用于全息记录和再现的方法及其装置的制作方法

文档序号:2771071阅读:198来源:国知局
专利名称:用于全息记录和再现的方法及其装置的制作方法
技术领域
本发明涉及一种由光敏材料制成的记录介质,所谓的全息存储器,尤其是,本发明涉及一种用于全息记录和再现的方法,以及利用这种全息存储器的光学信息记录和再现装置。
背景技术
体积全息记录系统作为一种利用全息照相术原理的数字数据记录系统而众所周知。这种系统的特征在于在由光敏材料制成的记录介质上记录信息,光敏材料诸如介质折射率变化的光折变材料(photorefractive material)。
一种常规的全息记录和再现方法利用傅里叶变换来进行记录和再现。
参考

图1,在常规的4f系列全息记录和再现装置中,分束器13将激光源11产生的激光束12分为光束12a和12b。扩束器BX扩大光束12a的直径。然后,平行光束12a作用于空间光调制器SLM,如透射TFT液晶显示器(LCD)的面板等。空间光调制器SLM接收将要记录的信息,如通过编码器编码的电子信号,以形成二维数据,也就是在平面上形成与该信息相对应的亮和暗光点图案等。当光束12a穿过空间光调制器SLM时,空间光调制器SLM将光束12a光学调制为包括数据信号分量的信号光束。由于包括光点图案信号分量的信号光束12a穿过设置在与空间光调制器SLM相隔焦距f处的傅里叶变换透镜16,因此光点图案信号分量被变换为傅里叶分量,并会聚到记录介质10上。由分束器13分离的光束12b通过反射镜18和19引导至记录介质10中。光束12b作为参考光束,在记录介质10的内部与信号光束12a的光路相交。光束12b和信号光束12a相干涉形成光干涉图。整个光干涉图记录为衍射光栅,如折射率的变化(折射率光栅)等。
如上所述,光点图案数据使相干的平行光束发生衍射,并利用傅里叶变换透镜形成光学图像。在傅里叶变换透镜的焦平面上,即傅里叶平面上的图像分布与相干参考光束干涉。然后,在焦点附近,将干涉条纹记录在记录介质上。在完成第一页的记录之后,使可转动反射镜旋转预定度数,并平行移动,以便改变参考光束12b入射到记录介质10的入射角。然后,遵循与上述相同的过程记录第二页。按照这种方式可执行多角度记录。
另一方面,在再现光点图案图像中使用傅里叶逆变换。在再现已记录的信息中,如图1中所示,例如,空间光调制器SLM,截断信号光束12a的光路,因此只有参考光束12b入射到记录介质10上。反射镜的位置和角度可通过改变其旋转和移动的组合来进行控制,从而使参考光束12b的入射角能够与在将要再现页的记录过程中的入射角相同。再现出已记录的信号光束的再现出的光束出现在已记录的信号光束12a入射到记录介质10的相反侧。将再现出的光束引导至傅里叶逆变换透镜16a并执行傅里叶逆变换,从而再现出光点图案信号。光点图案信号由置于透镜16a焦距位置的诸如电荷耦合器件CCD等的光电探测器20接收,并且再转变为电数字数据信号。然后,将该数字数据信号发送到解码器从而解码出原始数据。
参考图1,通常利用多角度和多波长将多个图像记录在记录介质的几毫米体积中,以便以高密度在记录介质的一定体积中记录信息。因此,信号光束和参考光束的宽视场和长距离相干对于确保角度和波长的选择性是必需的。由此,降低了用于记录的单位光量的光束强度。多次记录对于高密度记录是必需的,因此需要具有大的擦除时间常数且易于执行多次记录的记录介质。
常规的全息记录和再现装置需要高标准(high spec)的两个透镜,即傅里叶变换透镜和傅里叶逆变换透镜。该装置还需要配有高精度分页控制机构,用于控制在对信息进行记录和再现过程中的参考光束。因此,存在这样一个缺点,即该装置的尺寸变大。

发明内容
本发明的一个目的是提供一种用于全息记录和再现的方法以及为此的装置,其能够减小尺寸并在全息记录介质上记录全息图。
根据本发明,提供一种用于全息记录和再现的方法,该方法包括记录过程和再现过程,记录过程包括以下步骤依照所要记录的信息通过空间调制相干参考光束来产生信号光束;用信号光束照射由光敏材料制成的记录介质,以允许信号光束穿过所述记录介质;以及在信号光束的零级光束和衍射光束在所述记录介质内部彼此干涉的部分中,产生由光干涉图案记录的衍射光栅区域;以及再现过程包括以下步骤用所述参考光束照射所述衍射光栅区域,以产生对应于该信号光束的再现波。
信号光束是由依照所要记录的信息进行空间调制相干参考光束的这种操作而产生的光束,该信号光束包括零级光束,其波前不管是否进行空间调制都具有相同的形状;和经历空间调制的衍射光束。因此,本发明利用信号光束的零级光束作为用于全息记录的参考光。
在记录中,利用信号光束照射记录介质,以产生由信号光束的光路中的零级光束和衍射光束形成的光学干涉条纹图案,从而在记录介质中记录下对应于该干涉条纹图案的折射率光栅。
在再现中,用没有经过空间调制的信号光束,即利用与记录中所用信号光束相同的位置条件和角度条件的非调制参考光束,来照射记录介质,特别是其中的折射率光栅。由于非调制参考光束包括作为主要成分的零级光束,因此非调制的参考光束照射到记录介质的折射率光栅产生与记录中所用信号光束波前相同的再现波。
在再现波的检测中,从记录介质中的折射率光栅发出的再现波与用于再现的非调制参考光束重叠。去掉或减少用于再现的非调制参考光束有助于容易地检测再现波,和在电学上再现记录信息。
根据本发明,还提供一种记录介质,由能够利用相干光束照射而记录的光敏材料制成,该记录介质包括入射光束处理区,其设置在所述记录介质中位于光束入射的记录介质入射面的相对侧上,该入射光束处理区将光束的零级光束和衍射光束彼此分开,从而将一部分入射光束返回到所述记录介质内部。
为了去掉或减少用于再现的非调制参考光束,如图2中所示,记录介质10具有一入射光束处理区R,该入射光束处理区包括处理信号光束的零级光束和非调制参考光束的零级光束处理区R1,以及处理信号光束的衍射光束的衍射光束处理区R2,该入射光束处理区域按照如下方式配置,即,该入射光束处理区置于非调制参考光束的光束腰部,其中非调制参考光束由聚光透镜会聚,聚焦在有光束入射到该记录介质的入射面的相对侧上。
考虑将相位共轭波用作在记录和再现方法中用于全息记录和再现系统的方法之一。类似于其他方法,利用相位共轭光束的再现方法一般需要在记录和再现中使用相同的参考光束。例如,一种用于记录和再现信息的方法,其中按照如下方式通过在记录介质中的干涉来产生和记录折射率光栅,即,将信号光束照射到记录介质上,并由反射镜反射,以产生回到记录介质的相位共轭波,从而使相位共轭波和信号光束彼此干涉。在这种记录和再现方法中,存在很多缺点,如需要插入和移开反射镜,由于信号光束特别是零级光束返回而引起光源退化,以及包括防止返回光的光学系统的大型器件。相反,根据本发明,入射光束处理区解决了上述问题,因为利用不同的处理,如通过分离对入射光中的零级光束和衍射光束单独进行处理,以将一部分入射光束返回到记录介质内部来。
此外,不同于常规的全息记录和再现方法,本发明不需要为参考光束和信号光束提供各自的两个光学系统。而且,本发明的方法不需要用作物镜等的高性能的聚光透镜。采用这种记录和再现方法高效地简化和小型化记录和再现装置,因为利用包括在信号光束中的零级光束和衍射光束(依照要记录的信息进行空间调制)。
根据本发明,进一步提供一种用于全息记录的方法,包括以下步骤依照待记录的信息通过空间调制相干参考光束来产生信号光束;利用信号光束照射由光敏材料制成的记录介质,以允许信号光束穿过所述记录介质;以及在所述记录介质内部,在信号光束的零级光束和衍射光束彼此干涉的部分中产生由光干涉图案记录的衍射光栅区域。
根据本发明,进一步提供一种用于全息再现的方法,包括以下步骤提供由光敏材料制成的记录介质,其具有通过记录过程形成的衍射光栅区域,该记录过程包括以下步骤依照待记录的信息通过空间调制相干参考光束来产生信号光束;利用信号光束照射记录介质,以允许信号光束穿过所述记录介质,以便在所述记录介质内部的信号光束的零级光束和衍射光束彼此干涉的部分中,形成由光干涉图案记录的衍射光栅区域;以及将相干参考光束照射到衍射光栅区域,以产生对应于信号光束的再现波。
根据本发明,此外提供一种全息记录和再现装置,用于将信息记录为记录介质中的衍射光栅区域,并用于从所述衍射光栅区域再现所述记录信息,所述全息记录和再现装置,包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;信号光束产生单元,包括空间光调制器,所述空间光调制器依照待记录的所述信息空间调制所述参考光束,以产生信号光束;干涉单元,包括照射光学系统,用于利用信号光束照射记录介质,以允许该信号光束进入并穿过所述记录介质,所述照射光学系统在所述记录介质内部,在信号光束的零级光束和衍射光束彼此干涉的部分中,根据光干涉图案形成衍射光栅区域,所述照射光学系统利用所述参考光束照射所述衍射光栅区域,以产生对应于信号光束的再现波;以及检测单元,用于检测由再现波形成于一图像中的所述记录信息。
根据本发明,还提供一种全息记录装置,用于将信息记录为记录介质中的衍射光栅区域,该记录装置包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;信号光束产生单元,包括空间光调制器,所述空间光调制器依照待记录的所述信息空间调制所述参考光束,以产生信号光束;以及干涉单元,包括照射光学系统,用于利用信号光束照射记录介质,以允许该信号光束进入并穿过所述记录介质,所述照射光学系统在所述记录介质内部信号光束的零级光束和衍射光束彼此干涉的部分中根据光干涉图案形成衍射光栅区域。
根据本发明,还提供一种全息再现装置,用于再现记录为记录介质中衍射光栅区域的信息,该全息再现装置包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;照射单元,包括照射光学系统,用于利用参考光束照射记录介质,以允许该参考光束进入并穿过该记录介质中的衍射光栅区域,以产生对应于信号光束的再现波;以及检测单元,用于检测由再现波形成于一图像中的所述记录信息。
