一种碳纳米管增强木质素基碳纤维的制备方法

文档序号:9593303阅读:607来源:国知局
一种碳纳米管增强木质素基碳纤维的制备方法
【技术领域】
[0001]本发明属于低成本碳纤维的制备领域,特别涉及一种使用改性碳纳米管采用熔融纺丝方法制备低成本木质素基碳纤维的方法。
【背景技术】
[0002]碳纤维由于具有高比强度、高比模量、耐高温、耐腐蚀、抗疲劳等特性而作为复合材料的增强体广泛应用于航空航天、国防军事等高端领域。生产成本高,原料不可再生,纺丝工艺污染严重等因素极大限制了其在汽车、高铁、建筑等领域的应用。寻求可再生原料,采用环境友好型纺丝工艺,降低其成产成本,拓展其在民用市场中的应用成为未来的发展方向。作为造纸黑液的副产物,木质素由于具有原料可再生,价格低廉,可熔融加工等优点而成为制备低成本碳纤维的理想原料。专利CN104797750 A公布了一种衍生自木质素/残炭的碳纤维,通过将木质素进行酯化改性然后与残炭熔融共混,通过纺丝头挤出纤维。由于所用残炭的尺寸较大,因此可纺性较差,同时存在堵塞喷丝头的风险。专利US2011/0285049 A1公布了一种采用碳纳米管增强碳纤维前驱体木质素纤维的方法,成功制备了连续化的木质素纤维。但由于碳纳米管与木质素基体间的相互作用较差,导致力学性能提高不显著。针对上述问题,本专利将碳纳米管进行改性,增加其与木质素间的相容性,采用熔融纺丝的方法成功制备了木质素/碳纳米管复合纤维,并经预氧化和碳化得到增强的木质素基碳纤维。本专利具有添加量少,分散均匀,力学强度高,界面相容性好,纤维品质优良,生产成本低,可进行连续化生产等优点,有望作为增强材料应用于汽车、高铁、建筑、体育用品等领域,市场前景广阔。

