于厚度测量的上面的非接触方法具有消除了接触方法和非接触 方法的多个缺陷的期望特征。然而,先前的非接触技术存在困难会 限制它们对相对低精确度的应用的有用性。
其中一个问题是纸幅可能并不总是垂直于入射光,因为纸幅具有 反弹或发展间歇的波状运动的倾向。如果纸幅不垂直于入射光,并且 来自两个相对光源的光束不被导引至纸片上精确相同的点,则测量中 随后的误差会出现。这通过多个因素引起。第一,从第一激光的测量
点至第二激光的测量点的实际纸幅厚度变化会引起不正确的厚度测 量。第二,如果纸幅不垂直于入射光,则测量技术将引起成比例于纸 幅的角度和两个测量点之间纸片表面上的位移的厚度值的误差。纸幅 的反弹或振动可以进一步加剧该误差。
King等人的美国专利6, 281, 679描述了 一种非接触纸幅厚度测 量系统,其具有在纸幅的相对侧上的距离确定装置。该系统包括厚度 传感器,该厚度传感器能够进行精确的在线纸幅厚度测量,甚至当横 越纸幅连续扫描系统时。可以操作气压夹具(air clamp),使气流强 制机器方向移动纸片至最小位移位置,如通过气压夹具下面的激光所 看到的(并且对于另一个为最大位移位置)。该气压夹具主要被设计 成使纸片位移在交叉方向上很大程度上不变化。在该位置处,小的x-y 位移对测量引入最小的误差。这假定主要通过造纸机器特性确定纸片 厚度,并且不考虑纸的微结构。当进行平均测量时情况确实是这样, 其通常是适于移动纸片上的实际测量的情况。
当被采用来测量纸的厚度时,厚度传感器典型地位于造纸机器的 干燥端处。已经假定纸片的表面垂直于激光束,并且在纸通过厚度传 感器的区域中沿着加工方向相对平坦,从而使理想的探询点分别直接 在上和下传感器头之上和之下。然而,已经发现紙片的表面不充分平 坦。该结果是常常在纸片的表面的一部分上定位理想的探询点,其并
不产生精确的厚度测量。此外,改变探询点的位置是困难的,因为必 需拆卸和从它的原始位置上游或下游地物理移动厚度传感器。

发明内容
本发明部分基于用于移动探询点的光学平移技术的研发,在该探 询点处,三角测量传感器测量比如移动纸幅或纸张的目标的位移。在 激光三角测量传感器的正常操作中,从传感器头投射入射激光束或射 线于面对传感器头的纸幅的表面上。通过检测器检测或捕获从表面反 射的辐射。通过三角测量计算从传感器头至纸幅表面的距离。利用本 发明的光学平移技术,利用一个或多个透明衬底(例如多个玻璃几何 结构)平移入射射线和捕获的射线,以使三角测量传感器的正常功能 不被干扰。光学平移允许对探询点的调节,而不用必须物理地移动三 角测量传感器。
厚度传感器(caliper sensor)采用三角测量传感器来连续监控移动 或变化目标的厚度。该厚度传感器可以包括稳定移动目标的气压夹具, 并因此稳定表面上的位置,三角测量传感器的探询点被导引至该位置, 保持固定以确保厚度传感器获得精确的厚度测量。在比如在造纸中的 纸片形成工艺的操作过程中,当切合实际地考虑纸片颤动的程度和对 张力变化的抵抗力时,通过改变通过气压夹具施加在纸片上的压力, 可以期望地调节行进纸的位置。(在不能移动最小量至期望位置的情 况下,需要物理地移动激光装置)。 一旦已经建立纸片的新位置,利 用本发明的光学平移技术可以确定纸片上探询点的合适位置。类似地, 造纸机器的操作过程中移动纸张的轮廓如果偏离或位移使得原始探询 点不再处于最佳位置处,光学平移操纵探询点至更好的位置,而不需 要物理地移动厚度传感器。在任一情况中,光学平移允许厚度传感器 正常地起作用,而不用必须物理地移动厚度传感器。
在一个方面中,本发明涉及一种用于测量距离目标(例如移动纸 幅或纸张)的距离的三角测量传感装置,其包括
邻近目标布置的传感器头,其中传感器头包括(i)被导引至目 标的表面的入射辐射源,以及(ii)用于检测来自目标的表面上的探询 点的反射辐射的装置;
用于光学平移入射辐射以使探询点移动至期望的位置的装置;以

用于从处于期望位置处的探询点光学平移反射辐射以使通过用于 检测反射辐射的装置检测到该反射辐射的装置。本发明的特征是即 使平移反射光束,距离测量也保持正确。在没有补偿的情况下,通常 仍检测到反射光束,但是从传感器装置的一侧将丢失该光束的相当多 的部分。
在另一方面中,本发明涉及一种系统,用于测量具有第一表面和 第二表面的目标的厚度,其包括