根据本发明,还提供另一种全息记录和再现装置,用于将信息记录为记录介质中的衍射光栅区域,并用于从所述衍射光栅区域再现所述记录信息,所述全息记录和再现装置包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;信号光束产生单元,包括空间光调制器,所述空间光调制器依照待记录的所述信息空间调制所述参考光束,以产生信号光束;干涉单元,包括照射光学系统,用于利用信号光束照射记录介质,以允许该信号光束进入并穿过所述记录介质,所述照射光学系统在所述记录介质内部的信号光束的零级光束和衍射光束彼此干涉的部分中根据光干涉图案形成衍射光栅区域,所述照射光学系统利用所述参考光束照射所述衍射光栅区域,以产生对应于信号光束的再现波;
入射光束处理区,设置在所述记录介质中,位于信号光束入射到记录介质入射面的相对侧上,该入射光束处理区将零级光束和衍射光束彼此分开,以使一部分入射光束返回到所述记录介质内部;以及检测单元,用于检测由再现波形成于一图像中的所述记录信息。
根据本发明,还提供另一种全息记录装置,用于将信息记录为记录介质中的衍射光栅区域,包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;信号光束产生单元,包括空间光调制器,所述空间光调制器依照待记录的所述信息空间调制所述参考光束,以产生信号光束;干涉单元,包括照射光学系统,用于利用信号光束照射记录介质,以允许该信号光束进入并穿过所述记录介质,所述照射光学系统在所述记录介质内部的信号光束的零级光束和衍射光束彼此干涉的部分中根据光干涉图案形成衍射光栅区域;以及入射光束处理区,设置在所述记录介质中,位于信号光束入射到记录介质入射面的相对侧上,该入射光束处理区将零级光束和衍射光束彼此分开,以使一部分入射光束返回到所述记录介质内部。
根据本发明,进一步提供另一种全息再现装置,用于再现记录为记录介质中的衍射光栅区域的信息,该全息再现装置包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;照射单元,包括照射光学系统,用于利用参考光束照射记录介质,以允许该参考光束进入并穿过该记录介质中的衍射光栅区域,以产生对应于信号光束的再现波;入射光束处理区,设置在所述记录介质中,位于信号光束入射到记录介质入射面的相对侧上,该入射光束处理区将零级光束和衍射光束彼此分开,以使一部分入射光束返回到所述记录介质内部;以及检测单元,用于检测由再现波形成于一图像中的所述记录信息。
附图简述图1是显示常规全息记录和再现系统的结构的示意图;图2是根据本发明一个实施方案的全息记录介质的示意性截面图;图3是显示根据本发明一个实施方案的全息记录和再现装置的结构的示意图;图4是用于说明通过本发明这一实施方案的全息记录和再现装置执行记录过程的示意性截面图;图5是供本发明该实施方案中使用的全息记录介质的示意性截面图;图6是用于说明本发明这一实施方案的全息记录介质和空间光调制器之间关系的示意性平面图;图7是用于说明通过本发明的全息记录和再现装置执行记录过程的示意性透视图;图8是用于说明通过本发明该实施方案的全息记录和再现装置执行再现过程的示意性截面图;图9和10是用于说明通过本发明该实施方案的改进实施例的全息记录和再现装置执行记录过程的示意性截面图;图11是显示根据本发明另一实施方案的全息记录和再现装置的结构的示意图;图12是用于说明通过本发明这一实施方案的全息记录和再现装置执行记录过程的示意性截面图;图13是供本发明该实施方案中使用的全息记录介质的示意性截面图;图14是用于说明通过本发明该实施方案的全息记录和再现装置执行再现过程的示意性截面图;图15至17是用于说明通过本发明该实施方案的改进实施例的全息记录和再现装置执行记录过程的示意性截面图;图18是显示根据本发明另一实施方案的全息记录和再现装置的结构的示意图;图19是用于说明本发明这一实施方案的全息记录介质和空间光调制器之间关系的示意性平面图;图20是用于说明通过本发明的全息记录和再现装置执行记录过程的示意性透视图;图21和22是用于说明通过本发明另一实施方案的改进实施例的全息记录和再现装置执行记录过程的示意性截面图;图23是显示根据本发明另一实施方案的全息记录和再现装置的结构的示意图;图24至26是用于说明通过本发明其他实施方案的改进实施例的全息记录和再现装置执行记录过程的示意性截面图;图27是显示用于本发明再一实施方案的全息记录和再现装置的入射光束处理区的器件的示意性透视图;图28是显示根据本发明再一实施方案的全息记录和再现装置的记录介质磁盘盒的示意性透视图。
发明详述在下文参照附图描述本发明的各个实施方案。
在记录过程中,本发明没有使用由另一个光路提供的参考光束。取而代之的是,仅仅信号光束入射到记录介质上,并且记录通过信号光束的零级光束和衍射光束之间的干涉所形成的折射率光栅。之后,通过仅仅用参考光束照射折射率光栅,而使再现波从折射率光栅中再现出来。入射光束处理区整体设置在记录介质中光束入射到的入射面的相对侧。入射光束处理区将光束的零级光束和光束的衍射光束彼此分开,从而将一部分入射光束返回到记录介质内部。
<第一实施方案>
图3示出根据一个实施方案的全息记录和再现装置。在该装置中,例如将具有850nm波长的DBR(分布布拉格反射器)激光器的近红外激光器用作光源11。快门SH,扩束器BX,空间光调制器SLM,分束器15和聚光透镜160置于参考光束12的光路中。快门SH由控制器32控制,控制光束照射记录介质的照射时间。
扩束器BX使穿过快门SH的光束12的直径增大。平行光束12入射到空间光调制器SLM上。空间光调制器SLM,依照从编码器25接收到的电子数据,显示亮和暗点阵信号。电子数据表示为与二维页相对应的一系列页单元。在参考光束穿过显示数据的空间光调制器SLM的过程中,将参考光束光学地调制为包括如点阵分量的数据的信号光束12a。聚光透镜160对穿过分束器15的信号光束12a的点阵分量执行傅里叶变换,并使其会聚,从而使信号光束12a到达已安装的记录介质10后面的焦点。当快门SH打开时,信号光束12a或参考光束12因聚光透镜160以预定入射角,例如零度,入射到记录介质10的主表面(principal surface)上。分束器15是分离单元,将再现波(后面描述)从参考光束的光路中分开,从而将再现波供给光电转换器件的光电探测器20如CCD。该空间光调制器SLM和CCD 20都置于聚光透镜160的焦点上。
此外,分束器15置于能够将再现波发送到CCD 20的位置。CCD20与解码器26相连。解码器26与控制器32相连。考虑将对应于光折变晶体类型的信息预先加入到记录介质10的情况,当记录介质10安装在作为移动记录介质10的保持部分的可移动台60上时,控制器32利用合适的传感器自动读出该信息,从而控制记录介质10的移动,并执行适合于记录介质10的记录和再现。
参考图3,记录介质10整体设置在具有入射光束处理区R的入射面的相对侧,该入射光束处理区R包括使信号光束12a中的零级光束穿过的零级光束处理区R1,以及使信号光束12a中的衍射光束反射的衍射光束处理区R2。所提供的入射光束处理区R是用于处理信号光束。例如,入射光束处理区R包括使零级光束穿过的开口,和限定该开口的衍射光束处理区R2。只要零级光束处理区R1具有不同于衍射光束处理区R2的作用,入射光束处理区R并不限于上面所述的配置。可以为零级光束处理区配置零级光束吸收材料来代替开口。换句话说,在入射光束处理区R中的零级光束处理区R1使零级光束通过,或吸收该零级光束。
在下文描述记录过程中的操作。
图3中所示的控制器32控制保持记录介质10的可移动台60的位置,从而使目标记录介质(objective recording medium)10移动到预定的记录位置。
然后,将记录信号从编码器25发送到空间光调制器SLM,空间光调制器SLM显示与待记录的数据相对应的具体图案。
然后,打开快门SH,用参考光束12照射空间光调制器SLM。在通过空间光调制器SLM进行空间调制的参考光束12中产生信号光束12a,所述空间调制器SLM依照待记录的信息在其上显示图案。利用产生的信号光束12a照射记录介质10,从而开始记录过程。
在下文详细描述利用信号光束12a(即其中的零级光束和衍射光束)在记录介质中记录折射率光栅的过程。
如图4所示,信号光束12a包括经历空间调制的零级光束和衍射光束。信号光束12a的零级光束具有不受任何空间调制影响的恒定形状的波前,因此将其称作“全息图参考光束”。经历空间调制的信号光束12a的衍射光束称作“全息图信号光束”。因此,至少在记录中,信号光束12a包括全息图参考光束和全息图信号光束。
由于用信号光束12a照射记录介质10,因此全息图参考光束和全息图信号光束彼此发生光学干涉,形成光学干涉条纹图案P1,从而因光折变效应将折射率光栅P1记录在记录介质10中。
信号光束12a的零级光束(即全息图参考光束)穿过入射光束处理区R的零级光束处理区R1,并从记录介质10上信号光束12a入射的相对侧射出。信号光束12a的衍射光束(即全息图信号光束)由入射光束处理区R的衍射光束处理区R2反射回到记录介质10。因此,将衍射光束处理区R2所反射的信号光束12a的衍射光束称作“反射的全息图信号光束”。
反射的全息图信号光束和全息图参考光束在记录介质10中彼此发生光学干涉,形成光学干涉条纹图P2,从而因光折变效应将对应于光学干涉条纹图案P2的折射率光栅P2记录在记录介质10中。
按照这种方式,在记录中,来自空间光调制器SLM的零级光束和衍射光束(即信号光束12a),连同来自衍射光束处理区R2的反射的衍射光束一起,在记录介质10内部形成三维干涉图的集合。如图5中所示,因光折变效应将对应于光学干涉图P1,P2的折射率光栅P1,P2以全息图的方式记录在记录介质10中。
