一种基于碳纤维的感温变色面料及其制备方法与流程

文档序号:26141823发布日期:2021-08-03 14:26阅读:74来源:国知局
本发明涉及变色面料的
技术领域
,具体为一种基于碳纤维的感温变色面料及其制备方法。
背景技术
:随着中国社会化进程的加快,人们生活质量逐渐提升,对于服装的多功能性的需求越来越多。比如变色功能,其通过光、温度等感应使得面料应激变色,增加衣物的时尚性或隐蔽性。在多种感应的变色面料中,感温变色面料由于可以通过温度简单操控颜色变化被广泛研究。但是感温面料的温感温度较高,传热较慢,通常需要通过外接条件才能产生,具有局限性;且不能通过人体体表温度变化产生感温变色,限制了面料做成衣服的应用价值;同时,阻燃性也是面料需要的功能之一,一般都是将面料通过浸渍阻燃剂而产生该功能,实际生活中,由于对面料的多次洗涤会降低阻燃性;此外,透气性也是面料需要的性能之一,需要保证人体穿着衣服的舒适度,但常见复合材料中,粘胶剂、阻燃剂等物质的使用,会降低孔隙率,降低透气性。综上所述,解决上述问题,制备兼顾阻燃性、透气性的一种基于碳纤维的感温变色面料具有重要意义。技术实现要素:本发明的目的在于提供一种基于碳纤维的感温变色面料及其制备方法,以解决上述
背景技术
中提出的问题。为了解决上述技术问题,本发明提供如下技术方案:一种基于碳纤维的感温变色面料,所述感温变色面料包括感温变色膜和基础面料;所述基础面料的原材料包括以下成分:按重量计,棉纤维60~70份、粘胶纤维20~25份、碳纤维8~10份;所述感温变色膜的原材料包括以下成分:按重量计,聚乙二醇12~18份、聚氨酯35~45份、氮化硼纳米片5~8份、热致变色微胶囊12~15份。较为优化地,所述热致变色微胶囊的原材料包括以下成分:按重量计,三元核心溶液18~23份、甲基丙烯酸酯16~22份、甘油硼酸酯10~12份、甲基丙烯酸10~12份、乙二醇二甲基丙烯酸酯2~3份。较为优化地,所述三元核心溶液是包括结晶紫内酯、聚丙烯、十四烷醇的均质溶液;三者的质量比为1:4:7。较为优化地,所述甘油硼酸酯的原材料包括以下成分:按重量计,硼酸24~28份、甘油36~40份、柠檬酸38~40份、次磷酸钠10~12份。较为优化地,所述微胶囊的粒径为10~15μm。较为优化地,一种基于碳纤维的感温变色面料的制备方法,包括以下步骤:步骤1:基础面料的制备:将棉纤维、粘胶纤维、碳纤维高速混合,熔融,通过网机平铺成网,水刺,浸渍在乙醇中2~3小时,通过轧机,设置温度为180~190℃,热轧成基础面料;步骤2:基础面料的预处理:将基础面料浸渍在混合溶液中活化,设置液比为1:20,温度为80~85℃,搅拌40~50分钟;过滤洗涤,得到基础面料a;步骤3:感温变色膜的制备:将15~20wt%的聚乙烯醇溶液、30~35wt%的聚氨酯溶液、5~7wt%的氮化硼纳米片分散液、5~7wt%的热致变色微胶囊分散液混合均匀,作为纺丝溶液,设置纺丝参数,执行静电纺丝;设置温度为130~135℃交联成膜,得到感温变色膜;步骤4:感温变色面料的制备:将感温变色膜覆盖在基础面料a上,通过轧机,设置温度为120~145℃,热轧,得到感温变色面料。较为优化地,步骤2中,混合溶液包括以下组分:50g/l的氢氧化钠溶液、150g/l的十八烷基胺聚氧乙烯醚双季铵盐的溶液、3g/l的聚乙二醇辛基苯基醚溶液、1g/l的氯化钠溶液。