反蛋白石胶体晶体纤维的制备方法

文档序号:9301024阅读:445来源:国知局
反蛋白石胶体晶体纤维的制备方法
【技术领域】
[0001]本发明涉及一种反蛋白石胶体晶体纤维的制备方法。
【背景技术】
[0002]介电材料二氧化硅和聚合物单分散球制备得到的胶体晶体通常用于获得可控三维介电周期性材料,如光子晶体,这些材料在长度尺度上具有一定结构,由于布拉格衍射可以改变光的延伸,这些材料对于特定波长的光具有阻挡作用,因此光在晶体中会被多次反射和干扰,这样光子晶体对特定波长的光呈现光子禁带性质。这一性质使得光子晶体具有大量的应用,如增强或抑制光的同步发射、光过滤和转换,可以控制可见光和红外光的传递。由于反蛋白石结构光子晶体具有全禁带性质而广泛应用于波导,光存储和光过滤等领域。
[0003]由于反结构光子晶体纤维具有光子传播的优势,受到人们极大的关注。目前,反结构光子晶体的制备方法主要有两种,模板法和毛细管载体法。模板法主要是利用光刻蚀技术得到微通道,随后在微通道中填充聚合物胶体晶体模板,在胶体晶体空隙间填充无机颗粒如二氧化硅或二氧化钛颗粒,最后通过烧结将聚合物胶体晶体模板去除,留下由空气球规则排列的反蛋白石胶体晶体纤维。这种方法较复杂且成本高昂,产量低,尺寸受限。毛细管载体法即将聚合物胶体溶液填充或涂覆到毛细管内表面,随后与模板法一样去模板。毛细管载体法产量低且会在表面形成裂纹缺陷,裂纹缺陷对光波的传输是不利的。

【发明内容】

[0004]为解决上述技术问题,本发明的目的是提供一种产量高、尺寸可控、内部无裂纹的反蛋白石胶体晶体纤维的制备方法。
[0005]本发明的反蛋白石胶体晶体纤维的制备方法,包括步骤:
[0006](I)利用微乳液法在聚苯乙烯(St)微球的表面共聚一层聚丙烯酸甲酯(MMA)与聚丙烯酸(AA)的共聚物,形成核为聚苯乙烯的壳核结构的P-(St-MMA-AA)微球;
[0007](2)取质量体积分数为0.3 %?1.0 %的所述P- (St-MMA-AA)微球分散液,将所述P-(St-MMA-AA)微球分散液与二氧化硅溶胶纳米球按质量比为1:0.3?0.6混合均匀形成胶体溶液,所述P-(St-MMA-AA)微球与所述二氧化硅纳米球垂直沉降自组装后置于50°C烘箱中烘干得到条状胶体晶体纤维;
[0008](3)将所述胶体晶体纤维条置于500°C烘箱中烧结2h除去P-(St-MMA-AA)微球,形成反蛋白结构光子晶体纤维。
[0009]进一步的,所述步骤(I)中于烧瓶中加入2ml甲基炳烯酸甲脂、2ml丙烯酸、38ml聚苯乙稀、200ml去离子水、O?0.033g十二烧基苯磺酸(SDS)、Ig碳酸氢钠,并搅拌均勾,在70°C下搅拌半小时后加入2ml过硫酸铵溶液,将温度升到80°C继续搅拌反应10小时合成尺寸在190?450nm的所述P-(St-MMA-AA)微球。
[0010]进一步的,所述步骤(2)中取尺寸为300nm的所述P-(St-MMA-AA)微球配制所述P-(St-MMA-AA)微球分散液。
[0011]进一步的,所述二氧化娃溶胶中二氧化娃颗粒平均尺寸为10?20nm。
[0012]进一步的,所述步骤⑵中取质量体积分数为0.4 %?0.6 %的所述P-(St-MMA-AA)微球分散液,将所述P-(St-MMA-AA)微球分散液与二氧化硅溶胶纳米球按质量比为1:0.4?0.6混合均匀形成胶体溶液,所述P-(St-MMA-AA)微球与所述二氧化硅溶胶纳米球垂直沉降自组装后置于50°C烘箱中烘干得到胶体晶体纤维。
[0013]借由上述方案,本发明的反蛋白石胶体晶体纤维的制备方法有益效果如下:
[0014]1、用简单的垂直沉降方法即可得到全光带间隙的条状反蛋白石结构光子晶体纤维;
[0015]2、通过改变制备体系分散液容积,可制得长度3cm以上,宽度20微米到300微米之间的光子晶体纤维条;
[0016]3、光子晶体纤维内部无裂缝,有利于光的传导;
[0017]4、产率较高,一次可以制备数百到上千根。
[0018]上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