邻近目标的第一表面布置的第一传感器头,其中第一传感器头包 括(i)被导引至目标的第一表面的第一入射辐射的第一源,以及(ii) 用于检测来自目标的第一表面上的第一探询点的第一反射辐射的第一 装置;
用于光学平移第一入射辐射以使第一探询点被移动至目标的第一 表面上的笫一期望位置的装置;
用于从处于第一期望位置处的第一探询点光学平移第一反射辐射 以使通过用于检测第一反射辐射的第一装置检测到第一反射辐射的装
置;
邻近目标的第二表面布置的第二传感器头,其中第二传感器头包
括(i)被导引至目标的第二表面的第二入射辐射的第二源,以及(ii) 用于检测来自目标的第二表面上的笫二探询点的第二反射辐射的第二
装置;
用于光学平移第二入射辐射以使第二探询点被移动至目标的第二
表面上的第二期望位置的装置;
用于从处于第二期望位置处的第二探询点光学平移第二反射辐射 以使通过用于检测第二反射辐射的第二装置检测到第二反射辐射的装 置;以及
用于测量从第一传感器头至第二传感器头的距离的装置。 在进一步的方面中,本发明涉及一种用于确定目标的位置的方法, 其包括下面的步骤
(a) 提供用于测量距离的三角测量传感装置,其包括邻近目标布 置的传感器头,其中传感器头包括(i)被导引至目标的表面的入射 辐射源,以及(ii)用于检测来自目标的表面上的探询点的反射辐射的 装置;
(b) 光学平移入射辐射,以使探询点被移动至目标表面上的期望
位置;
(c) 从探询点光学平移反射辐射,以使通过用于检测反射辐射的
装置检测到该反射辐射;以及
(d) 确定探询点的位置,例如该点相对于三角测量传感装置的高度。


图1A,1B和1C是厚度测量装置的截面示意图; 图2A从上面示出了在去除纸幅的情况下的夹板; 图2B是当气流运转时,气压夹具平面和被施加至纸幅的压力的侧 视图2C是线性气压夹具稳定器的侧视图3是具有光学元件的激光三角测量传感器的示意图,在光束路 径中定位该光学元件,以使在MD方向上布置探询点,并且该探询点 被反向偏转,描述了三角测量几何结构;
图4A是单独的光学元件的示意图4B示出了具有在光束路径中被定位的单独的光学元件的激光
三角测量传感器;
图5A是两件式(two-piece)光学元件的示意图5B是具有在光束路径中被定位的两件式光学元件的激光三角
测量传感器的示意图6A是每个具有三个区域的两件式光学元件的示意图6B是具有在光束路径中被定位的两件-三区域的光学元件的激
光三角测量传感器的示意图。
具体实施例方式
本发明涉及一种新颖的光学平移技术,该光学平移技术可被应用 于采用三角测量原理的任何距离测量装置。这些距离测量装置包括例 如具有发射光束于被测量目标的表面上的点上的固态激光源的传统激 光三角测量传感器和沿着从所述点成像激光点以及测量其关于其光轴 的反射角的斜光线布置的检测器。本发明特别适于结合到距离测量装 置中来移动被测量目标上的探询点。因此尽管将关于装配有具有激光 三角测量传感器的传感器头的纸厚度或厚度传感器描述本发明,但是 应当理解,也可以在其他装置和应用中采用本发明。
比如在King等人的美国专利6, 281, 679中公开的非接触式厚度 传感器,其于此被并入作为参考,包括上头和下头且在每一个头中具 有激光三角测量装置。通过利用激光三角测量装置识别纸片的上和下 表面的位置,并从上头和下头之间的间隔的测量减去该结果来确定在 两个头之间行进的移动纸片的厚度。
图1A描述了分别包括第一和第二外壳(以下被称作"扫描器头" 或"头")的代表性的非接触式厚度传感器系统,其包括用于测量被表 示为3的材料的移动纸幅的性质,特性或特征的各种传感器装置。头l 和2位于纸幅或纸片3的相对侧上,并且如果以在交叉方向(CD)上
跨越纸幅的扫描方式执行测量,则所述头被对准,以在它们横向穿过
正在加工方向(MD)上移动的移动纸幅时从彼此直接跨越地行进。在 第一头1中定位第一源/检测器4。在第二头2中定位笫二源/检测器5。 源/检测器4和5分别包括紧密隔开的第一和第二源4a和5a,以及分 别包括第一和第二检测器4b和5b,其被布置成来自第一源4a并且与 纸幅3的第一表面相互作用的测量能量将至少部分地返回至第一检测 器4b,并且来自第二源5a并且与纸幅3的相对或第二表面相互作用的 测量能量将至少部分地返回至第二检测器5b。在该具体系统中,第一 和第二源的纸幅面对的表面分别包括第一和第二参考位置。