在记录介质10的记录之后,通过控制器32的控制使快门SH关闭。
在记录介质10的预定记录位置完成记录时,为了到达信号光束12a相对于记录介质10的另一个预定位置,迫使记录介质10移动(沿图3的“y”方向)。然后,在先前的程序之后进行下一个记录。像这样可顺序地进行记录。
图6示出沿着信号光束12a的光轴从来自光源的方向观察到的并排放置的记录介质10和空间光调制器SLM。在记录介质10中入射面的相对侧上设置的入射光束处理区R的零级光束处理区R1规定了一个起开口作用的轨道TR,主要使信号光束12a的零级光束能够穿过该轨道,如图6中所示。轨道TR向图6的“y”方向继续延伸。可以以线状的形式间歇地提供多个轨道TR。在这种情况下,该多个轨道TR可以在记录介质10中保存零级光束处理区R1的位置信息。
记录介质10和空间光调制器SLM以这样一种方式相对于光轴相对设置,即,轨道TR的延伸方向DTR与空间光调制器SLM的像素矩阵中一行的延伸方向DSLM成预定的θ(θ≠0)角。另外,也可以将空间光调制器SLM像素阵列的一列的延伸方向用于记录介质10和空间光调制器SLM之间的角度设置。记录介质10和空间光调制器SLM之间的角度设置的这一结构的原因如下。
一般来说,空间光调制器SLM,根据记录过程中待记录的信息来显示是否允许光通过每个像素的二维光点图案。空间光调制器SLM空间调制由其穿过的参考光束12,产生信号光束12a。然后,傅里叶变换透镜或聚光透镜160对信号光束12a进行傅里叶变换以照射记录介质10,并且在傅里叶平面FF上形成由零级光束和衍射光束产生的点像。
如图7中所示,由空间光调制器SLM调制的信号光束12a中的最高频率分量对应于根据其像素矩阵(间距为“a”)的衍射。根据因空间光调制器SLM的空间调制,通过聚光透镜160对信号光束12a进行傅里叶变换,然后在傅里叶平面FF上出现关于空间频率的光强度分布谱,如图7所示。
如果利用基于空间光调制器SLM的像素间距的空间频率(1/a),信号光束12a的波长(λ)和傅里叶变换透镜(聚光透镜160)的焦距(f),那么在傅里叶平面FF上的零级光束和第一级衍射光束之间的距离(d1)可以表示如下d1=(1/a)·(λ)·(f)。根据上述方程式,以下面这种情况为例,例如,空间光调制器的像素点间距是10μm,信号光束12a的波长是530nm,焦距是14mm,零级光束和第一级衍射光束之间的距离(d1)大约是750μm。因为由空间光调制器SLM调制的信号光束12a中最高频率分量对应于像素矩阵间距,因此对应于这种像素矩阵间距的点像,出现在傅里叶平面FF上与信号光束12a的零级光束产生的点像距离最远的位置处。因此,在傅里叶平面FF上,由空间光调制器产生的空间频率的谱分布的最大部分,位于以信号光束12a的零级光束为中心且由第一级衍射光束所画出的区域中,所述第一级衍射光束与空间光调制器SLM中沿行和列方向的像素间距相对应。
通过与空间光调制器SLM像素矩阵的一行的延伸方向DSLM相对应的衍射光束所产生的点像包括在傅里叶平面FF中的入射光束处理区R中。当轨道TR的延伸方向DTR与空间光调制器SLM的像素矩阵中一行的延伸方向DSLM相对于与它们相交的信号光束的光轴成θ=0角时,与空间光调制器SLM的行延伸方向DSLM上的空间频率分量相对应的点像落在轨道TR上。
因此与空间光调制器SLM的行延伸方向DSLM相对应的衍射光束不会被衍射光束处理区R2反射。因此,在形成的上述光学干涉条纹图案P2中不存在源自信号光束12a的反射的全息图信号光束(与空间光调制器的行延伸方向DSLM相对应),因此不会与信号光束12a的全息图参考光束发生光学干涉。换句话说,当轨道TR的延伸方向DTR与空间光调制器SLM的像素矩阵中一行的延伸方向DSLM相对于与它们相交的信号光束的光轴成θ=0角时,不会在记录介质10的折射率光栅P2中记录基于与空间光调制器SLM的行延伸方向相对应的衍射光束的任何信息。
将待记录的信息的低频分量集中在零级光束附近,但是一定(onpurpose)使零级光束穿过。该实施方案利用在零级光束周围的多个点处出现的其余衍射光束。
为了有效地利用衍射光束,即,使信号光束12a的反射的全息图信号光束(与空间光调制器SLM的行延伸方向相对应)与信号光束12a的零级光束(即全息图参考光束)发生光学干涉,以如下方式相对于光轴相对设置记录介质10和空间光调制器SLM,即,轨道TR的延伸方向DTR与空间光调制器SLM的像素矩阵中一行(或一列)的延伸方向DSLM成预定的θ(θ≠0)角。
在下文描述记录过程中的操作。
控制器32控制保持记录介质10的可移动台60的位置,如图3中所示,从而使目标记录介质10移动到预定的记录位置。
然后,为了不对通过空间光调制器SLM空间调制的参考光束12进行调制,将使所有像素变为透明状态的信息从编码器25送到空间光调制器SLM,空间光调制器SLM显示透明图案。
然后,打开快门SH,用参考光束12照射空间光调制器SLM以产生信号光束12a。然后用信号光束12a照射记录介质10。按照这种方式,启动再现过程。要注意,在再现过程中,因为空间光调制器SLM显示透明图案,因此没有对信号光束12a进行空间调制。所以,没有因空间调制而产生的衍射光束,这样信号光束12a只包括零级光束(即全息图参考光束)。
在下文详细描述利用信号光束12a(即全息图参考光束)在记录介质中再现折射率光栅的过程。
如图8所示,按照与记录中所用的信号光束相同的位置和角条件,使信号光束12a(没有进行空间调制,即全息图参考光束)照射记录介质10。此时,用信号光束12a照射记录介质10中的折射率光栅P1和P2,因此分别从对应于记录信息的折射率光栅P1发出第一再现波,从折射率光栅P2发出第二再现波。穿过零级光束处理区R1的信号光束12a从记录介质10上光束入射的入射面的相对侧射出。因此,信号光束12a不返回到聚光透镜160,也不会到达光电探测器20。这种现象有助于简化记录信息的再现。
第一再现波通过入射光束处理区R的衍射光束处理区R2反射回到记录介质10,从记录介质10的入射面射出,并穿过聚光透镜160。第二再现波源自在记录过程中利用衍射光束处理区R2反射的光所记录的衍射光栅,从记录介质10的入射面射出,并穿过聚光透镜160。按照这种方式,至少第一和第二再现波从记录介质10的入射面射出,并穿过聚光透镜160。
在第一和第二再现波穿过聚光透镜160之后,由分束器15反射,并在光电探测器20上形成与记录信息对应的图像光点图案。然后CCD 20的感光器接收该图像光点图案,以使其光点图案信号恢复为电子数字数据信号。然后,将该数字数据信号送到解码器26以再现原始数据。
接着,在预定记录位置的记录信息的再现之后,通过控制器32的控制关闭快门SH。
接着,为了到达信号光束12a相对于记录介质10的另一个预定记录位置,迫使记录介质10移动(沿图3的“y”方向)。然后,遵循先前的程序进行下一个再现。像这样可顺序地进行再现。
<第二实施方案>
图9示出了该实施方案的另一个改进的实施例。入射光束处理区R包括衍射光束处理区R2,其设置在记录介质10中入射面的相对侧上,以及零级光束散射区SC,其沿轨道设置在记录介质10内部。零级光束散射区SC起到将入射光的零级光束与其衍射光束分开,并将一部分光束返回到记录介质10内部的另一个零级光束处理区R1的作用。零级光束散射区SC将信号光束12a的零级光束散射。沿“y”方向延伸的轨道形零级光束散射区SC将信号光束12a的零级光束送回到记录介质10中。借助于散射的零级光束,入射的零级光束,入射的衍射光束和反射的衍射光束形成的干涉条纹来进行全息记录。
换句话说,记录介质10的入射光束处理区R包括使信号光束12a的零级光束(即,全息图参考光束)散射的零级光束散射区SC,以及使衍射光束(即全息图信号光束)反射的衍射光束处理区R2。零级光束散射区SC像轨道一样向图9的“y”方向继续延伸。可以以线状的形式间歇地提供多个零级光束散射区SC。在这种情况下,零级光束散射区SC能够在记录介质10中保存零级光束处理区R1的位置信息。
下面描述利用信号光束12a(即全息图参考光束和全息图信号光束)在记录介质中记录折射率光栅的过程。
由于用信号光束12a照射记录介质10,因此全息图参考光束和全息图信号光束彼此发生光学干涉,产生光学干涉条纹图P1,从而因光折变效应将折射率光栅P1记录在记录介质10中。
信号光束12a的零级光束(即,全息图参考光束)由入射光束处理区R的零级光束散射区SC散射回到记录介质10。因此将信号光束12a的这种散射的零级光束称作“散射的全息图参考光束”。信号光束12a的衍射光束(即,全息图信号光束)由入射光束处理区R的衍射光束处理区R2反射回去,以作为反射的全息图信号光束入射到记录介质10。
信号光束12a的反射的全息图信号光束和全息图参考光束,在记录介质10中彼此发生光学干涉,形成光学干涉条纹图案P2,从而因光折变效应在记录介质10中记录对应于光学干涉条纹图案P2的折射率光栅P2。
信号光束12a的散射的全息图参考光束和全息图信号光束在记录介质10中彼此发生光学干涉,形成光学干涉条纹图案P3,从而因光折变效应在记录介质10中记录折射率光栅P3。
信号光束12a的散射的全息图参考光束和反射的全息图信号光束在记录介质10中彼此发生光学干涉,形成光学干涉条纹图案P4,从而因光折变效应在记录介质10中记录折射率光栅P4。
因此,在图9中所示的实施方案中,因光折变效应至少在记录介质10中以全息的方式记录对应于光学干涉条纹图案P1,P2,P3和P4的折射率光栅P1,P2,P3和P4。
在下文描述利用信号光束12a(即全息图参考光束)在记录介质中再现折射率光栅的过程。
在再现过程中,因为空间光调制器SLM显示透明图案,因此没有对信号光束12a进行空间调制。所以,没有因空间调制而产生的衍射光束,这样信号光束12a只包括零级光束。