较为优化地,步骤3中,热致变色微胶囊的制备方法:将十四烷醇、结晶紫内酯、聚丙烯依次加入反应附中,设置转速为600~800rmp,温度为68~72℃,搅拌20~30分钟,得到三元核心溶液;加入去离子水,设置温度为50~55℃,继续搅拌10~15分钟;依次加入表面活性剂、甲基丙烯酸酯、甘油硼酸酯、甲基丙烯酸、乙二醇二甲基丙烯酸酯,继续搅拌2~3小时,加入过硫酸铵、硫酸亚铁溶液;设置转速为2000rmp,搅拌30~40分钟;加入叔丁基过氧化物,设置搅拌速度为800~1000rmp,温度为80~85℃,反应3.5~4.5小时,洗涤干燥,得到热致变色微胶囊。较为优化地,所述甘油硼酸酯的制备方法:将将硼酸、甘油依次放入反应釜中,加入甲苯,设置温度为135~145℃反应2~3小时;加入柠檬酸和次磷酸钠,继续搅拌1.5~2.5小时;使用甲苯纯化,乙醇洗涤,得到甘油硼酸酯。较为优化地,步骤3中,纺丝参数为:温度为25℃,湿度为70~90%,喷射速度为0.5ml/h,电压为18kv,接收距离为15~18cm。本技术方案中,以棉纤维为主体,掺杂粘胶纤维和碳纤维,形成基础面料,再将制备的感温变色膜通过热轧方式,粘结覆盖在基础面料上,形成感温变色面料。所制备的面料,具有良好的热致变色性、阻燃性、透气性。热致变色的过程为:25℃时为蓝色;温度升高颜色逐渐变淡,35℃时为白色;50℃为灰色。(1)以棉纤维为主,保证亲肤性,粘胶纤维具有较好的吸湿性,不易产生静电,而碳纤维具有良好的热导性,具有传热作用,将人体热量传输到感温变色膜层,膜层中含有氮化硼纳米片,同样具有优异的热导性,两者形成热传导回路,从而使得膜层中的热致变色微胶囊产生热至变色效应。可用于感测人体表面体温。(2)在热致变色颜料应用过程中,由于颜料不溶于水的性质,对纤维或面料的亲和力差,易分层,褪色等现象;且在混合熔融过程中流动性差,导致颜色不均匀;混纺过程中可能会破坏发光材料晶格的完整性;且热致变色过程中需要十四烷醇作为溶剂介质,让颜料和显色剂之间相互作用,弱在制备过程中,会因温度较高等其他因素使得介质损失,降低相互作用,从而产生褪色。针对这些问题,制备了热致变色微胶囊用于感温变色,增加变色的灵敏度,并解决直接用于面料中存在的问题,通过将染料、显色剂与溶剂介质三者形成最佳配比的核心溶液,再用聚合物壳层封装保护,增加热致变色染料混合物的寿命,颜色的持久度;通过聚合物壳层中的羟基、氨基、羧基等多种基团与纤维或面料之间产生静电作用和氢键作用,两者之间产生强烈的化学结合力。囊壳是甲基丙烯酸酯、甘油硼酸酯、甲基丙烯酸在交联剂乙二醇二甲基丙烯酸酯的作用下产生的。其中,制备的甘油硼酸酯具有抗氧化的作用,可以增加颜料颜色的鲜艳度,抑制氧化引起的颜色退化或黄变。同时甘油硼酸酯具有优异的阻燃性,其分解形成硼酸盐、与膜层中的氮化硼,在面料表面形成致密的涂层,有助于膨胀作用,可以有效隔绝热屏障和氧屏障。且由于其通过反应加入,其具有洗涤耐久性。另外,方案中以聚丙烯作为显色剂。(3)未使用浸渍干燥的方式直接将制备微胶囊负载于面料上,是因为微胶囊的粒径为10~15μm;颗粒与颗粒由于亲和力较大,浸渍时会产生团聚,降低了颜色的均匀性;因此将其与聚氨酯、氮化硼等物质静电纺丝形成膜层,在于面料复合,形成感温变色面料,增加颜色的均匀性。其中,通过较大的湿度控制,诱导纺丝的纳米纤维直径较大,使得氮化硼纳米片沿着每个纳米纤维堆叠,形成互穿的网络,将微胶囊包覆其中。同时由于静电排斥力是的,固化交联的纳米纤维膜产生较为蓬松的骨架,产生较大的孔,增加透气性。原理:在较高的湿度下,水分团簇较高,促进溶剂的挥发和静电耗散,使得射流形成较高的凝固速度,从而产生直径较大的纤维膜。