高亮度偏振片、使用该偏振片的液晶面板和图像显示装置的制作方法

文档序号:2776964阅读:165来源:国知局
专利名称:高亮度偏振片、使用该偏振片的液晶面板和图像显示装置的制作方法
技术领域
本发明涉及一种层叠了偏振片和亮度改善薄膜的高亮度偏振片。本发明的高亮度偏振片可以单独或与其它光学薄膜组合应用于液晶显示装置、有机EL显示装置、PDP等各种图像显示装置中。
背景技术
以往,从用于液晶显示装置的背光灯发射出的自然光是以自然光的形式直接入射到液晶单元上。最近,因液晶显示装置的大型化、高精细化而有必要提高背光灯的亮度。另外,大多采用使来自背光灯的光偏振光化的技术。
例如,将偏振片和亮度改善薄膜贴合在一起而成的高亮度偏振片通常被设于液晶单元的背面一侧。亮度改善薄膜是显示如下特性的薄膜,即,当因液晶显示装置等的背光灯或来自背面侧的反射等,有自然光入射时,反射规定偏光轴的直线偏振光或规定方向的圆偏振光,而使其他光透过,因此将亮度改善薄膜与偏振片层叠而成的偏振片可使来自背光灯等光源的光入射,而获得规定偏振光状态的透过光,同时,所述规定偏振光状态以外的光不能透过,被予以反射。借助设于其后侧的反射层等再次反转在该亮度改善薄膜面上反射的光,使之再次入射到亮度改善薄膜上,使其一部分或全部作为规定偏振光状态的光透过,从而增加透过亮度改善薄膜的光,同时向偏振镜提供难以吸收的偏振光,从而增大能够在液晶显示图像的显示等中利用的光量,并由此可以提高亮度。即,在不使用亮度改善薄膜而用背光灯等从液晶单元的背面侧穿过偏振镜而使光入射的情况下,具有与偏振镜的偏光轴不一致的偏光方向的光基本上被偏振镜所吸收,因而无法透过偏振镜。即,虽然会因所使用的偏振镜的特性而不同,但是大约50%的光会被偏振镜吸收掉,因此,在液晶图像显示等中能够利用的光量将减少,导致图像变暗。亮度改善薄膜反复进行如下操作,即,使具有能够被偏振镜吸收的偏光方向的光不是入射到偏振镜上,而是使该类光在亮度改善薄膜上发生反射,进而借助设于其后侧的反射层等完成反转,使光再次入射到亮度改善薄膜上,这样,亮度改善薄膜只使在这两者间反射并反转的光中的、其偏光方向变为能够通过偏振镜的偏光方向的偏振光透过,并将其提供给偏振镜,因此可以在液晶显示装置的图像的显示中有效地使用背光灯等的光,从而可以使画面明亮。
作为所述亮度改善薄膜,例如可以使用电介质的多层薄膜或折射率各向异性不同的薄膜多层叠层体之类的显示出使特定偏光轴的直线偏振光透过而反射其他光的特性的薄膜、胆甾醇型液晶聚合物的取向薄膜或在薄膜基材上支撑了该取向液晶层的薄膜之类的显示出将左旋或右旋中的任一种圆偏振光反射而使其他光透过的特性的薄膜等适宜的薄膜。
因此,通过利用使所述的特定偏光轴的直线偏振光透过的类型的亮度改善薄膜,使该透过光直接沿着与偏光轴一致的方向入射到偏振片上,可以在抑制由偏振片造成的吸收损失的同时,使光有效地透过。另一方面,利用胆甾醇型液晶层之类的使圆偏振光透过的类型的亮度改善薄膜,虽然可以直接使光入射到偏振镜上,但是,从抑制吸收损失这一点考虑,最好借助相位差板对该圆偏振光进行直线偏振光化,之后再入射到偏振片上。而且,通过使用λ/4片作为该相位差板,可以将圆偏振光变换为直线偏振光。
还有,导光板自身具有棱镜结构,且在其中使用棱镜类型的聚光薄片等,此时就会从背光灯发射出若干偏振光。该偏光能力为5%以上,优选为10%以上,更优选为15%以上,发射方向也可以不是相对背光灯面的法线方向。另外,上述偏光能力用偏光能力=(最大亮度-最小亮度)/(最大亮度+最小亮度)表示。偏光能力的测量,是通过测量从背光灯射出的光借助Glan-Thompson棱镜在其偏光轴方向上的亮度变化(最大亮度、最小亮度)来进行的。