按照与记录中所用的信号光束相同的位置和角条件,利用信号光束12a(没有进行空间调制,即全息图参考光束)照射记录介质10。此时,用信号光束12a照射记录介质10中的折射率光栅P1和P2,因此分别从对应于记录信息的折射率光栅P1发出第一再现波,从折射率光栅P2发出第二再现波。接着,通过入射光束处理区R的零级光束散射区SC将信号光束12a(即,全息图参考光束)散射回到记录介质10,并成为散射的全息图参考光束。由于利用散射的全息图参考光束照射记录介质10中的折射率光栅P3和折射率光栅P4,因此从对应于记录信息的折射率光栅P3发出第三再现波,从折射率光栅P4发出第四再现波。
散射的全息图参考光束从记录介质10的入射面射出,一部分光束穿过聚光透镜160。但是,由于散射,散射的全息图参考光束几乎不会被光电探测器20接收。这种现象有助于简化记录信息的再现。
源自衍射光束成份的第一和第三再现波由入射光束处理区R的衍射光束处理区R2反射回到记录介质10,从记录介质10的入射面射出,并穿过聚光透镜160。第二和第四再现波源自在记录过程中由衍射光束处理区R2反射的衍射光束成份,从记录介质10的入射面射出,并穿过聚光透镜160。按照这种方式,至少第一、第二、第三和第四再现波从记录介质10的入射面射出,并穿过聚光透镜160。按照与图3中实施方案相同的方式执行后面的过程。
<第三实施方案>
图10示出该实施方案的进一步改进的实施例。入射光束处理区包括衍射光束处理区R2,其设置在记录介质10中入射面的相对侧,以及零级光束偏转区RL,其沿轨道设置在记录介质10内部。零级光束偏转区RL具有用于使信号光束12a的零级光束相对于信号光束12a的光轴向内部偏转的倾斜反射面。零级光束偏转区RL起到另一个零级光束处理区R1的作用,即将入射光的零级光束与衍射光束分开,并将一部分光束返回到记录介质10内部。在朝轨道一侧偏转的情况下,沿“y”方向延伸的轨道形零级光束偏转区RL将信号光束12a的零级光束返回到记录介质10。借助于由偏转的零级光束,入射的零级光束,入射的衍射光束和反射的衍射光束形成的干涉条纹来进行全息记录。根据上述两个改进的实施例,由于信号光束和衍射光束全都返回到记录介质10的内部,因此可以有效地利用照射光的量。
换句话说,记录介质10的入射光束处理区R包括使信号光束12a的零级光束(即,全息图参考光束)偏转的零级光束偏转区RL,以及使衍射光束(即全息图信号光束)反射的衍射光束处理区R2。零级光束偏转区RL像轨道一样向图10的“y”方向继续延伸。可以以线状的形式间歇地提供多个零级光束偏转区RL。在这种情况下,零级光束偏转区RL能够在记录介质10中保存零级光束处理区R1的位置信息。
下面描述利用信号光束12a(即全息图参考光束和全息图信号光束)在记录介质中记录折射率光栅的过程。
由于用信号光束12a照射记录介质10,因此全息图参考光束和全息图信号光束彼此发生光学干涉,产生光学干涉条纹图案P1,从而因光折变效应将折射率光栅P1记录在记录介质10中。
信号光束12a的零级光束(即,全息图参考光束)由入射光束处理区R的零级光束偏转区RL偏转和反射回到记录介质10。因此将信号光束12a的这种偏转和反射的零级光束称作“偏转的全息图参考光束”。信号光束12a的衍射光束(即,全息图信号光束)由入射光束处理区R的衍射光束处理区R2反射回去,进入记录介质10。
信号光束12a的反射的全息图信号光束和全息图参考光束在记录介质10中彼此发生光学干涉,形成光学干涉条纹图案P2,从而因光折变效应在记录介质10中记录对应于光学干涉条纹图案P2的折射率光栅P2。
信号光束12a的偏转的全息图参考光束和全息图信号光束在记录介质10中彼此发生光学干涉,形成光学干涉条纹图案P3,从而因光折变效应在记录介质10中记录折射率光栅P3。
信号光束12a的偏转的全息图参考光束和反射的全息图信号光束在记录介质10中彼此发生光学干涉,形成光学干涉条纹图案P4,从而因光折变效应在记录介质10中记录折射率光栅P4。
因此,在图10中所示的实施方案中,因光折变效应,至少在记录介质10中以全息的方式记录对应于光学干涉条纹图案P1,P2,P3和P4的折射率光栅P1,P2,P3和P4。
在下文描述利用信号光束12a(即全息图参考光束)在记录介质中再现折射率光栅的过程。
在再现过程中,因为空间光调制器SLM显示透明图案,因此没有对信号光束12a进行空间调制。所以,没有因空间调制而产生的衍射光束,这样信号光束12a只包括零级光束。
按照与记录中所用的信号光束相同的位置和角条件,利用信号光束12a(没有进行空间调制,即全息图参考光束)照射记录介质10。此时,用信号光束照射记录介质10中的折射率光栅P1和P2,因此分别从折射率光栅P1发出第一再现波,从折射率光栅P2发出第二再现波。接着,通过入射光束处理区R的零级光束偏转区RL将信号光束12a(即全息图参考光束)偏转并反射回到记录介质10,成为偏转的全息图参考光束。由于利用偏转的全息图参考光束照射记录介质10中的折射率光栅P3和折射率光栅P4,因此从对应于记录信息的折射率光栅P3发出第三再现波,从折射率光栅P4发出第四再现波。
偏转的全息图参考光束从记录介质10的入射面射出,一部分光束穿过聚光透镜160。可替换的是,可以通过改变零级光束偏转区RL的倾斜角形状,来提供防止光束返回到聚光透镜160的结构。即使一部分光束返回到聚光透镜160,因为偏转也很难由光电探测器20接收。这种现象有助于简化记录信息的再现。
源自衍射光束成份的第一和第三再现波由入射光束处理区R的衍射光束处理区R2反射回到记录介质10,从记录介质10的入射面射出,并穿过聚光透镜160。第二和第四再现波源自在记录过程中由衍射光束处理区R2反射的衍射光束成份,其从记录介质10的入射面射出,并穿过聚光透镜160。按照这种方式,至少第一、第二、第三和第四再现波从记录介质10的入射面射出,并穿过聚光透镜160。按照与图3中实施方案相同的方式执行后面的过程。
根据上述相邻的两个改进的实施例,由于信号光束12a的零级光束经入射光束处理区R返回到记录介质10内部,因此可以有效地利用照射光的量,另外,这些结构有助于简化记录信息的再现。
<第四实施方案>
在上述实施方案中,描述了反射形式的全息记录和再现,其中入射光束处理区R的衍射光束处理区R2反射光束,但是在本发明中也可以利用具有相同效果的透明衍射光束处理区R2。
图11示出根据另一个实施方案的全息记录和再现装置,该装置利用具有零级光束处理区R1和衍射光束处理区R2的记录介质,光束可穿过该记录介质,即整个入射光束处理区R是透光的。该实施方案的全息记录和再现装置与图1所示的装置相同,只是去掉了用于产生参考光束的由分束器13,反射镜18和19组成的光学系统。可以使零级光束处理区R1适合于用于跟踪伺服系统的向图11的“y”方向连续延伸的轨道。通过如下的处理结构可提供零级光束处理区R1,即,通过使零级光束处理区R1与衍射光束处理区R2的透射率(或反射率或吸收系数)不同,从而可以将零级光束和衍射光束分开。
在记录中,如图11和12所示,来自空间光调制器SLM的信号光束12a的零级光束和衍射光束在记录介质10中彼此干涉,产生三维干涉图案。
由于用信号光束12a照射记录介质10,因此全息图参考光束和全息图信号光束彼此发生光学干涉,产生光学干涉条纹图案P1,从而因光折变效应在记录介质10中记录折射率光栅P1,如图13所示。
信号光束12a的零级光束(即,全息图参考光束)穿过入射光束处理区R的零级光束处理区R1,并且信号光束12a的衍射光束(即,全息图信号光束)穿过入射光束处理区R的衍射光束处理区R2。
在再现过程中,如图14所示,在空间光调制器SLM显示透明图案的条件下,没有对信号光束12a进行空间调制,因此信号光束12a只包括零级光束(即全息图参考光束)。按照与记录中所用的信号光束相同的位置和角条件,利用全息图参考光束照射记录介质10。此时,用信号光束照射记录介质10中的折射率光栅P1,因此从对应于记录信息的折射率光栅P1发出第一再现波。由于信号光束12a仅仅是零级光束,因此信号光束12a从记录介质10上光束入射的入射面的相对侧射出,并穿过聚光透镜16a。第一再现波也从记录介质10的入射面的相对侧射出,并穿过聚光透镜16a。因此,第一再现波至少在再现过程中从记录介质10的入射面的相对侧射出,并穿过聚光透镜16a。第一再现波有助于在光电探测器20上形成对应于记录信息的图像信息。然后CCD 20的感光器接收该图像信息,使其恢复为电子数字数据信号。然后,将该数字数据信号送到解码器26以再现原始数据。
在图11所示的实施方案中,优选的是,记录介质10由光敏材料制成,所述材料具有这样的特性,即光学干涉条纹图案P1发射大量第一再现波的光量,以提高再现的记录信息的精度。这是因为感光器同时也接收信号光束12a。
<第五实施方案>
图15示出了该实施方案的再一个改进的实施例。该实施方案包括在记录介质10内入射面的相对侧上沿轨道(“y”方向)设置的零级光束散射区SC,用于仅仅散射信号光束12a的零级光束。零级光束散射区SC起到零级光束处理区R1的作用,即,将入射光的零级光束与其衍射光束分开,并将一部分光束返回到记录介质10内部。沿“y”方向延伸的轨道形零级光束散射区SC将信号光束12a的零级光束散射回到记录介质10中。利用入射的零级光束,入射的衍射光束和散射的零级光束形成的干涉条纹来进行全息记录。
换句话说,记录介质10的入射光束处理区R包括使信号光束12a的零级光束(即,全息图参考光束)散射的零级光束散射区SC,和允许衍射光束(即全息图信号光束)穿过的衍射光束处理区R2。零级光束散射区SC像轨道一样向图15的“y”方向继续延伸。可以以线状的形式间歇地提供多个零级光束散射区SC。在这种情况下,零级光束散射区SC能够在记录介质10中保存零级光束处理区R1的位置信息。
下面描述利用信号光束12a(即全息图参考光束和全息图信号光束)在记录介质中记录折射率光栅的过程。