源和检测器优选包括激光三角测量源和检测器,统称为探询激光 器(interrogation laser)。源/检测器布置通常被称作距离确定装置。 从由源至检测器的测量路径长度,可以确定每一个距离确定装置和纸 幅表面的一个上的测量或探询点之间的距离的值。头1和2典型地净皮 固定在合适的位置,以使探询点不在加工方向上移动,即使当在交叉 方向上扫描所述头时。
对于第一距离确定装置4,距离确定装置和纸幅表面上的第一测量 点之间的检测的距离值将被称作h,并且对于第二距离确定装置5,距 离确定装置和相对纸幅表面上的第二测量点之间的检测的距离值将被 称作12,如图1A中示出的。对于精确的厚度确定,第一和第二测量点 (或探询点)必须在x-y平面中的相同点处,但是在纸幅的相对侧上, 也就是测量点将被纸幅厚度分离。在理想的静态情况中,第一和第二 距离确定装置4和5之间的间隔s将是固定的,结果产生纸幅厚度t的 计算值t-s-仏+l2)。需要注意,纸幅的表面可以是不清楚的,并且测 量点可以定中心于纸幅的表面下面。这可以利用通常由实验确定的另 一偏移量来校正。
实际上,间隔s可以改变。为了对间隔s的这种不恒定性进行校正, 通过z-传感器装置提供扫描头之间的间隔的动态测量,其测量位于第 一头1中的z-传感器源/检测器6和位于第二头2中的z-传感器参考7 之间的多巨离z。
此外,由于扫描器头在纸张在其之间扫描时不保持完全的相互对 准,因此必须保持纸片平坦,以使小的头未对准不转化成错误的厚度 读数,也就是由于头未对准和纸片角度产生的厚度误差。在图1B和1C
描述了这种现象,图1B和1C分别示出了在MD和CD上扫描器头1, 下扫描器头2和纸幅3的相对位置。厚度误差At可被估计为 At=AlMDeMD+AlCDeCD (等式1),其中A1md和A1cd分別是加工方向和 交叉方向上的相对未对准,并且6md和0cd是平行于MD和CD方向的 纸片表面的角度。
参照图1A,在扫描头1和2之间横向穿过的移动纸幅3的一部分 被描迷为平面的,然而实际上,随着时间的过去,纸幅可以显示出如 通过纸幅3A示出的非线性图案或波形。该波形图案是各种外部压力的 影响的结果。典型地,该非线性图案将具有最小点,并且为了提供一 致和精确的厚度测量,如所示,优选在纸幅3A的最小点处定位探询点。 然而,很少的情况是 一旦安装了厚度传感器,在非线性纸幅中产生 的最小点与被固定的探询点的初始位置一致。
该厚度测量系统也可以包括如图2A和2B中所示的空气轴承稳定 器。该纸幅稳定器是基于移动空气的涡流,下文中被称作"气压夹具", 并包括夹板30,其被装配在纸幅31被稳定的地方附近,并且夹板30 中的循环空气通道32与它的上表面相符合。当空气34被引入循环空 气通道32中时,在通道上产生低压场。朝向该低压环牵引纸幅31。例 如可以经由一系列进气孔35将空气引入循环空气通道32的一侧中。 同时,通过从邻近通道的区域中的通道32逸出空气来产生较高压的穴 (pocket)。该高压区域抵消通道上的低压区域的引力。通过平衡这两 个力,在相对于通道的固定位置中可以保持纸幅的平均路径,而不需 要气压夹具的任何部分与纸幅物理接触。如显而易见的,通过调节气 压夹具可以调节上和下传感器头之间的纸幅或纸片的高度。
取代上面所述的空气轴承稳定器,可以采用在图2C中所示的线性 气压夹具或稳定器,并且在Moeller等人的美国专利6, 936, 137中对 其做进一步的描述,于此将该美国专利并入作为参考。利用该稳定器, 当纸幅在气压夹具表面上通过时,限定面积的纸幅材料居于空气轴承 之上。该面积的纸幅保持平坦,并且平行于气压夹具表面。
线性气压夹具稳定器110包括具有下部134的主体,上部32A和 132B附着在该下部134之上。该主体具有净皮分成上游上表面112A和 下游上表面112B和下表面114的操作表面。通过柯恩达(Coanda)缝 118分离上表面112A和112B。在下表面114上布置上表面112B,以
使向后突出部(backstep) 116垂直于典型地共平面的上表面112B和 下表面114。在纸幅材料138的下面定位该稳定器。
腔室130被连接至充气室120,该充气室又经由管道136连接至气 体源124。通过流量计126和压力计128可以调节流进充气室120的气 体的体积。管道136可以包括单独的通道,该单独的通道连接气体源 124至充气室120;可替代地,可以采用被钻入稳定器的下表面的多个 孔。