【附图说明】
[0019]图1是本发明的反蛋白石结构胶体晶体纤维的制备流程;
[0020]图2是本发明制得的不同颜色的结构色纤维条。
【具体实施方式】
[0021]下面结合附图和实施例,对本发明的【具体实施方式】作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
[0022]参见图1,一种反蛋白石胶体晶体纤维的制备方法,步骤如下:
[0023](I)利用微乳液法在聚苯乙烯(St)微球的表面共聚一层聚丙烯酸甲酯(MMA)与聚丙烯酸(AA)的共聚物,合成核为聚苯乙烯的壳核结构的P-(St-MMA-AA)微球;
[0024](2)取质量体积分数为 0.3 % ?1.0 % 的 P- (St-MMA-AA)微球,将 P- (St-MMA-AA)微球与硅溶胶纳米球按质量比为1:0.3?0.6混合均匀形成胶体溶液,P-(St-MMA-AA)微球与硅溶胶纳米球垂直沉降自组装后置于50°C烘箱中烘干得到胶体晶体纤维;
[0025](3)将胶体晶体纤维条置于500°C烘箱中烧结2h除去P-(St-MMA-AA)微球,形成反蛋白结构光子晶体纤维。
[0026]具体的,步骤⑴中于烧瓶中加入2ml甲基炳烯酸甲脂、2ml丙烯酸、38ml聚苯乙烯、200ml去离子水、O?0.033g十二烷基苯磺酸(SDS)、Ig碳酸氢钠,并搅拌均匀,在70°C下搅拌半小时后加入2ml过硫酸铵溶液,将温度升到80°C继续搅拌反应10小时合成尺寸在190 ?450nm 的 P-(St-MMA-AA)微球。
[0027]实施例1:
[0028]取粒径为190nm,质量为60mg P-(St-MMA-AA)微球以及18mg 二氧化娃颗粒,配制成P-(St-MMA-AA)微球质量体积分数为0.3%,P-(St-MMA-AA)微球与二氧化硅溶胶按质量比为1:0.3的分散液20ml,盛放于25ml烧杯中,超声混合使两者混合均匀后将其放于50°C烘箱中烘干得到胶体晶体纤维条,将胶体晶体纤维条置于500°C烘箱中烧结2h除去P-(St-MMA-AA)微球,形成反蛋白结构光子晶体纤维条。
[0029]实施例2:
[0030]取尺寸为300nm、质量为80mg的P-(St-MMA-AA)微球以及32mg 二氧化硅颗粒,配制成P-(St-MMA-AA)质量体积分数为0.4%,P-(St-MMA-AA)微球与二氧化硅溶胶颗粒质量比为1:0.4的分散液20ml,分散液盛放于25ml烧杯中,超声使两者混合均匀后置于50°C烘箱中烘干得到胶体晶体纤维条,将胶体晶体纤维条置于500°C烘箱中烧结2h除去P-(St-MMA-AA)微球,形成反蛋白结构光子晶体纤维条。
[0031]实施例3:
[0032]取尺寸为400nm、质量为10mg的P-(St-MMA-AA)微球以及50mg 二氧化硅颗粒,配制成P-(St-MMA-AA)质量体积分数为0.5%,P-(St-MMA-AA)微球与二氧化硅溶胶颗粒质量比为1:0.5的分散液20ml ;分散液盛放于25ml烧杯中,超声使两者混合均勾后置于50°C烘箱中烘干得到胶体晶体纤维条,将胶体晶体纤维条置于500°C烘箱中烧结2h除去P-(St-MMA-AA)微球,形成反蛋白结构光子晶体纤维条。
[0033]实施例4:
[0034]取尺寸为448nm、质量为80mg的P-(St-MMA-AA)微球以及48mg 二氧化娃颗粒,配制成P-(St-MMA-AA)质量体积分数为0.6%,P-(St-MMA-AA)微球与二氧化硅溶胶颗粒质量比为1:0.6的分散液20ml ;分散液盛放于25ml烧杯中,超声使两者混合均勾后置于50°C烘箱中烘干得到胶体晶体纤维条,将胶体晶体纤维条置于500°C烘箱中烧结2h除去P-(St-MMA-AA)微球,形成反蛋白结构光子晶体纤维条。
[0035]以上四个实施例中二氧化硅颗粒均为不规则固体颗粒,其尺寸为10_20nm。