由于用信号光束12a照射记录介质10,因此全息图参考光束和全息图信号光束彼此发生光学干涉,产生光学干涉条纹图案P1,从而因光折变效应在记录介质10中记录折射率光栅P1。
信号光束12a的零级光束(即,全息图参考光束)由入射光束处理区R的零级光束散射区SC散射回到记录介质10,并成为散射的全息图参考光束。信号光束12a的衍射光束(即,全息图信号光束)穿过入射光束处理区R的衍射光束处理区R2,并从记录介质10上光束入射的入射面的相对侧射出。
信号光束12a的散射的全息图信号光束和全息图参考光束在记录介质10中彼此发生光学干涉,形成光学干涉条纹图案P2,从而因光折变效应在记录介质10中记录对应于光学干涉条纹图案P2的折射率光栅P2。
因此,在图15所示的实施方案中,因光折变效应在记录介质10中以全息的方式至少记录对应于光学干涉条纹图案P1和P2的折射率光栅P1和P2。
在下文描述利用信号光束12a(即全息图参考光束)在记录介质中再现折射率光栅的过程。
在再现过程中,因为空间光调制器SLM显示透明图案,因此没有对信号光束12a进行空间调制。因此信号光束12a只包括零级光束。
在与记录中所用的信号光束相同的位置和角条件下,利用信号光束12a(全息图参考光束)照射记录介质10。此时,用信号光束照射记录介质10中的折射率光栅P1,因此从对应于记录信息的折射率光栅P1发出第一再现波。
通过入射光束处理区R的零级光束散射区SC将信号光束12a的零级光束(即,全息图参考光束)散射回到记录介质10,并成为散射的全息图参考光束。利用散射的全息图参考光束照射记录介质10的折射率光栅P2,因此从对应于记录信息的折射率光栅P2发出第二再现波。
第一和第二再现波穿过入射光束处理区R的衍射光束处理区R2,从记录介质10上光束入射的入射面的相对侧射出,并穿过聚光透镜16a。按照与图14中实施方案相同的方式执行后面的过程。
因为散射的全息图参考光束从记录介质10的入射面射出,由于散射,散射的全息图参考光束几乎不会由光电探测器20接收。这种现象有助于简化记录信息的再现。
<第六实施方案>
图16示出了该实施方案的另一个改进的实施例。在记录介质10内入射面的相对侧上沿轨道提供仅仅将信号光束12a的零级光束反射回记录介质10内部的零级光束反射区RR。零级光束反射区RR起到零级光束处理区R1的作用,即,将入射光的零级光束与其衍射光束分开,并将一部分光束返回到记录介质10内部的。沿“y”方向延伸的轨道形零级光束反射区RR使信号光束12a的零级光束通过反射返回到记录介质10的轨道。利用零级光束,衍射光束和反射的零级光束形成的干涉条纹来进行全息记录。
换句话说,记录介质10的入射光束处理区R包括,用于反射信号光束12a的零级光束(即,全息图参考光束)的零级光束反射区RR,和允许衍射光束(即全息图信号光束)穿过的衍射光束处理区R2。零级光束反射区RR像轨道一样向图16的“y”方向继续延伸。可以以线状的形式间歇地提供多个零级光束反射区RR。在这种情况下,零级光束反射区RR能够在记录介质10中保存零级光束处理区R1的位置信息。
下面描述利用信号光束12a(即全息图参考光束和全息图信号光束)在记录介质中记录折射率光栅的过程。
由于用信号光束12a照射记录介质10,因此全息图参考光束和全息图信号光束彼此发生光学干涉,产生光学干涉条纹图案P1,从而因光折变效应在记录介质10中记录折射率光栅P1。
信号光束12a的零级光束(即,全息图参考光束)由入射光束处理区R的零级光束反射区RR反射回到记录介质10。因此将由零级光束反射区RR反射的信号光束12a的这种零级光束称作“反射的全息图参考光束”。信号光束12a的衍射光束(即,全息图信号光束)穿过入射光束处理区R的衍射光束处理区R2,并从记录介质10上光束入射的入射面的相对侧射出。
信号光束12a的反射的全息图参考光束和全息图信号光束在记录介质10中彼此发生光学干涉,形成光学干涉条纹图案P2,从而因光折变效应在记录介质10中记录对应于光学干涉条纹图案P2的折射率光栅P2。
因此,在图16所示的实施方案中,因光折变效应在记录介质10中以全息图的方式至少记录对应于光学干涉条纹图案P1和P2的折射率光栅P1和P2。
在下文描述利用信号光束12a(即全息图参考光束)在记录介质10中再现折射率光栅的过程。
在再现过程中,没有对信号光束12a进行空间调制。所以,没有因空间调制而产生的衍射光束,这样信号光束12a只包括零级光束。
在与记录中所用的信号光束相同的位置和角条件下,利用信号光束12a(全息图参考光束)照射记录介质10。此时,用信号光束照射记录介质10中的折射率光栅P1,因此从对应于记录信息的折射率光栅P1发出第一再现波。
接着,通过入射光束处理区R的零级光束反射区RR将信号光束12a(即,全息图参考光束)反射回到记录介质10,并成为反射的全息图参考光束。利用反射的全息图参考光束照射记录介质10的折射率光栅P2,因此从对应于记录信息的折射率光栅P2发出第二再现波。
第一和第二再现波穿过入射光束处理区R的衍射光束处理区R2,从记录介质10上光束入射的入射面的相对侧射出,并穿过聚光透镜16a。按照与图14中实施方案相同的方式执行后面的过程。
反射的全息图参考光束从记录介质10的入射面射出,不能到达聚光透镜16a。这种现象有助于简化记录信息的再现。
<第七实施方案>
图17示出了该实施方案的再一个改进的实施例。在记录介质10的入射面的相对侧上沿轨道提供零级光束偏转区RL,用于将信号光束12a的零级光束向记录介质10的内部偏转。沿“y”方向延伸的零级光束偏转区RL将信号光束12a的零级光束反射回到记录介质10,同时将零级光束向轨道一侧偏转。利用由零级光束,衍射光束和偏转的零级光束形成的干涉条纹来进行全息记录。根据记录和再现装置的实施方案的这些改进实施例,只有信号光束的零级光束返回到记录介质10内部,因此可以有效地利用照射光的量。
换句话说,记录介质10的入射光束处理区R包括,使信号光束12a的零级光束(即,全息图参考光束)偏转的零级光束偏转区RL,和允许衍射光束(即全息图信号光束)穿过的衍射光束处理区R2。零级光束偏转区RL像轨道一样向图17的“y”方向继续延伸。可以以线状的形式间歇地提供多个零级光束偏转区RL。在这种情况下,零级光束偏转区RL能够在记录介质10中保存零级光束处理区R1的位置信息。
下面描述利用信号光束12a(即全息图参考光束和全息图信号光束)在记录介质中记录折射率光栅的过程。
由于用信号光束12a照射记录介质10,因此全息图参考光束和全息图信号光束彼此发生光学干涉,产生光学干涉条纹图案P1,从而因光折变效应在记录介质10中记录折射率光栅P1。
信号光束12a的零级光束(即,全息图参考光束)由入射光束处理区R的零级光束偏转区RL偏转并反射回到记录介质10,且成为偏转的全息图参考光束。信号光束12a的衍射光束(即,全息图信号光束)穿过入射光束处理区R的衍射光束处理区R2,并从记录介质10上光束入射的入射面的相对侧射出。
信号光束12a的偏转的全息图参考光束和全息图参考光束在记录介质10中彼此发生光学干涉,形成光学干涉条纹图案P2,从而因光折变效应在记录介质10中记录对应于光学干涉条纹图案P2的折射率光栅P2。
因此,在图17所示的实施方案中,因光折变效应在记录介质10中以全息图的方式至少记录对应于光学干涉条纹图案P1和P2的折射率光栅P1和P2。
在下文描述利用信号光束12a(即,全息图参考光束)在记录介质10中再现折射率光栅的过程。
在再现过程中,没有对信号光束12a进行空间调制。所以,没有因空间调制而产生的衍射光束,这样信号光束12a只包括零级光束。
在与记录中所用的信号光束相同的位置和角条件下,利用信号光束12a(全息图参考光束)照射记录介质10。此时,用信号光束照射记录介质10中的折射率光栅P1,因此从对应于记录信息的折射率光栅P1发出第一再现波。
接着,通过入射光束处理区R的零级光束偏转区RL将信号光束12a的零级光束(即,全息图参考光束)偏转回到记录介质10,并成为偏转的全息图参考光束。利用偏转的全息图参考光束照射记录介质10的折射率光栅P2,因此从对应于记录信息的折射率光栅P2发出第二再现波。
第一和第二再现波穿过入射光束处理区R的衍射光束处理区R2,从记录介质10上光束入射的入射面的相对侧射出,并穿过聚光透镜16a。按照与图14中实施方案相同的方式执行后面的过程。
偏转的全息图参考光束从记录介质10的入射面射出,不能到达聚光透镜16a。这种现象有助于简化记录信息的再现。
根据上述这些改进的实施例,由于只有信号光束12a的零级光束经入射光束处理区R返回到记录介质10的内部,因此可以有效地利用照射光的量,另外,这些结构有助于简化记录信息的再现。
<第八实施方案>
在上述实施方案中,描述了以入射光束处理区R整体设置在记录介质10中的形式的全息记录和再现,但是也可以向具有与本发明相同有益效果的装置提供该入射光束处理区R。
图18示出根据另一个实施方案的利用另一种记录介质的全息记录和再现装置。该全息记录和再现装置包括入射光束处理区R,该入射光束处理区置于记录介质10上或邻近记录介质10,并位于信号光束入射的入射面的相对侧。入射光束处理区R将零级光束和衍射光束彼此分开,以使一部分入射光束返回到记录介质的内部。入射光束处理区R包括,使信号光束12a中的零级光束通过的零级光束处理区R1,以及使信号光束12a中的衍射光束反射的衍射光束处理区R2。只要零级光束处理区R1的处理功能不同于衍射光束处理区R2的处理功能,零级光束处理区R1可以具有吸收零级光束的功能。零级光束处理区R1可以具有透光性或吸光性。除入射光束处理区R置于邻近记录介质10的装置中之外,图18中示出的全息记录和再现装置与图3中示出的装置相同。
如图19中所示,在该装置中,入射光束处理区R置于记录介质10的入射面的相对侧,并具有作为一个窗的用于使信号光束12a中的零级光束穿过的零级光束处理区R1。记录介质10被设置成可移动的,以便可相对于零级光束处理区R1的窗沿图中的“y”方向移动。记录介质10可移动地设置,以便沿着与空间光调制器SLM像素矩阵的一行或一列的延伸方向DSLM成预定角θ(θ≠0)的方向DTR移动。