在操作中,空气被供给至充气室120,并且强制喷射气体通过柯恩 达缝118,喷射气体然后在弯曲表面122周围偏转。喷射气体的弯曲部 分(curvature)然后附着至上表面112B,并且继续平行于上表面112B。 喷射产生较低压力,该较低压力产生垂直于表面112B和空气轴承的吸 力。在从柯恩达缝118延伸的气流的方向的下游定位的向后突出部116 促进主要通过喷射扩张和其次通过涡流形成的附加吸力的产生,当后 者出现时。
用于两个距离确定装置的测量点的相对运动(在纸幅的平面中) 可以平4于于纸幅的运动方向,即加工方向,或垂直于交叉方向上纸幅 的运动,或两者的某个组合。
当在造纸机器中被采用时,非接触式厚度传感器特别适用于测量 巻带盘附近完成的纸的厚度。在扫描器系统上定位传感器的头,该传 感器系统通常包括跨越纸的宽度的一对水平延伸的导轨。通过直立支 柱在它们的相对端处支持所述导轨,并且所述导轨在垂直方向上间隔 了足以允许纸在导轨之间行进的空隙的距离。当进行测量时,上头和 下头都被固定至在纸上来回移动的运载工具。在下述中进一步描述了 其中由湿原料连续制造纸的造纸加工步骤,例如在MacHattie等人的 美国专利6, 805, 899中,Heaven等人的6, 466, 839中,Hu等人的 6, 149, 770中,Hagart-Alexander等人的6, 092, 003中,Heaven 等人的6, 080, 278中,Hu等人的6, 059, 931中,Hu等人的6, 853, 543中,He的5, 892, 679中,在这里其全部被并入作为参考。在Dahlquist 的美国专利NO. 4 , 879,471, Dahlquist等人的5, 094,535 ,以及Dahlquist 的5, 166, 748中公开了用于造纸加工的在线扫描传感器系统,在这 里其全部被并入作为参考。
当在造纸机器的干燥端处跨越纸来回扫描厚度传感器时,装配有
线性气压夹具和通常如在图1A-1C和图2C中所示地构造的厚度传感 器系统被用以测量纸厚度。已经发现,当纸横过头之间的空间时,交 叉方向角度eo)基本上不具有系统的非零值,而是平行于MD方向的 纸片位置显示出某种非线性轮廓。通过调节气压夹具中气压的强度可 以垂直移动该轮廓,但是该轮廓的外形基本上保持相同。该非线性轮 廓在MD上显示出最小点,其类似于波谷。常常期望在非线性轮廓的 最小点处测量纸厚度,即三角测量激光器的探询点将被导引至该最小 点。遗憾的是,实际上,仅可以在已经安装厚度传感器之后确定该最 小点的精确位置;此外,该最小点的位置可以随着时间在MD上移动。 利用本发明,光学元件被用来平移三角测量类型传感器的探询点 而不用物理地移动传感器头中的激光源和/或检测器。利用"光学元件" 通常意味着折射入射光的透明体。如于此进一步描述的,可以理解, 光学元件可以包括多个透明体以便平移探询点。该透明体可以由4壬何 合适的高折射率材料制成,其优选具有大约1.5或更高的折射率,比如 石英和塑料。
图3描述了具有在发射的激光束和反射的激光束的光路中被定位 的光学元件42的厚度传感器的头40。如果不存在光学元件,则头40 中的激光源将直接投射激光束44于纸张(未示出)的表面之上,并且 从在表面上的原始探询点48反射光束45,并且光束45被位于头40中 的检测器捕获。为了校准目的,未偏转激光束44的路径被确定为标准 路径,对于该标准路径,激光三角测量传感器记录零信号,也就是在 它的测量范围的中部。笛卡尔坐标系的原点被指定为与该反射点48 — 致。
当在头40和纸之间合适地定位光学元件42时,通过光学元件42 折射激光束44,以使离开光学元件42的光束46经由偏转路径46投射 于纸之上,从而在点49处撞击纸,该点49是距离原始反射点48 Ax的 距离。通过光学元件42,被反射的光束47也被折射。在分析光学元件 42的功能中,偏转可被认为是成功的,如果在不损失测量范围的重要 部分的情况下实现在上游和下游移动探询点过程中的充分的灵活性。 典型地,为了测量纸厚度,在x方向上在大约士lmm的范围(Ax)内移 位厚度传感器的三角测量,换句话说,移动探询位置。
光学元件具有这样的结构当偏转光束被引入三角测量激光传感
器的光路中时,该偏转光束将从移位的探询点被反射,例如在MD上, 并且以这种方式被反向偏转使得厚度传感器的三角测量性能被最小地 影响。优选地,光学元件可被定位到光路中以使探询点在x-轴上可以 移位特定量,从而通过从光路插入和去除光学元件可以在不同的MD 位置处识别纸片高度。