[0036]如图2所示,P-(St-MMA-AA)微球与二氧化硅自组装垂直沉降后置于50°C烘箱中烘干,制得的胶体晶体纤维条的长度在3.5cm左右,宽度在50微米-200微米之间;将胶体晶体纤维条置于500°C烘箱中烧结2h除去P-(St-MMA-AA)微球,得到空气球密堆的间隙填有折射率为1.56的二氧化硅颗粒的反蛋白结构光子晶体纤维条,用不同尺寸的P-(St-MMA-AA)微球得到不同颜色的反蛋白结构光子晶体纤维条。
[0037]由上述各实施例可见,本发明的反蛋白石胶体晶体纤维的制备方法在P- (St-MMA-AA)微球尺寸为300nm,其分散液质量体积分数为0.4 %?0.6 %、与二氧化硅溶胶按质量比为1:0.4?0.6时,获得最佳长度与宽度的反蛋白结构光子晶体纤维条;采用300nm的P-(St-MMA-AA)微球,是为了在自组装垂直沉降过程中,能够较均匀地与二氧化硅颗粒作用,获得表面与内部均无裂纹的反蛋白石胶体晶体纤维,且制得的反蛋白石胶体晶体纤维可以从载玻片表面剥离,方便取用。
[0038]以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。
【主权项】
1.一种反蛋白石胶体晶体纤维的制备方法,其特征在于,包括步骤: (1)利用微乳液法在聚苯乙烯(St)微球的表面共聚一层聚丙烯酸甲酯(MMA)与聚丙烯酸(AA)的共聚物,形成核为聚苯乙烯的壳核结构的P- (St-MMA-AA)微球; (2)取质量体积分数为0.3%?1.0%的所述P- (St-MMA-AA)微球分散液,将所述P- (St-MMA-AA)微球分散液与二氧化硅溶胶纳米球按质量比为1:0.3?0.6混合均匀形成胶体溶液,所述P- (St-MMA-AA)微球与所述二氧化硅纳米球垂直沉降自组装后置于50°C烘箱中烘干得到条状胶体晶体纤维; (3)将所述胶体晶体纤维条置于500°C烘箱中烧结2h除去P-(St-MMA-AA)微球,形成反蛋白结构光子晶体纤维。2.根据权利要求1所述的反蛋白石胶体晶体纤维的制备方法,其特征在于:所述步骤Cl)中于烧瓶中加入2ml甲基炳烯酸甲脂、2ml丙烯酸、38ml聚苯乙烯、200ml去离子水、O?0.033g十二烧基苯磺酸(SDS)、lg碳酸氢钠,并搅拌均勾,在70°C下搅拌半小时后加入2ml过硫酸铵溶液,将温度升到80°C继续搅拌反应10小时合成尺寸在190?450nm的所述P- (St-MMA-AA)微球。3.根据权利要求2所述的反蛋白石胶体晶体纤维的制备方法,其特征在于:所述步骤(2)中取尺寸为300nm的所述P- (St-MMA-AA)微球配制所述P- (St-MMA-AA)微球分散液。4.根据权利要求3所述的反蛋白石胶体晶体纤维的制备方法,其特征在于:所述二氧化硅溶胶中二氧化硅颗粒平均尺寸为10?20nm。5.根据权利要求4所述的反蛋白石胶体晶体纤维的制备方法,其特征在于:所述步骤(2 )中取质量体积分数为0.4%?0.6%的所述P- (St-MMA-AA)微球分散液,将所述P- (St-MMA-AA)微球分散液与二氧化硅溶胶纳米球按质量比为1:0.4?0.6混合均匀形成胶体溶液,所述P- (St-ΜΜΑ-ΑΑ)微球与所述二氧化硅溶胶纳米球垂直沉降自组装后置于50°C烘箱中烘干得到胶体晶体纤维。
【专利摘要】本发明涉及一种反蛋白石胶体晶体纤维的制备方法,通过垂直沉降两种组分胶体球(微米或者纳米尺寸),即聚苯乙烯壳核结构球和二氧化硅颗粒,得到3.5cm左右长,宽度和厚度可调的条状反蛋白石胶体晶体纤维,产量高,尺寸可控,方法快捷方便,纤维表面与内部均无裂纹,且制得的反蛋白石胶体晶体纤维条可以从载玻片表面剥离,方便取用。
【IPC分类】C08F257/02, C08F220/14, D01F9/08, C08F220/06
【公开号】CN105019057
【申请号】CN201510400512
【发明人】张克勤, 丁晨, 袁伟
【申请人】南通纺织丝绸产业技术研究院
【公开日】2015年11月4日
【申请日】2015年7月9日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1