如图20所示,衍射光束成为由空间光调制器SLM基于其像素矩阵(间距为“a”)所调制的信号光束12a的最高频率分量。信号光束12a通过聚光透镜160进行傅里叶变换,然后根据因空间光调制器SLM的空间调制,在傅里叶平面FF中出现关于空间频率的光强度的谱分布,如图20所示。
该实施方案,除了入射光束处理区R和记录介质10可以相对移动之外,其全息图的记录和再现过程与图3中所示的装置相同。
<第九实施方案>
此外,图21示出再一个改进的实施方案。代替零级光束处理区的透明部分,在记录介质10入射面的相对侧上的入射光束处理区R中提供零级光束散射区SC。借助于零级光束,衍射光束,散射的零级光束和反射的衍射光束所形成的干涉条纹来进行全息记录。
<第十实施方案>
图22示出该实施方案的进一步改进的实施例。在入射面的相对侧或邻近该相对侧的入射光束处理区R中提供零级光束偏转区RL。该零级光束偏转区RL具有使信号光束12a的零级光束相对于信号光束12a的光轴向内部偏转的倾斜反射面。零级光束偏转区RL起到另一个零级光束处理区R1的作用,即,将入射光的零级光束与衍射光束分开,并将一部分光束返回到记录介质10内部。借助于由零级光束,衍射光束,偏转的零级光束和反射的衍射光束所形成的干涉条纹来进行全息记录。
<第十一实施方案>
图23示出根据再一个实施方案的另一个全息记录和再现装置,该装置使用透明的衍射光束处理区R2,光束可穿过入射光束处理区R中的该衍射光束处理区R2。该全息记录和再现装置与图1中示出的装置相同,除了增加入射光束处理区R并去掉由分束器13,反射镜18和19组成的用于产生参考光束的光学系统。此外,入射光束处理区R包括,用于使零级光束散射的零级光束散射区SC,和允许衍射光束通过的透明部分T(衍射光束处理区R2)。
如图24所示,在该装置中位于记录介质10入射面的相对侧,在入射光束处理区R内部提供零级光束散射区SC,使得该入射光束处理区R能够将入射光的零级光束与其衍射光束分开,并将一部分光束返回到记录介质10内部。该零级光束散射区SC仅仅散射信号光束12a的零级光束。沿“y”方向延伸的轨道形零级光束散射区SC,将信号光束12a的零级光束散射回到记录介质10中。借助于由产生光学干涉条纹图案的零级光束,衍射光束,散射的零级光束和反射的衍射光束所形成的干涉条纹,来进行全息记录,从而因光折变效应在记录介质10中记录折射率光栅。在再现中,按照与在记录中同样的方式,将记录介质10固定在装置中,并利用会聚的参考光束12照射该记录介质10。当参考光束12穿过记录介质10时,那么从记录介质10的折射率光栅输出再现波。当参考光束12入射时,那么在记录介质10的相对侧上出现用于再现记录的光干涉图案的再现光束。将再现波引导至傅里叶逆变换透镜16a并执行傅里叶逆变换,从而再现光点图案信号。通过置于焦距位置的诸如电荷耦合器件CCD等的光电探测器20,接收光点图案信号,并将其恢复为电数字数据信号。然后,将该数字数据信号发送到解码器以再现原始数据。
<第十二实施方案>
图25示出再一个改进的实施方案的一部分。该全息记录和再现装置与图23中示出的装置相同,除了在该装置中设置有在内部仅仅反射信号光束12a的零级光束的零级光束反射区RR和允许衍射光束穿过的透明部分T(衍射光束处理区R2)。
换句话说,邻近记录介质10的入射光束处理区R包括,用于使信号光束12a的零级光束(即,全息图参考光束)反射的零级光束反射区RR和允许衍射光束(即,全息图信号光束)穿过的衍射光束处理区R2。
<第十三实施方案>
图26示出另一个改进的实施方案的一部分。该全息记录和再现装置与图23中示出的装置相同,除了在该装置中设置有在内部仅仅反射信号光束12a的零级光束的零级光束偏转区RL和允许衍射光束穿过的透明部分T(衍射光束处理区R2)。沿图中“y”方向延伸的入射光束处理区的零级光束偏转区RL,使零级光束朝记录介质10内部的轨道的一侧偏转,从而借助于由零级光束,衍射光束和偏转的零级光束所形成的干涉条纹来进行全息记录。该零级光束偏转区RL具有相对于信号光束12a的光轴倾斜的反射面,用于使信号光束12a的零级光束向内部偏转。零级光束偏转区RL起到另一个零级光束处理区R1的作用,即,将入射光的零级光束与衍射光束分开,并将一部分光束返回到记录介质10内部。沿“y”方向延伸的轨道形零级光束偏转区RL将信号光束12a的零级光束返回到记录介质10,并朝轨道一侧偏转。借助于由零级光束,衍射光束,偏转的零级光束和反射的衍射光束所形成的干涉条纹来进行全息记录。
这些改进的实施例具有仅仅将信号光束的零级光束返回到记录介质10内部的结构,从而可以有效地利用照射光的量。入射光束处理区具有分离入射光束,以将其一部分返回到记录介质内部,从而利用不同的过程单独处理入射光中的零级光束和衍射光束的作用。因此入射光束处理区可以具有允许零级光束通过或吸收零级光束的零级光束处理区;以及反射或偏转或散射衍射光束的衍射光束反射区。可替换的是,入射光束处理区可以具有反射或散射或偏转或吸收零级光束的零级光束处理区;以及反射或偏转衍射光束的衍射光束反射区。
<第十四实施方案>
图27示出再一个改进的实施方案的一部分,与图18中示出的装置相比,在邻近记录介质10的位置单独设置入射光束处理区R。如图27中所示,入射光束处理区R和聚光透镜160可以整体地固定在支撑架RSU上,彼此面对,从而使记录介质10能够插入它们之间。
<第十五实施方案>
而且,根据本发明的再一个实施方案,可以提供盘形或卡形的记录介质10。例如,在图28中示出的磁盘盒CR容纳可旋转的记录介质10的磁盘。磁盘盒CR在其内侧壁具有入射光束处理区R,并具有用光束存取记录介质磁盘的开口。
<第十六实施方案>
除了全息记录和再现方法及其装置的上述实施方案之外,本发明显然包括全息图的记录方法,再现方法,记录装置和再现装置。在上述实施方案中,依照二维数据来空间调制激光束,换句话说,利用二维调制。但是,本发明也适用于依照一维数据来空间调制激光束的全息记录和再现方法以及装置。在上述实施方案中,光折射材料用于记录介质的光敏材料,但是如烧孔材料的光敏材料,光致变色材料等也可用于记录介质的光敏材料。
权利要求
1.一种用于全息记录和再现的方法,该方法包括记录过程和再现过程,该记录过程包括步骤依照待记录的信息,通过空间调制相干参考光束,来产生信号光束;用该信号光束照射由光敏材料制成的记录介质,以允许该信号光束穿过所述记录介质;以及在位于该信号光束的零级光束和衍射光束在所述记录介质内部彼此发生干涉的部分中,产生通过光干涉图案记录的衍射光栅区域;以及再现过程包括以下步骤用所述参考光束照射所述衍射光栅区域,以产生对应于该信号光束的再现波。
2.根据权利要求1的用于全息记录和再现的方法,进一步包括一入射光束处理区,其设置在所述记录介质中,位于所述信号光束入射到所述记录介质的入射面的相对侧上,该入射光束处理区将该零级光束和该衍射光束彼此分开,以将一部分该入射光束返回到所述记录介质内部。
3.根据权利要求2的用于全息记录和再现的方法,进一步包括在所述入射光束处理区的一部分中形成的线形轨道。
4.根据权利要求3的用于全息记录和再现的方法,其中所述轨道具有所述入射光束处理区相对于所述记录介质的定位信息。
5.根据权利要求2的用于全息记录和再现的方法,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
6.根据权利要求2的用于全息记录和再现的方法,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定零级光束处理区并允许该衍射光束穿过。
7.根据权利要求2的用于全息记录和再现的方法,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
8.根据权利要求5至7中任一项权利要求的用于全息记录和再现的方法,进一步包括空间光调制器,该空间光调制器包括像素的行和列矩阵,以空间调制所述参考光束,其中按照使得所述信号光束的衍射光束不会照射到所述零级光束处理区的方式,来相对地设置所述空间光调制器和所述记录介质。
9.根据权利要求8的用于全息记录和再现的方法,其中按照下述方式使所述空间光调制器和所述记录介质相对于所述信号光束的光轴相对地设置,即,使得所述空间光调制器的一行或一列的延伸方向与所述零级光束处理区的一个延伸方向成预定的θ(θ≠0)角。
10.根据权利要求6的用于全息记录和再现的方法,其中在所述再现过程中,从信号光束入射到所述记录介质的入射面的相对侧输出所述再现波。
11.一种用于全息记录的方法,包括步骤依照待记录的信息,通过空间调制相干参考光束,来产生信号光束;利用该信号光束照射由光敏材料制成的记录介质,以允许信号光束穿过所述记录介质;以及在位于该信号光束的零级光束和衍射光束在所述记录介质内部彼此发生干涉的部分中,产生通过光干涉图案记录的衍射光栅区域。
12.根据权利要求11的用于记录全息图的方法,进一步包括一入射光束处理区,其设置在所述记录介质中,位于所述信号光束入射到所述记录介质的入射面的相对侧上,该入射光束处理区将该零级光束和该衍射光束彼此分开,以将一部分该入射光束返回到所述记录介质内部。
13.根据权利要求12的用于记录全息图的方法,进一步包括在所述入射光束处理区的一部分中形成的线形轨道。
14.根据权利要求13的用于记录全息图的方法,其中所述轨道具有所述入射光束处理区相对于所述记录介质的定位信息。
15.根据权利要求12的用于记录全息图的方法,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
16.根据权利要求12的用于记录全息图的方法,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并允许该衍射光束穿过。