(4)将基础面料做了预处理,将其浸渍在氢氧化钠溶液、十八烷基胺聚氧乙烯醚双季铵盐的溶液、聚乙二醇辛基苯基醚溶液、氯化钠溶液中浸渍处理,通过在碱性溶液中,与阳离子溶剂反应,得到具有阳离子的棉织物,同时,氯化钠盐的加入,可以增加膜层与面料的作用力,增加两者之间的粘附力,在不加入粘胶剂的条件下,是两者复合形成感温变色面料。与现有技术相比,本发明所达到的有益效果是:(1)让基础面料层中的碳纤维和感温变色膜中的氮化硼中产生热传导,将热量作用于热致变色微胶囊产生热至变色效应;(2)将热至变色涂料封装在聚合物壳层形成微胶囊中,有效保护涂料的使用寿命,以及分散均匀性;(3)在微胶囊的壳层中引入反应性的甘油硼酸酯,增加抗氧化性,抑制颜料的被氧化,增加颜色鲜艳度;并协同氮化硼、碳纤维形成阻燃性;(4)将微胶囊通过静电纺丝成膜,增加微胶囊的分散性,抑制团聚引起的颜料分布不均;(5)控制纺丝过程中的湿度,形成较粗的纳米纤维,从而使得膜层具有较高的透气性;(6)通过对基础面料的预处理,增加面料于膜层之间的粘附力,从而不使用粘胶剂。具体实施方式下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例1:步骤1:基础面料的制备:将棉纤维、粘胶纤维、碳纤维高速混合,熔融,通过网机平铺成网,水刺,浸渍在乙醇中2小时,通过轧机,设置温度为180℃,热轧成基础面料;步骤2:基础面料的预处理:将等体积的50g/l的氢氧化钠溶液、150g/l的十八烷基胺聚氧乙烯醚双季铵盐的溶液、3g/l的聚乙二醇辛基苯基醚溶液、1g/l的氯化钠溶液混合形成混合溶液;将基础面料浸渍在混合溶液中活化,设置液比为1:20,温度为80℃,搅拌40分钟;过滤洗涤,得到基础面料a;步骤3:感温变色膜的制备:(1)将将硼酸、甘油依次放入反应釜中,加入甲苯,设置温度为135℃反应2小时;加入柠檬酸和次磷酸钠,继续搅拌1.5小时;使用甲苯纯化,乙醇洗涤,得到甘油硼酸酯,备用。(2)将十四烷醇、结晶紫内酯、聚丙烯依次加入反应附中,设置转速为600rmp,温度为68℃,搅拌20分钟,得到三元核心溶液;加入去离子水,设置温度为50℃,继续搅拌10分钟;依次加入表面活性剂、甲基丙烯酸酯、甘油硼酸酯、甲基丙烯酸、乙二醇二甲基丙烯酸酯,继续搅拌2小时,加入过硫酸铵、硫酸亚铁溶液;设置转速为2000rmp,搅拌30分钟;加入叔丁基过氧化物,设置搅拌速度为800rmp,温度为80℃,反应3.5小时,洗涤干燥,得到热致变色微胶囊,备用。(3)将15wt%的聚乙烯醇溶液、30wt%的聚氨酯溶液、5wt%的氮化硼纳米片分散液、5wt%的热致变色微胶囊分散液混合均匀,作为纺丝溶液,设置纺丝参数为:温度为25℃,湿度为70%,喷射速度为0.5ml/h,电压为18kv,接收距离为15cm,执行静电纺丝;设置温度为130℃交联成膜,得到感温变色膜;步骤4:感温变色面料的制备:将感温变色膜覆盖在基础面料a上,通过轧机,设置温度为120℃,热轧,得到感温变色面料。本实施例中,所述基础面料的原材料包括以下成分:按重量计,棉纤维60份、粘胶纤维20份、碳纤维8份;所述感温变色膜的原材料包括以下成分:按重量计,聚乙二醇12份、聚氨酯35份、氮化硼纳米片5份、热致变色微胶囊12份;所述热致变色微胶囊的原材料包括以下成分:按重量计,三元核心溶液18份、甲基丙烯酸酯16份、甘油硼酸酯10份、甲基丙烯酸10份、乙二醇二甲基丙烯酸酯2份;所述甘油硼酸酯的原材料包括以下成分:按重量计,硼酸24份、甘油36份、柠檬酸38份、次磷酸钠10份。