【发明内容】

[0003]本发明所要解决的技术问题是提供熔融纺制备碳纳米管增强木质素基碳纤维的方法,该发明提供的碳纤维具有添加量少,分散均匀,力学强度高,界面相容性好,纤维品质优良,生产成本低,可进行连续化生产等优点,有望作为增强材料应用于汽车、高铁、建筑、体育用品等领域,市场前景广阔。
[0004]为了解决上述技术问题,本发明提供了一种碳纳米管增强木质素基碳纤维的制备方法,其特征在于,包括:
[0005]步骤1:将碳纳米管分散于有机溶剂中,先加入异氰酸酯在10?80°C反应1?5h,然后加入木质素在10?80°C反应1?5h,过滤、干燥后得到改性碳纳米管;
[0006]步骤2:将纯化后的木质素与步骤1得到的改性碳纳米管混合,将所得的混合物在180?250°C下经双螺杆造粒机造粒得到木质素/碳纳米管复合母粒,将木质素/碳纳米管复合母粒加入熔融纺丝机中进行纺丝,得到木质素/碳纳米管复合纤维;
[0007]步骤3:将木质素/碳纳米管复合纤维经预氧化和碳化得到碳纳米管增强木质素基碳纤维。
[0008]优选地,所述的步骤1中的有机溶剂为三氯甲烷、二氯甲烷、四氢呋喃和二甲基亚砜中的一种或多种。
[0009]优选地,所述的步骤1中的异氰酸酯为甲苯二异氰酸酯和二苯基甲烷二异氰酸酯中的一种或两种。
[0010]优选地,所述的步骤1中的木质素为硫酸盐木质素、木质素磺酸盐、有机溶剂提取木质素、酶解木质素和爆破木质素中的一种或多种。
[0011]优选地,所述的步骤1中的碳纳米管为表面含有羧基或羟基的碳纳米管,直径为5_50nm,长度为 5-50 μ m。
[0012]优选地,所述的步骤1中碳纳米管、异氰酸酯和木质素的质量比为1: 0.1?5: 0.1 ?5。
[0013]优选地,所述的步骤2中的纺丝温度为190?260°C,纺丝速度为50?2000m/min,
牵伸倍数为1?5倍。
[0014]优选地,所述的改性碳纳米管为接枝木质素的碳纳米管,其接枝量为碳纳米管质量的0.5%?30%。
[0015]优选地,所述的步骤2中改性碳纳米管的添加量为混合物总质量的0.1 %?10%。
[0016]优选地,所述的步骤3中的预氧化的具体步骤为:将木质素/碳纳米管复合纤维以升温速率为0.05?5°C /min升温到260?320°C进行预氧化,预氧化时间为10?120min。
[0017]优选地,所述的步骤3中的碳化的具体步骤为:将木质素/碳纳米管复合纤维以升温速率2?10°C /min升温到1000?2500°C进行碳化,碳化时间为lOmin?32h。
[0018]优选地,所述的步骤2中的木质素为纯化后的木质素,其纯化方法为:将木质素溶于pH = 12的碱性溶液中,经陶瓷膜过滤设备过滤后加酸至pH = 2沉淀,反复清洗后干燥。
[0019]更优选地,所述的陶瓷膜过滤设备的过滤精度小于1 ym。
[0020]与现有技术相比,本发明的有益效果是:
[0021](1)本发明中所提供的碳纳米管增强木质素基碳纤维的界面相容性好,碳纳米管添加量少,分散均匀,力学强度高,界面相容性好;
[0022](2)本发明中所提供的碳纳米管增强木质素基碳纤维采用的是熔融纺丝方法,可纺性好,纤维品质优良,生产成本大幅降低,可进行连续化生产;
[0023](3)本发明中所提供的碳纳米管增强木质素基碳纤维具有强度高,表面粗糙,利于复合材料力学性能的提高等优点,有望作为增强材料应用于汽车、高铁、建筑、体育用品等领域,市场前景广阔。
【附图说明】
[0024]图1改性前后碳纳米管的红外光谱图;
[0025]图2改性前后碳纳米管的热失重曲线;
[0026]图3碳纳米管增强木质素基碳纤维扫描电镜图((a).表面;(b).横截面;(c).截面放大图)。
【具体实施方式】
[0027]下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
[0028]以下实施例中所用的木质素为购自(Suzano Papel e Celulose S.A.)公司的硫酸盐木质素。所用的碳纳米管为表面含有羧基的碳纳米管,直径为5-50nm,长度为5-50 μmD
[0029]实施例1
[0030]一种碳纳米管增强木质素基碳纤维的制备方法,具体步骤为:
[0031](1)将3g碳纳米管(羟基质量含量1.5%,)加入200ml四氢呋喃中,超声分散40min (超声功率120W,超声频率40KHz),先在50°C下加入2ml甲苯2,4_ 二异氰酸酯反应30min,然后加入2g木质素反应2h,过滤、干燥后得到改性碳纳米管(木质素接枝量为碳纳米管质量的8% )。如图1和图2所示,为改性前后碳纳米管的红外光谱图和热失重曲线。
[0032](2)将木质素溶于pH = 12的NaOH溶液中,经陶瓷膜过滤设备(过滤精度为0.14 μπι)过滤后加硫酸至pH = 2沉淀,反复用水清洗后干燥得到纯化木质素。将497.5g纯化后的木质素粉末和2.5g改性碳纳米管粉末充分混合,将所得的混合物经双螺杆造粒机造粒得到木质素/碳纳米管复合母粒,螺杆五区温度分别为190°C、200°C、220°C、225°C和225°C。将干燥后的复合母粒加入熔融纺丝机中进行纺丝得到木质素/碳纳米管复合纤维,纺丝温度为190?240 °C,计量栗转速为20rpm,规格为1.8cc/r,喷丝板规格为0.18mmX 12f,纺丝速度为150m/min,牵伸倍数为1.2倍。
[0033](3)将木质素/碳纳米管复合纤维先以升温速率为0.2°C /min升温到270°C进行预氧化,预氧化时间为60min,然后以升温速率3°C /min升温到1000°C进行碳化,碳化时间为lOmin,得到碳纳米管增强木质素基碳纤维。其扫描电镜图如图3所示。
[0034]所得碳纤维纤维直径为56 μ m,断裂强度为0.60GPa,断裂模量为49GPa。
[0035]实施例2
[0036]—种碳纳米管增强木质素基碳纤维的制备方法,具体步骤为:
[0037](1)将5g碳纳米管(羟基质量含量1.5%)加入250ml三氯甲烷中,超声分散30min (超声功率120W,超声频率40KHz),先在50°C下加入3ml 二苯基甲烷二异
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1