17.根据权利要求12的用于记录全息图的方法,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许该零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
18.根据权利要求15至17中任一项权利要求的用于记录全息图的方法,进一步包括空间光调制器,该空间光调制器包括像素的行和列矩阵,以空间调制所述参考光束,其中按照使得所述信号光束的衍射光束不会照射到所述零级光束处理区的方式,来相对地设置所述空间光调制器和所述记录介质。
19.根据权利要求18的用于记录全息图的方法,其中按照下述方式使所述空间光调制器和所述记录介质相对于所述信号光束的光轴相对地设置,即,使得所述空间光调制器的一行或一列的延伸方向与所述零级光束处理区的一个延伸方向成预定的θ(θ≠0)角。
20.一种用于全息再现的方法,包括以下步骤提供由光敏材料制成的记录介质,其具有通过记录过程形成的衍射光栅区域,该记录过程包括步骤依照待记录的信息,通过空间调制相干参考光束来产生信号光束;利用该信号光束照射该记录介质,以允许该信号光束穿过所述记录介质,以便在位于该信号光束的零级光束和衍射光束在所述记录介质内部彼此发生干涉的部分中,形成通过光干涉图案记录的该衍射光栅区域;以及将相干参考光束照射到该衍射光栅区域,以产生对应于该信号光束的再现波。
21.根据权利要求20的用于再现全息图的方法,进一步包括一入射光束处理区,其设置在所述记录介质中,位于所述信号光束入射到所述记录介质的入射面的相对侧上,该入射光束处理区将该零级光束和该衍射光束彼此分开,以将一部分入射光束返回到所述记录介质内部。
22.根据权利要求21的用于再现全息图的方法,进一步包括在所述入射光束处理区的一部分中形成的线形轨道。
23.根据权利要求22的用于再现全息图的方法,其中所述轨道具有所述入射光束处理区相对于所述记录介质的定位信息。
24.根据权利要求21的用于再现全息图的方法,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
25.根据权利要求21的用于再现全息图的方法,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并允许该衍射光束穿过。
26.根据权利要求21的用于再现全息图的方法,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许该零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
27.根据权利要求24至26中任一项权利要求的用于再现全息图的方法,其中按照下述方式通过利用包括像素的行和列矩阵的空间光调制器来记录该记录介质的衍射光栅区域,即,使得所述空间光调制器和所述记录介质相对地设置,从而所述信号光束的衍射光束不会照射到所述零级光束处理区。
28.根据权利要求27的用于再现全息图的方法,其中按照下述方式使所述空间光调制器和所述记录介质相对于所述信号光束的光轴相对地设置,即,使得所述空间光调制器的一行或一列的延伸方向与所述零级光束处理区的一个延伸方向成预定的θ(θ≠0)角。
29.根据权利要求25的用于再现全息图的方法,其中在再现过程中,从所述信号光束入射到所述记录介质的入射面的相对侧输出所述再现波。
30.一种全息记录和再现装置,用于将信息记录为记录介质中的衍射光栅区域,并用于从所述衍射光栅区域再现所述记录信息,所述全息记录和再现装置包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;信号光束产生单元,包括空间光调制器,所述空间光调制器依照待记录的所述信息空间调制所述参考光束,以产生信号光束;干涉单元,包括照射光学系统,用于利用该信号光束照射所述记录介质,以允许该信号光束进入并穿过所述记录介质,所述照射光学系统,在位于该信号光束的零级光束和衍射光束在所述记录介质内部彼此发生干涉的部分中,根据光干涉图案形成衍射光栅区域,所述照射光学系统利用所述参考光束照射所述衍射光栅区域,以产生对应于该信号光束的再现波;以及检测单元,用于检测由该再现波形成于一图像中的所述记录信息。
31.根据权利要求30的全息记录和再现装置,进一步包括一入射光束处理区,设置在所述记录介质中,位于所述信号光束入射到所述记录介质的入射面的相对侧上,该入射光束处理区将该零级光束和该衍射光束彼此分开,以将一部分入射光束返回到所述记录介质内部。
32.根据权利要求31的全息记录和再现装置,进一步包括在所述入射光束处理区的一部分中形成的线形轨道。
33.根据权利要求32的全息记录和再现装置,其中所述轨道具有所述入射光束处理区相对于所述记录介质的定位信息。
34.根据权利要求31的全息记录和再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
35.根据权利要求31的全息记录和再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并允许该衍射光束穿过。
36.根据权利要求31的全息记录和再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许该零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
37.根据权利要求34至36中任一项权利要求的全息记录和再现装置,进一步包括空间光调制器,该空间光调制器包括像素的行和列矩阵,以空间调制所述参考光束,其中按照使得所述信号光束的衍射光束不会照射到所述零级光束处理区的方式,来相对地设置所述空间光调制器和所述记录介质。
38.根据权利要求37的全息记录和再现装置,其中按照下述方式使所述空间光调制器和所述记录介质相对于所述信号光束的光轴相对地设置,即,使得所述空间光调制器的一行或一列的延伸方向与所述零级光束处理区的一个延伸方向成预定的θ(θ≠0)角。
39.根据权利要求35的全息记录和再现装置,从所述信号光束入射到所述记录介质的入射面的相对侧输出所述再现波。
40.根据权利要求34或36的全息记录和再现装置,进一步包括分离单元,将所述再现波与所述参考光束的光路分开。
41.一种全息记录装置,用于将信息记录为记录介质中的衍射光栅区域,包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;信号光束产生单元,包括空间光调制器,所述空间光调制器依照待记录的所述信息,空间调制所述参考光束,以产生信号光束;以及干涉单元,包括照射光学系统,用于利用该信号光束照射所述记录介质,以允许该信号光束进入并穿过所述记录介质,所述照射光学系统,在位于信号光束的零级光束和衍射光束在所述记录介质内部彼此发生干涉的部分中,根据光干涉图案形成衍射光栅区域。
42.根据权利要求41的全息记录装置,其中所述记录介质包括一入射光束处理区,其设置在所述记录介质中,位于所述信号光束入射到所述记录介质的入射面的相对侧上,该入射光束处理区将该零级光束和该衍射光束彼此分开,以将一部分入射光束返回到所述记录介质内部。
43.根据权利要求42的全息记录装置,进一步包括在所述入射光束处理区的一部分中形成的线形轨道。
44.根据权利要求43的全息记录装置,其中所述轨道具有所述入射光束处理区相对于所述记录介质的定位信息。
45.根据权利要求42的全息记录装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
46.根据权利要求42的全息记录装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并允许该衍射光束穿过。
47.根据权利要求42的全息记录装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许该零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
48.根据权利要求45至47中任一项权利要求的全息记录装置,进一步包括空间光调制器,该空间光调制器包括像素的行和列矩阵,以空间调制参考光束,其中按照使得所述信号光束的衍射光束不会照射到所述零级光束处理区的方式,来相对地设置所述空间光调制器和所述记录介质。
49.根据权利要求48的全息记录装置,其中按照下述方式使所述空间光调制器和所述记录介质相对于所述信号光束的光轴相对地设置,即,使得所述空间光调制器的一行或一列的延伸方向与所述零级光束处理区的一个延伸方向成预定的θ(θ≠0)角。
50.一种全息再现装置,用于再现作为记录介质中衍射光栅区域而记录的信息,该全息再现装置包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;照射单元,包括照射光学系统,用于利用该参考光束照射该记录介质,以允许该参考光束进入并穿过该记录介质中的衍射光栅区域,以产生对应于该信号光束的再现波;以及检测单元,用于检测由该再现波形成于一图像中的所述记录信息。
51.根据权利要求50的全息再现装置,其中该记录介质包括一入射光束处理区,其设置在所述记录介质中,位于所述信号光束入射到所述记录介质的入射面的相对侧上,该入射光束处理区将该零级光束和该衍射光束彼此分开,以将一部分入射光束返回到所述记录介质内部。
52.根据权利要求51的全息再现装置,进一步包括在所述入射光束处理区的一部分中形成的线形轨道。
53.根据权利要求52的全息再现装置,其中所述轨道具有所述入射光束处理区相对于所述记录介质的定位信息。
54.根据权利要求51的全息再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