实施例2:步骤1:基础面料的制备:将棉纤维、粘胶纤维、碳纤维高速混合,熔融,通过网机平铺成网,水刺,浸渍在乙醇中3小时,通过轧机,设置温度为190℃,热轧成基础面料;步骤2:基础面料的预处理:将等体积的50g/l的氢氧化钠溶液、150g/l的十八烷基胺聚氧乙烯醚双季铵盐的溶液、3g/l的聚乙二醇辛基苯基醚溶液、1g/l的氯化钠溶液混合形成混合溶液;将基础面料浸渍在混合溶液中活化,设置液比为1:20,温度为85℃,搅拌50分钟;过滤洗涤,得到基础面料a;步骤3:感温变色膜的制备:(1)将将硼酸、甘油依次放入反应釜中,加入甲苯,设置温度为145℃反应3小时;加入柠檬酸和次磷酸钠,继续搅拌2.5小时;使用甲苯纯化,乙醇洗涤,得到甘油硼酸酯,备用。(2)将十四烷醇、结晶紫内酯、聚丙烯依次加入反应附中,设置转速为800rmp,温度为72℃,搅拌30分钟,得到三元核心溶液;加入去离子水,设置温度为55℃,继续搅拌15分钟;依次加入表面活性剂、甲基丙烯酸酯、甘油硼酸酯、甲基丙烯酸、乙二醇二甲基丙烯酸酯,继续搅拌3小时,加入过硫酸铵、硫酸亚铁溶液;设置转速为2000rmp,搅拌40分钟;加入叔丁基过氧化物,设置搅拌速度为1000rmp,温度为85℃,反应4.5小时,洗涤干燥,得到热致变色微胶囊,备用。(3)将20wt%的聚乙烯醇溶液、35wt%的聚氨酯溶液、7wt%的氮化硼纳米片分散液、5~7wt%的热致变色微胶囊分散液混合均匀,作为纺丝溶液,设置纺丝参数为:温度为25℃,湿度为90%,喷射速度为0.5ml/h,电压为18kv,接收距离为18cm,执行静电纺丝;设置温度为135℃交联成膜,得到感温变色膜;步骤4:感温变色面料的制备:将感温变色膜覆盖在基础面料a上,通过轧机,设置温度为145℃,热轧,得到感温变色面料。本实施例中,所述基础面料的原材料包括以下成分:按重量计,棉纤维70份、粘胶纤维25份、碳纤维10份;所述感温变色膜的原材料包括以下成分:按重量计,聚乙二醇18份、聚氨酯45份、氮化硼纳米片8份、热致变色微胶囊15份;所述热致变色微胶囊的原材料包括以下成分:按重量计,三元核心溶液23份、甲基丙烯酸酯22份、甘油硼酸酯12份、甲基丙烯酸12份、乙二醇二甲基丙烯酸酯3份;所述甘油硼酸酯的原材料包括以下成分:按重量计,硼酸28份、甘油40份、柠檬酸40份、次磷酸钠12份。实施例3:步骤1:基础面料的制备:将棉纤维、粘胶纤维、碳纤维高速混合,熔融,通过网机平铺成网,水刺,浸渍在乙醇中2.5小时,通过轧机,设置温度为185℃,热轧成基础面料;步骤2:基础面料的预处理:将等体积的50g/l的氢氧化钠溶液、150g/l的十八烷基胺聚氧乙烯醚双季铵盐的溶液、3g/l的聚乙二醇辛基苯基醚溶液、1g/l的氯化钠溶液混合形成混合溶液;将基础面料浸渍在混合溶液中活化,设置液比为1:20,温度为82℃,搅拌45分钟;过滤洗涤,得到基础面料a;步骤3:感温变色膜的制备:(1)将硼酸、甘油依次放入反应釜中,加入甲苯,设置温度为140℃反应2.5小时;加入柠檬酸和次磷酸钠,继续搅拌2小时;使用甲苯纯化,乙醇洗涤,得到甘油硼酸酯,备用。(2)将十四烷醇、结晶紫内酯、聚丙烯依次加入反应附中,设置转速为700rmp,温度为70℃,搅拌25分钟,得到三元核心溶液;加入去离子水,设置温度为52℃,继续搅拌12分钟;依次加入表面活性剂、甲基丙烯酸酯、甘油硼酸酯、甲基丙烯酸、乙二醇二甲基丙烯酸酯,继续搅拌2.5小时,加入过硫酸铵、硫酸亚铁溶液;设置转速为2000rmp,搅拌35分钟;加入叔丁基过氧化物,设置搅拌速度为900rmp,温度为82℃,反应4小时,洗涤干燥,得到热致变色微胶囊,备用。