图3描述了一种系统,该系统包括厚度传感器的头40和在发射的 激光束和反射的激光束的光路中被定位的光学元件42。厚度测量装置 类似于在图1A中示出的,其将采用两个光学元件 一个用于从上头光 学平移发射的激光束和反射的激光束,并且另一个用于从下头光学平 移发射的激光束和反射的激光束。以该方式,可以通过从上头光学平 移激光束至目标的上表面上的期望位置处的上探询点,同时从下头光 学平移激光束至目标的下表面上的位置上的下探询点来进行厚度测 量,该下探询点基本直接位于上探询点的下面。于此描述的光学元件 也可被以该方式类似地配置,以便获得精确的纸张厚度或厚度测量。
图4A描述了单独的光学元件52,可以在其中光学元件的下表面 关于x轴限定角度eoE的x-z平面中关于y轴旋转该单独的光学元件52。 分析该结构,以便确定是否可以获得用以满足标准的参数,从而使该
而不损失测量范围的重要部分。一 、 ^
图4B描述了具有被定位在发射的激光束和反射的激光束的光路
中的单件光学元件52的厚度传感器的头40。当不存在光学元件时,头
40中的激光源沿着路径54直接投射激光束51于纸片(未示出)的表
面之上,并且从在表面上的初始探询点57反射光束55,并且光束55
被位于头40中的检测器捕获。标准非偏转路径54具有标准的返回光
轴,该光轴在y-z平面中,并与y轴形成角度eoA。标准零信号反射点
在原点处。利用如所示在合适位置的光学元件52,通过光学元件52折
射激光束51,以使离开光学元件52的光束56被投射在纸上,从而在
点59处撞击纸。反射的光束58也被光学元件52折射。
在分析该单件光学元件52的功能中,考虑入射和反射的射线的路
径。对于入射射线,通过光学元件52从来自激光三角测量传感器头40
的优势点(vantage point)计算位移Axin和Azin。对于反射的射线58,
从来自检测器并再次向下通过光学元件的优势点计算不同的位移组 AXw和Azref。之后,通过改变描述光学元件的参数,比如它的角度0OE,
它的折射率nOE,以及它的厚度hOE,求出下面关系式的解 (Ax,",^'Az,n)-( ,A)v )(等式2)。该等式的解意味着可以重新定位
探询点,以使其通过通过光学元件的三角测量被看到,就好像它在没 有光学元件的情况下处于标准零位置处。
为了确定在入射光束的x方向上的位移,利用斯内尔定律(Snell,s Law)可以获得下面的关系式<formula>formula see original document page 16</formula>
(等式3)
光路以其具有的与其进入仅沿x-轴移动时相同的角度从光学元件
出现。它继续向下直行。等式3表示该位移相对于坐标的符号。对于
正角度0OE,引起沿着x-轴的正位移。
对于反射路径,首先确定在其进入三角测量检测器时描述标准反
<formula>formula see original document page 16</formula>(等
射主光线的矢量、。该矢量具有仅在y-z平面中的分量 式4)。
垂直于光学元件的上表面的矢量^在y方向上不具有分量,
<formula>formula see original document page 16</formula>(等式5)。
对于它们的点积通过操纵表达式<formula>formula see original document page 16</formula>等式6),可以 得到这两个矢量之间的角度(Xin,并且由斯内尔定律,得知光学元件内
部的入射角和折射角之间的关系,即 <formula>formula see original document page 16</formula> (等式7)<formula>formula see original document page 16</formula>
平行于折射射线的路径的矢量&具有相对于&e的aref。并且它具有相对
于A的角度ain-aref。如果它被指定为单位矢量,则提供采用三个未知量 的三个等式。具体地,ncos("J v^ 4v- J,以及^H (等式8)。