55.根据权利要求51的全息再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并允许该衍射光束穿过。
56.根据权利要求51的全息再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许该零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
57.根据权利要求54至56中任一项权利要求的全息再现装置,其中按照下述方式通过利用包括像素的行和列矩阵的空间光调制器,来记录该记录介质的衍射光栅区域,即,相对设置所述空间光调制器和所述记录介质,从而使得所述信号光束的衍射光束不会照射到所述零级光束处理区。
58.根据权利要求57的全息再现装置,其中按照下述方式使所述空间光调制器和所述记录介质相对于所述信号光束的光轴相对地设置,即,使得所述空间光调制器的一行或一列的延伸方向与所述零级光束处理区的一个延伸方向成预定的θ(θ≠0)角。
59.根据权利要求55的全息再现装置,其中从所述信号光束入射到所述记录介质的入射面的相对侧输出所述再现波。
60.根据权利要求54或56的全息再现装置,进一步包括分离单元,用于将所述再现波与所述参考光束的光路分开。
61.一种记录介质,由通过相干光束照射即可实现记录的光敏材料制成,包括一入射光束处理区,其设置在所述记录介质中位于光束入射到该记录介质的入射面的相对侧上,该入射光束处理区将光束的零级光束和衍射光束彼此分开,从而将一部分入射光束返回到所述记录介质内部。
62.根据权利要求61的记录介质,进一步包括在所述入射光束处理区的一部分中形成的线形轨道。
63.根据权利要求62的记录介质,其中所述轨道具有所述入射光束处理区相对于所述记录介质的定位信息。
64.根据权利要求61的记录介质,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
65.根据权利要求61的记录介质,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并允许该衍射光束穿过。
66.根据权利要求61的记录介质,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许该零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
67.一种全息记录和再现装置,用于将信息记录为记录介质中的衍射光栅区域,并用于从所述衍射光栅区域再现所述记录信息,所述全息记录和再现装置包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;信号光束产生单元,包括空间光调制器,所述空间光调制器依照待记录的所述信息空间调制所述参考光束,以产生信号光束;干涉单元,包括照射光学系统,用于利用信号光束照射所述记录介质,以允许该信号光束进入并穿过所述记录介质,所述照射光学系统,在位于所述信号光束的零级光束和衍射光束在所述记录介质内部彼此发生干涉的部分中,根据光干涉图案形成衍射光栅区域,所述照射光学系统利用所述参考光束照射所述衍射光栅区域,以产生对应于所述信号光束的再现波;入射光束处理区,邻近所述信号光束入射到所述记录介质的入射面的相对侧设置该入射光束处理区,该入射光束处理区将该零级光束和该衍射光束彼此分开,以使一部分入射光束返回到所述记录介质内部;以及检测单元,用于检测由该再现波形成于一图像中的所述记录信息。
68.根据权利要求67的全息记录和再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
69.根据权利要求67的全息记录和再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并允许该衍射光束穿过。
70.根据权利要求67的全息记录和再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许该零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
71.根据权利要求67的全息记录和再现装置,其中所述空间光调制器包括像素的行和列矩阵,并且其中按照下述方式使所述空间光调制器和所述记录介质相对于所述信号光束的光轴相对地设置,即,使得所述空间光调制器的一行或一列的延伸方向与所述零级光束处理区的一个延伸方向成预定的θ(θ≠0)角。
72.根据权利要求69的全息记录和再现装置,其中从所述信号光束入射到所述记录介质的入射面的相对侧输出所述再现波。
73.根据权利要求68或70的全息记录和再现装置,进一步包括分离单元,将所述再现波与所述参考光束的光路分开。
74.一种全息记录装置,用于将信息记录为记录介质中的衍射光栅区域的信息,包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;信号光束产生单元,包括空间光调制器,所述空间光调制器依照待记录的所述信息空间调制所述参考光束,以产生信号光束;干涉单元,包括照射光学系统,用于利用该信号光束照射该记录介质,以允许该信号光束进入并穿过所述记录介质,所述照射光学系统,在位于该信号光束的零级光束和衍射光束在所述记录介质内部彼此发生干涉的部分中,根据光干涉图案形成衍射光栅区域;以及入射光束处理区,邻近该信号光束入射到该记录介质的入射面的相对侧设置该入射光束处理区,该入射光束处理区将零级光束和衍射光束彼此分开,以使一部分入射光束返回到所述记录介质内部。
75.根据权利要求74的全息记录装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
76.根据权利要求74的全息记录装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并允许该衍射光束穿过。
77.根据权利要求74的全息记录装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许该零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
78.根据权利要求74的全息记录装置,其中所述空间光调制器包括像素的行和列矩阵,并且其中按照下述方式使所述空间光调制器和所述记录介质相对于所述信号光束的光轴相对地设置,即,使得所述空间光调制器的一行或一列的延伸方向与所述零级光束处理区的一个延伸方向成预定的θ(θ≠0)角。
79.一种全息再现装置,用于再现作为记录介质中的衍射光栅区域记录的信息,该全息再现装置包括保持部分,用于可拆卸地保持由光敏材料制成的记录介质;光源,用于产生相干参考光束;照射单元,包括照射光学系统,用于利用该参考光束照射该记录介质,以允许该参考光束进入并穿过该记录介质中的衍射光栅区域,以产生对应于该信号光束的再现波;入射光束处理区,邻近该信号光束入射到该记录介质的入射面的相对侧设置该入射光束处理区,该入射光束处理区将零级光束和衍射光束彼此分开,以使一部分入射光束返回到所述记录介质内部;以及检测单元,用于检测由该再现波形成于一图像中的所述记录信息。
80.根据权利要求79的全息再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区允许该零级光束穿过,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并反射该衍射光束。
81.根据权利要求79的全息再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或吸收该零级光束,该衍射光束反射区限定该零级光束处理区并允许该衍射光束穿过。
82.根据权利要求79的全息再现装置,其中所述入射光束处理区包括零级光束处理区和衍射光束反射区,该零级光束处理区反射该零级光束,或散射该零级光束,或偏转该零级光束,或允许该零级光束穿过,该衍射光束反射区限定该零级光束处理区并吸收该衍射光束。
83.根据权利要求80至82中任一项权利要求的全息再现装置,其中按照下述方式通过利用包括像素的行和列矩阵的空间光调制器,来记录该记录介质的衍射光栅区域,即,相对设置所述空间光调制器和所述记录介质,从而使得所述信号光束的衍射光束不会照射到所述零级光束处理区。
84.根据权利要求83的全息再现装置,其中按照下述方式使所述空间光调制器和所述记录介质相对于所述信号光束的光轴相对地设置,即,使得所述空间光调制器的一行或一列的延伸方向与所述零级光束处理区的一个延伸方向成预定的θ(θ≠0)角。
85.根据权利要求81的全息再现装置,其中在再现过程中,从所述信号光束入射到所述记录介质的入射面的相对侧输出所述再现波。
86.根据权利要求80或82的全息再现装置,进一步包括分离单元,将所述再现波与所述参考光束的光路分开。
全文摘要
一种用于全息记录和再现的方法,包括记录过程和再现过程。在记录过程中,依照待记录的信息来空间调制相干参考光束,以产生信号光束,并使该信号光束会聚。会聚的信号光束进入并穿过由光敏材料制成的记录介质。在位于信号光束的零级光束和衍射光束在记录介质内部彼此发生干涉的部分中,根据光干涉图案形成衍射光栅区域。在再现过程中,通过利用参考光束照射衍射光栅区域产生对应于信号光束的再现波。
文档编号G03H1/04GK1688943SQ0382363
公开日2005年10月26日 申请日期2003年7月30日 优先权日2002年8月1日
发明者洼田义久, 田中觉, 伊藤善尚, 橘昭弘, 黑田和男, 杉浦聪 申请人:先锋株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1