当使用这些亮度改善薄膜时,至今为止,色移量都存在问题。提出了各种降低该色移量的方法(例如,参照特开平11-248941号公报,特开平11-248942号公报、特开平11-64840号公报、特开平11-64841号公报等)。在这些文献中,对降低整个液晶显示装置的色移量进行了研究。在特开平11-248941号公报、特开平11-248942号公报中,对降低亮度改善薄膜的色移量进行了研究。在特开平11-64840号公报、特开平11-64841号公报中,对通过亮度改善薄膜和液晶面板的组合来降低色移量进行了研究。但是,在贴合偏振片和亮度改善薄膜的高亮度偏振片中,不能充分降低色移量。
另外,已知向多层干扰层叠物与已被拉伸的聚乙烯醇系薄膜的复合薄膜中浸渗碘并使亮度改善薄膜与偏振镜复合化的高亮度偏振片(例如,参照特表平9-507308号公报、第12页)。这种高亮度偏振片能够在某种程度上降低色移量,但会产生严重的染色斑,不能用于液晶显示装置的图像显示装置的用途中。上述聚乙烯醇系薄膜是被拉伸至3倍以上(4倍以上、进而5倍以上),并且将水份比例控制在10%以下,所以当在其中含有碘时,通过聚乙烯醇系薄膜的取向状态的宽度方向的偏差、厚度的宽度方向的偏差、结晶度的宽度方向的偏差,碘的染色速度不同,染色有厚的部分更浓、薄的部分更淡的明显趋势。由此,在偏振镜上会产生染色斑,由面内不均匀使得即使在黑色显示时亮度也并不会充分降低。这样的复合化薄膜事实上难以应用于液晶显示装置等中。

发明内容
本发明的目的在于,提供一种贴合偏振片和亮度改善薄膜的高亮度偏振片,该高亮度偏振片的色移量少。
另外,本发明的目的还在于,提供使用该高亮度偏振片的液晶面板、进而提供液晶显示装置等图像显示装置。
本发明人等为了解决上述课题而进行了潜心研究,结果发现通过下面所示的高亮度偏振片可以达到上述目的,以至完成本发明。即,本发明如下述所示。
本发明之一是一种复合偏振光薄膜,是在偏振镜的一面或两面上设有保护薄膜的偏振片和亮度改善薄膜夹持上述保护薄膜并借助粘合剂层层叠的高亮度偏振片,其特征在于,
在上述保护薄膜中,当以面内折射率最大的方向为X轴,以与X轴方向垂直的方向为Y轴,以薄膜的厚度方向为Z轴,并将各轴方向的折射率分别设为nx、ny、nz,将透明薄膜的厚度设为d(nm)时,面内相位差Re=(nx-ny)×d为0~10nm,且厚度方向相位差Rth={(nx+ny)/2-nz}×d}为-30~10nm。
本发明之二是在上述本发明之一的高亮度偏振片中,其特征在于,保护薄膜含有(A)在侧链上具有取代和/或非取代亚氨基的热塑性树脂、和(B)在侧链上具有取代和/或非取代苯基和腈基的热塑性树脂而成。
本发明之三是在上述本发明之一或者二的高亮度偏振片中,其特征在于,保护薄膜是双向拉伸的薄膜。
本发明之四是在上述本发明之一至三的任何高亮度偏振片中,其特征在于,偏振镜是含有碘的聚乙烯醇系薄膜。
本发明之五是在上述本发明之一至四的任何高亮度偏振片中,其特征在于,亮度改善薄膜为各向异性反射偏振镜。
本发明之六是在上述本发明之五的高亮度偏振片中,其特征在于,各向异性反射偏振镜为胆甾醇型液晶层与λ/4片的复合体。
本发明之七是在上述本发明之五的高亮度偏振片中,其特征在于,各向异性反射偏振镜是透过一个振动方向的直线偏振光而反射另一个振动方向的直线偏振光的各向异性多重薄膜。
本发明之八是在上述本发明之五的高亮度偏振片中,其特征在于,各向异性反射偏振镜是反射格栅(grid)偏振镜。
本发明之九是在上述本发明之一至四的任何高亮度偏振片中,其特征在于,亮度改善薄膜是各向异性散射偏振镜。
本发明之十的高亮度偏振片,其特征在于,是在上述本发明之一至九的任何高亮度偏振片上进一步组合光学薄膜至少1张。
本发明之十一是一种液晶面板,其特征在于,将上述本发明之一至十的任何高亮度偏振片贴合在液晶单元的至少一面上。