对于&的三个分量,等式8可被求解。 一旦这被做到,可以得到反 射路径的横向位移。首先用数学方法描述光学元件的上和下平面,选 择位于上表面上的任意点、S将用于表示射线离开下表面处的点,因 此巧将被描述为^-《+s^。求解s,从而^位于下表面中。通过s^给出 横向位移。 一旦确定点巧,继之同样的过程,以便发现反射射线在何处
与x-z平面相交。该点被确定为5,且5=">"(等式9)。
求解s',确定平移的反射路径与x-z平面的交叉点。已知平移的入 射路径是Axin处x-z平面中的垂直线,因此可以验证两个路径的^^向偏 移是否对准。
作为本发明的效果的最初论证,采用单独的光学元件厚度 hOE=3mm,光学折射率nOE=1.5,反射光轴倾角eOA=45。,以及光学元 件角度00£:=10。,试图操纵入射和反射光束,从而实现相同的横向偏转。 利用等式(2),仅在+x方向上横向平移入射射线0.177mm。求解从检 测器的角度反射射线将定位的位置,发现反射射线在+x方向上也被平 移了 0.245mm。该结果示出单独的光学元件将不对入射和反射射线 提供相同量的横向偏转。由于反射射线常常具有关于光学元件的较大 角度,因此它将受更多横向偏转的支配。如果采用单独的光学元件, 则检测器将不能够"看到,,点,尽管对于小的偏转,这或许是可能的, 但是强度将损失,导致测量误差。为了适应该效应,需要返回路径上 较小的横向偏转。
在第二例子中,考虑如在图5A中所示的两件式光学元件。该光学 元件具有两个衬底,例如两块玻璃,每一个定位在相对于x-轴的不同 角度处。以这种布置,该两件式结构对能够提供平移探询位置的入射
和反射路径给予不同的角度。eta描述了偏转入射射线路径所通过的部
分的光学元件角度,并且类似地,9ref描述了平移反射路径的部分的角
度。
图5B描述了具有被定位于发射激光束和反射激光束的光路中的 两件式光学元件60, 62的厚度传感器的头40。在不存在光学元件时, 头40中的激光源沿着路径64直接投射激光束61于纸片(未示出)的 表面之上,并且从在表面上的初始探询点67反射光束65,并且光束 65被位于头40中的检测器捕获。标准非偏转路径64具有标准的返回 光轴,该光轴在x-y平面中,并与y轴形成角度0oA。利用如示出的在 合适位置的两件式光学元件,通过件62折射激光束61,并通过件60 也折射从点69反射的光束路径66和反射光束68。在纸幅沿与光学平 移激光束的方向相同的方向移动的情况下,该两件式光学元件60, 62 据说"向下游"移动探询点。如显而易见的,通过将光学元件的位置反 转180度,将在相反的方向上"向上游"光学平移探询点。
在设计实现lmm的横向偏转的优选的两件式光学元件中,使用商 业上可得到的3mm厚的窗。已经发现,依据等式2, 0^=45°的角度对 入射射线提供期望的Axin-0.987mm的横向偏转。此外,通过等式(8), 发现e^产38.6。的角度对反射路径提供类似的横向位移值, Axre产0.985mm。最后,也通过等式8确定在近似Az=-1.32mm的深度 值处出现入射和反射路径交叉所在的位置。深度交叉的负值是预期的。 这意味着三角测量装置的零信号位置现在低于原始标准位置与测量装 置的满量程3mm相同量级的值。
原则上,可以执行初始标准校准,该校准在光束路径中没有光学 元件的情况下进行,并且之后利用在合适位置的两件式光学元件获得 第二校准。在King等人的美国专利6, 967, 726中描述了用于基于三 角测量激光器的传感器的合适的校准技术,于此将其并入作为参考, 其利用在平台上被定位的目标,可以在传感器的测量范围内在垂直方 向上平移该平台。例如,该平台可以包括滑动机构,该滑动机构附着 至高度精确的稳定的可重复的校准测量装置,该校准测量装置用于在 校准过程中确定位移步骤的非常精确的指示。优选的校准测量装置是 校准线性可变差动变压器。
图6A描述了两件式光学元件的实施例,其中每一件具有三个区域 -侧面上的两个板用于在x方向上平移光束,并且中间部分或聚集透镜 在中部,其用于位移零信号位置,以与被平移的射线的位移一致。特 别地,区域I (81)和区域I (91)可以在x方向上光学平移激光束, 并且类似地,区域m (83)和区域m (93)也可以在x方向上光学平 移激光束。优选一前一后地定位包括发射和反射板的这两个件。如所 示,件72具有区域I (81),区域II (82)和区域ffl (83),并且件 70具有区域I (91),区域II (92)和区域m (93)。尽管本发明不被 三个区域的具体尺寸所限制,但是当结合采用具有大约lmm的直径的 激光束的厚度传感器使用时,件70和72中的三个区域的每一个可被 布置为平坦的拉长材料,该平坦的拉长材料大约3mm厚,5mm长和 5mm宽。在使用中,区域II (82)的上表面的平面优选平行于通过传 感器头40的下表面限定的平面。区域I (81)和区域DI (83)的每一 个被布置为限定大约45°的ein,其是光学元件角度,通过该角度偏转 入射射线路径。发射板也可以具有小的CD尺寸,但是反射板最优选地 宽和更长。如果聚集透镜具有近似lcm的直径,则需要具有约相同尺 寸的投射尺寸的对应的板。