(3)将18wt%的聚乙烯醇溶液、32wt%的聚氨酯溶液、6wt%的氮化硼纳米片分散液、6wt%的热致变色微胶囊分散液混合均匀,作为纺丝溶液,设置纺丝参数为:温度为25℃,湿度为80%,喷射速度为0.5ml/h,电压为18kv,接收距离为16cm,执行静电纺丝;设置温度为132℃交联成膜,得到感温变色膜;步骤4:感温变色面料的制备:将感温变色膜覆盖在基础面料a上,通过轧机,设置温度为132℃,热轧,得到感温变色面料。本实施例中,所述基础面料的原材料包括以下成分:按重量计,棉纤维65份、粘胶纤维22份、碳纤维9份;所述感温变色膜的原材料包括以下成分:按重量计,聚乙二醇15份、聚氨酯40份、氮化硼纳米片6份、热致变色微胶囊14份;所述热致变色微胶囊的原材料包括以下成分:按重量计,三元核心溶液20份、甲基丙烯酸酯19份、甘油硼酸酯11份、甲基丙烯酸11份、乙二醇二甲基丙烯酸酯2.5份;所述甘油硼酸酯的原材料包括以下成分:按重量计,硼酸26份、甘油38份、柠檬酸39份、次磷酸钠11份。实施例4:不加氮化硼;其余与实施例3相同;实施例5:不加甘油硼酸酯;其余与实施例3相同;实施例6:将静电纺丝的湿度降至30%;其余与实施例3相同;实施例7:不对基础面料进行预处理,用常用粘胶代替;其余与实施例3相同;实验1:将实施例1中制备的微胶囊进行变色测试:将微胶囊再与载玻片,缓慢加热,记录样品颜色的转变,观察颜色的转变。结论:热致变色的过程为:25℃时为蓝色;温度升高颜色逐渐变淡,35℃时为白色;然后逐渐变灰,50℃时为灰色。实验2:将实施例1~7中制备的感温变色面料,进行相关测试,按照gb/t5453的标准方法,对面料进行透气性实验;按照gb/t2406的标准方法,测定样品的极氧指数,判断阻燃性;按照gb/t11048的标准方法,测定样品的传热系数;结果如下:实施例实施例1实施例2实施例3实施例4实施例5实施例6实施例7透气率761.8mm/s771.3mm/s765.4mm/s724.5mm/s763.2mm/s654.2mm/s632.5mm/s极氧指数33.6%33.9%34.1%32.5%31.8%34.1%33.7%传热系数596.1w/m2.k598.5w/m2.k600.3w/m2.k506.3w/m2.k576.3w/m2.k589.1w/m2.k558.4w/m2.k结论:从实施例1~3的数据中可以看到,所制备的感温变色面料具有优异的透气性,透气率达到了760mm/s以上,具有优异的阻燃性,可高达34.2%,具有优异的传热系数,可通过将体温传递,使得光致变色微胶囊变色。对比实施例4和实施例3的数据可以发现:三个数据均有降低。透气率的降低是因为,氮化硼片会沿着膜层中纳米纤维堆叠,从而增加纤维中的蓬松性,增加透气率;而极氧指数的降低,以及传热指数的降低,是因为其本身特质所导致的。对比实施例5和实施例3的数据可以发现:极氧指数显著降低,因为所制备的甘油硼酸酯具有阻燃性,可以增加膜的阻燃性,同时其具有抗氧化性,可以降低颜料的褪色,增加颜色的鲜艳度。对比实施例6和实施例3的数据可以发现:透气性显著降低,因为在较高的湿度下,水分团簇较高,促进溶剂的挥发和静电耗散,使得射流形成较高的凝固速度,从而产生直径较大的纤维膜,从而固化交联的纳米纤维膜产生较为蓬松的骨架,产生较大的孔,增加透气性。对比实施例6和实施例3的数据可以发现:透气性和传热指数下降,因为粘胶会降低空隙,从而降低透气性,同时,会降低面料整体的传热系数,因为会降低碳纤维与氮化硼的接触,增加传热阻力。最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1