本发明之十二是一种液晶显示装置,其特征在于,使用上述本发明之十一的液晶面板。
本发明之十三是一种图像显示装置,其特征在于,使用上述本发明之一至十的任何高亮度偏振片。
用层叠有偏振片与亮度改善薄膜的高亮度偏振片,将从亮度改善薄膜发射出的光几乎全部变换为直线偏振光,并使其入射到偏振片上。此时,以使亮度改善薄膜的偏光轴方向与偏振片的透过轴方向几乎平行的方式进行配置。
另外,作为上述偏振片,通常使用的是在偏振镜上设置保护薄膜的偏振片。作为上述保护薄膜,为了可以使从亮度改善薄膜发射出的直线偏振光直接透过,使用的是面内相位差Re大约为0nm的薄膜。但是,以往使用的保护薄膜即使面内相位差Re大约为0nm,还要使用在厚度方向上具有相位差的薄膜。例如,三乙酰纤维素薄膜,在薄膜厚度为80μm的情况下,厚度方向的相位差为-60nm,在薄膜厚度40μm的情况下,厚度方向的相位差为-35nm。另外,作为保护薄膜,有时使用面内具有双折射性的薄膜。即使在使用这种保护薄膜的情况下,大多将亮度改善薄膜的偏光轴方向与偏振片的透过轴方向设定成为平行或正交。本发明人等发现,层叠了偏振片和亮度改善薄膜的高亮度偏振片,其色移量变大,其中,所述的偏振片使用了这样的具有厚度方向的相位差的保护薄膜。
不过,偏振镜的偏振光的出现可以从二色性色素(碘或有机染料、溶致液晶等)的复数折射率的虚部的值(ke、ko)推导出。
E=EoExp(ik·z)k=(ne+no)+i(ke+ko)也就是说,在任意可见光区域的波长中,来自正面方向的同一比率的光强度的光,如果来自任意方位的相对二色性色素垂直的直线偏振光入射,可以降低色移量。
即,在保护薄膜的光轴与二色性色素的ke的方向垂直的情况下,例如在光学轴方向为厚度方向(Z轴方向)、ke轴;面内的任意方向(X-Y面内)或光学轴方向为面内方向(X轴方向)、ke轴;面内的Y轴方向或光学轴方向为面内方向(X轴方向)、ke轴;厚度方向(Z轴方向)等情况下,如果从自面内X、Y方向倾斜45°的位置改变仰角,表观的正交关系被破坏。因而,通过亮度改善薄膜制作的直线偏振光最好不要变换为全方位椭圆偏振光。由此,希望是无论ke轴与保护薄膜的光轴是平行还是正交,都不受其相位差的影响的大小。
从上述情况出发,本发明人等使用约为0nm即面内相位差Re为10nm以下且厚度方向相位差Rth为-30~10nm的保护薄膜,作为被偏振片与亮度改善薄膜所夹持的上述偏振片的保护薄膜。在这种保护薄膜中,由于并不影响从亮度改善薄膜发射出的正交偏振光,所以可以降低在液晶显示装置等的白显示时由视觉导致的色移量。上述面内相位差Re优选约为0nm,优选为10mn以下,进而优选为5nm以下。另外,厚度方向相位差Rth优选为-10nm~10nm,更优选为-5~5nm,进而优选为-3~3nm。
另外,在本发明的高亮度偏振片中,是借助胶粘剂贴合偏振片和亮度改善薄膜。在使用偏振片和亮度改善薄膜的情况下,通常在其间是否借助空气界面会给光学特性带来影响。通常与借助空气界面相比,不借助的情况使亮度改善率提高1~3%。但是,在该情况下,色移量上升1~10%左右。这些光学特性也依赖于所使用的背光灯系统。在本发明中,通过使用在偏振镜与亮度改善薄膜之间存在的上述保护薄膜,防止胶粘剂层引起的在界面上的反射,从而可以提高白显示时的亮度,而且同时还能降低色移量。
作为亮度改善薄膜,在使用胆甾醇型液晶层和λ/4片的复合体的各向异性反射偏振镜的情况下,从胆甾醇型液晶层发射出的圆偏振光成分,通过λ/4片只转换90%左右的偏振光。为此,保护薄膜的厚度方向相位差Rth最好为若干正值。通过λ/4片的进一步设计,可以改变保护薄膜的厚度方向相位差Rth。