优选与件72—前一后地定位件70,以使中心区域n (82)和中心 区域II (92)实际上可被构造为一个集成单元。在使用中,区域n (92) 的上表面的平面优选平行于通过传感器头40的下表面限定的平面。区 域I (91)和区域IE (93)的每一个被布置成限定大约38.6°的角eref, 该角度是平移反射路径的光学元件角度。
图6B描述了具有在激光束和反射激光束的光路中被定位的两件 72, 70光学元件的厚度传感器的上头40。该光学元件可被装配至头40。 在不存在光学元件时,头40中的激光源沿着路径75直接投射激光束 74至纸片(未示出)的表面之上,并且从在表面上的初始探询点97反 射光束105,并且光束105被位于头40中的检测器捕获。标准非偏转 路径74具有标准的返回光轴,该光轴在x-y平面中,并与y轴形成角 度eOA。利用在合适位置的两件式光学元件,从在表面上的探询点99 反射偏转光束76,并通过位于头40中的检测器捕获反射光束102。通 过如参考标记78所示地平行于x-轴平移光学元件,沿着平行于纸片移 动所在的加工方向的x-轴平移探询位置。
必须合适地校准光学元件。对于图6A的两件装置,这可以通过将 光学元件定位成通过区域I在校准目标的多个位置处执行三角测量来
实现。采集数据并存储该校准。对区域n和m执行类似的校准程序。
利用图6A的两件式光学元件装置,在厚度传感器的正常操作过程 中采用件70的区域I和件72的区域I,使得当跨越比如纸幅的移动目 标来回扫描厚度传感器时,入射和反射光行进通过这两个区域。如果 纸幅移动使得探询点不再处于厚度测量的最佳点处,则光学元件的其 他区域也被用于测量或探查多个纸幅位置,从而为了厚度测量而定位 新的探询点。具体地,操纵光学元件来确定三个区域的每一个中的信 号测量,并且相应的校准被用于确定在三个区域的每一个处测量的位 移。对于三个位置估计纸片高度,并且连同标准测量一起向上游和下 游增量。利用本发明,可以确定由于测量中的增大的误差(具体地, 与y位移相关的误差),测量位置是未达最佳标准的。如果这被检测 到,则将尝试其它位置。可替代地,板可被周期性地移动以探询上游 和下游位置,从而确定测量位置是否仍在理想位置。
典型地,在移动纸幅的最小或平坦区域处的探询点是期望的,因 为当在该探询点处导引三角测量激光束时可以实现精确的厚度测量。 一旦确定该新的探询点,厚度传感器可被物理地移动,以使在该新的 探询点导引来自上和下传感器头的入射激光束的探询点。可替代地, 气压夹具的压力可被调节,以便移动移动纸幅自身,而厚度传感器保 持固定,从而入射激光束反射该探询点。
如在图6A和6B中所示的板或区域不需要被固定。例如,可以采 用电动机驱动板来扫描MD位置的范围。在这种情况中,仅需要两个 独立驱动的板;查找表可以用于关联第一板的角度和第二板的角度。
上面的内容已经描述了本发明的原理,优选实施例和操作模式。 然而,本发明不应当被理解为局限于所讨论的具体实施例。因此,上 面所述的实施例将被认为是说明性的而非限制性的,并且可以理解, 在不脱离由下面的权利要求限定的本发明的范围的情况下,通过本领 域技术人员可以在这些实施例中进行变型。
权利要求
1、一种用于测量距离目标的距离的三角测量传感装置,包括:邻近目标布置的传感器头(1),其中该传感器头(1)包括:(i)被导引至目标的表面的入射辐射源(4a),以及(ii)用于检测来自目标的表面上的探询点的反射辐射的装置(4b);用于光学平移入射辐射以使探询点移动至期望的位置的装置(81,82,83);以及用于从处于期望位置处的探询点光学平移反射辐射以便由用于检测反射辐射的装置(4b)检测该反射辐射的装置(91,92,93)。