还有,本发明的高亮度偏振片,使用在偏振镜的一面或两面设有保护薄膜的偏振片和亮度改善薄膜的层叠物。本发明的偏振片的偏振镜,通常使用通过对聚乙烯醇系薄膜等任意实施溶胀、染色处理、交联处理、拉伸处理、水洗处理等各工序的与以往相同的技术而得到的偏振镜。因而,本发明的高亮度偏振片如同特表平9-507308号公报中所示的已复合化的高亮度偏振片那样,没有偏振镜的染色斑所导致的面内斑,且在液晶显示装置等的黑显示时亮度低。


图1是表示本发明的高亮度偏振片的截面图的一个例子。
图2是表示本发明的高亮度偏振片的截面图的一个例子。
图3是表示本发明的液晶显示装置的截面图的一个例子。
图中1、1’-偏振片,1a-偏振镜,1b、1b’-保护薄膜,2-亮度改善薄膜,2a-λ/4片,2b-胆甾醇型液晶层,A-粘合剂层,B-背光灯,C-液晶单元,D-扩散板,E-反射板。
具体实施例方式
下面一边参照图面一边说明本发明。图1是表示高亮度偏振片的截面图,在偏振镜1a的一面上设置保护薄膜1b而在另一面上设置保护薄膜1b’的偏振片1和亮度改善薄膜2,夹持上述保护薄膜1b并借助粘合剂层A进行层叠。保护薄膜1b满足面内相位差Re为10nm以下,厚度方向相位差Rth为-30~10nm。图2是表示亮度改善薄膜2为胆甾醇型液晶层2b与λ/4片2a的复合体时的例子,在这种复合体的情况下,λ/4片2a配置于偏振片1一侧。
图3是表示在液晶单元C的发射侧设置偏振片1’而在入射侧设置由偏振片1和亮度改善薄膜2构成的高亮度偏振片、进而配置背光灯B、扩散板D、反射板E的液晶显示装置的截面图。在图3中,省略粘合剂层A。还有,作为配置于发射侧的偏振片1’,可以使用在偏振镜1a的一面或两面上设置保护薄膜1b’的偏振片。保护薄膜1b’不限于具有与上述保护薄膜1b相同的面内相位差Re、厚度方向相位差Rth的薄膜。不过,保护薄膜1b’也优选是与保护薄膜1b相同的薄膜。
偏振镜1a可以没有特别限制地使用各种偏振镜。作为偏振镜,可以举例为在聚乙烯醇系薄膜、部分缩甲醛化的聚乙烯醇系薄膜、乙烯-醋酸乙烯酯共聚物系部分皂化薄膜等亲水性高分子薄膜上,吸附碘或二色性染料等二色性物质并单向拉伸的薄膜;聚乙烯醇的脱水处理物或聚氯乙烯的脱盐酸处理物等聚烯系取向薄膜等。在这些偏振镜中,优选使用拉伸聚乙烯醇系薄膜并吸附二色性色素(碘、染料)且使其取向而成的偏振镜。对这些偏振镜的厚度没有特别限制,但通常为5μm~80μm左右。
将聚乙烯醇系薄膜用碘染色后经单向拉伸而成的偏振镜,例如,可以通过将聚乙烯醇浸渍于碘的水溶液中进行染色后拉伸至原长度的3至7倍来制作。根据需要,也可以浸渍于硼酸或碘化钾等的水溶液中。此外,根据需要,也可以在染色前将聚乙烯醇系薄膜浸渍于水中溶胀、水洗。通过水洗聚乙烯醇系薄膜,可以洗去聚乙烯醇系薄膜表面上的污物和防粘连剂,除此之外,还可通过使聚乙烯醇系薄膜溶胀,防止染色斑等不均匀现象。拉伸既可以在用碘染色之后进行,也可以一边染色一边进行拉伸,或者也可以在拉伸之后用碘进行染色。也可以在硼酸或碘化钾等的水溶液中或水浴中进行拉伸。
为了消除黑显示时的偏振镜所含的碘的染色斑(偏差)导致的显示斑等,优选对聚乙烯醇系薄膜等实施溶胀、染色处理(在染色浴中除了含有碘等二色性色素以外,还可以含有碘化钾等)、交联处理(在交联浴中除了硼酸等交联剂以外,还可以加入碘化钾等)、拉伸处理(在拉伸浴中还可以加入硼酸、碘化钾等)、水洗等各工序。
还有,作为染色斑的主要原因,包括聚乙烯醇系薄膜的卷筒厚度偏差的原因(特开2000-216380号公报、特开2002-31720号公报)。即使对其进行改善,或者用大的范围(面内范围为50cm以上、优选为75cm以上、更优选为100cm以上的范围)有厚度偏差,在通常的偏振片用途中也难以看到显示斑。在观察黑显示时的斑时,如果在偏振镜或偏振片上在5cm~20cm的间隔内有亮度的浓淡的峰,则认为有斑,当超过上述范围时,则认为没有明显的显示斑。另外,在其为5mm左右或者比其小的情况下而存在偏差、碘的染色斑的浓淡时,只是黑亮度在均衡上升。碘的吸附取向容易依赖聚乙烯醇系薄膜的厚度,厚度厚的吸附量多,取向也高。