2、 权利要求l的三角测量传感装置,其中用于光学平移入射辐射 的装置(81, 82, 83 )包括第一衬底,并且用于光学平移反射辐射的 装置(91, 92, 93)包括第二衬底。
3、 权利要求2的三角测量传感装置,其中第一衬底基本上是平面 的,并且第二衬底基本上是平面的,其中第一衬底与第二衬底不共面。
4、 权利要求2的三角测量传感装置,其中笫一衬底包括第一区域, 第二区域和第三区域,并且第二衬底包括对应的第一区域(81 ),第 二区域(82)和第三区域(83),其特征在于(i)当通过第一衬底 的第一区域(81)光学平移入射辐射时,通过第二衬底的第一区域(91) 光学平移反射辐射,(ii)当通过笫一村底的第二区域(82)光学平移 入射辐射时,通过第二衬底的第二区域(92)光学平移反射辐射,以 及(iii)当通过第一衬底的第三区域(83)光学平移入射辐射时,通过 第二衬底的第三区域(93)光学平移反射辐射。
5、 一种系统,用于测量具有第一表面和第二表面的目标的厚度, 其包括邻近目标的第一表面布置的第一传感器头(1),其中该第一传感 器头包括(i)被导引至目标的第一表面的第一入射辐射的第一源 (4a),以及(ii)用于检测来自目标的第一表面上的第一探询点的第 一反射辐射的第一装置(4b);用于光学平移笫一入射辐射以使第一探询点移动至目标的第一表 面上的第一期望位置的装置(81, 82, 83);用于从处于第一期望位置处的第一探询点光学平移第一反射辐射 以便由用于检测第一反射辐射的第一装置(4a)检测第一反射辐射的 装置(91, 92, 93);邻近目标的第二表面布置的第二传感器头(2),其中该笫二传感 器头包括(i)被导引至目标的第二表面的第二入射辐射的第二源 (5a),以及(ii)用于检测来自目标的第二表面上的第二探询点的第 二反射辐射的第二装置(5b);用于光学平移第二入射辐射以使第二探询点移动至目标的第二表 面上的第二期望位置的装置(81, 82, 83);用于从处于第二期望位置处的第二探询点光学平移第二反射辐射 以便由用于检测第二反射辐射的第二装置(5a)检测第二反射辐射的 装置(91, 92, 93);以及用于测量从第一传感器头(1)至第二传感器头(2)的距离的装 置(6, 7)。
6、 权利要求5的系统,其中目标的第一表面上的第一探询点基本 上直接在目标的笫二表面上的第二探询点之上或之下。
7、 权利要求5的系统,其中用于光学平移第一入射辐射的装置包 括第一衬底,并且用于光学平移第一反射辐射的装置包括第二衬底, 并且其中用于光学平移第二入射辐射的装置包括第三衬底,并且用于光学平移第二反射辐射的装置包括第四衬底。
8、 权利要求7的系统,其中笫一衬底基本上是平面的,并且第二衬底基本上是平面的,其中第一衬底与第二村底不共面,并且其中第三衬底基本上是平面的,并且第四衬底基本上是平面的,其中第三衬 底与第四村底不共面。
9、 一种用于确定目标的位置的方法,包括下面的步骤(a) 提供用于测量距离的三角测量传感装置,该三角测量传感装 置包括邻近目标布置的传感器头(1),该传感器头(1)包括(i) 被导引至目标的表面的入射辐射源(4a),以及(ii)用于检测来自目 标的表面上的探询点的反射辐射的装置(4b);(b) 光学平移入射辐射,以使探询点移动至目标表面上的期望位置;(c) 从探询点光学平移反射辐射,以便由用于检测反射辐射的装 置检测该反射辐射;以及(d) 确定探询点的位置。
10、权利要求9的方法,其中步骤d包括分析反射辐射,以便确 定从传感器头至目标的距离。
全文摘要
公开了一种用于移动探询点的光学平移技术,在该探询点处,三角测量系统测量目标的位移。在激光三角测量传感器的正常操作中,从传感器头投射入射激光束于面对传感器头的纸幅的表面上。从该表面反射辐射,并通过传感器检测该辐射。通过三角测量计算从传感器头至纸幅表面的距离。利用该光学平移,利用多个高折射率几何结构平移入射射线路径和捕获射线路径,以使三角测量传感器的正常功能保持不被干扰。可以确定其中定位探询点的纸片上的最佳位置。
文档编号D21F7/00GK101379366SQ200680053098
公开日2009年3月4日 申请日期2006年12月8日 优先权日2005年12月22日
发明者G·I·杜克, M·K·Y·休斯 申请人:霍尼韦尔国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1