偏振镜的制作方法最好使用厚度偏差少的聚乙烯醇系薄膜卷筒。该卷筒在面内100~400mm的范围内存在厚度的极大值、极小值,其差为5μm以下,优选为3μm以下,更优选为1μm以下。另外,在偏差比其大的情况下,优选进行在纯水或离子交换水中的溶胀工序(15~40℃、50~180秒,拉伸倍率2~3.8倍)、染色工序(在碘与碘化钾分别以1∶6~1∶50的比例溶解的水溶液中,10~60秒,浓度虽依赖于此时的想要设计的透过率和偏光度特性,但为0.05%~3%,拉伸倍率1.2~2倍)、硼酸交联处理(在25~45℃下,拉伸倍率1.1~2倍,碘化钾浓度0~5%)、进而进行拉伸处理(硼酸浓度2~8%,碘化钾浓度0~10%,在温度30~65℃下,拉伸倍率1.7~3倍)、水洗处理(碘化钾浓度2~10%),总共拉伸至5~6.5倍。在将得到的拉伸薄膜的宽度拉伸至x倍时,厚度、薄膜宽度均优选为 倍。即使厚度比其低10%,甚至低至25%左右也没有关系。宽度比其宽10%,甚至宽至25%也没有关系。优选在25~40℃下对其进行30~300秒的干燥,将水份比例控制在12%~28%(优选为14~25%)。
对形成保护薄膜1b的材料没有特别限制,可以优选使用含有(A)在侧链上具有取代和/或非取代亚氨基的热塑性树脂和(B)在侧链上具有取代和/或非取代苯基以及腈基的热塑性树脂而成的材料。含有这种热塑性树脂(A)、(B)的保护薄膜难以产生相位差,即使在拉伸处理的情况下,也可以将面内相位差Re、厚度方向相位差Rth控制为较小。含有这种热塑性树脂(A)、(B)的保护薄膜例如在WO 01/37007、特开2002-328233号公报中有记载。还有,保护薄膜即使在以热塑性树脂(A)、(B)为主成分的情况下,也可以含有其它树脂。
热塑性树脂(A)是在侧链上具有取代和/或非取代亚氨基而主链为任意的热塑性树脂。主链例如可以是只由碳原子构成的主链,也可以有碳原子以外的原子插入碳原子之间。另外,也可以由碳原子以外的原子构成。主链优选为烃或其取代物。主链可以通过例如加聚而得到。具体地说,例如是聚烯烃或聚乙烯。另外,主链可以通过缩聚而得到。例如通过酯键、酰胺键等得到。主链优选为使取代乙烯基单体聚合而得到的聚乙烯骨架。
作为向热塑性树脂(A)上导入取代和/或非取代的亚氨基的方法,可以采用以往公知的任意方法。可以举例为使具有上述亚氨基的单体聚合的方法、在聚合各种单体形成主链之后导入上述亚氨基的方法、在侧链上接枝具有上述亚氨基的化合物的方法等。作为亚氨基的取代基,可以使用能取代亚氨基的氢的以往公知的取代基。可以举出例如烷基等。
热塑性树脂(A)优选是含有至少1种由烯烃衍生的重复单元和至少1种具有取代和/或非取代马来酰亚胺结构的重复单元的二元或二元以上的多元共聚物。上述烯烃-马来酰亚胺共聚物可以用公知的方法从烯烃和马来酰亚胺化合物合成。合成法在例如特开平5-59193号公报、特开平5-195801号公报、特开平6-136058号公报以及特开平9-328523号公报中有所记载。
作为烯烃,可以举例为异丁烯、2-甲基-1-丁烯、2-甲基-1-戊烯、2-甲基-1-己烯、2-甲基-1-庚烯、2-甲基-1-庚烯、1-异辛烯、2-甲基-1-辛烯、2-乙基-1-戊烯、2-乙基-2-丁烯、2-甲基-2-戊烯、2-甲基-2-己烯等。其中,优选为异丁烯。这些烯烃可以单独使用,也可以2种以上组合使用。
作为马来酰亚胺化合物,可以举出马来酰亚胺、N-甲基马来酰亚胺、N-乙基马来酰亚胺、N-正丙基马来酰亚胺、N-异丙基马来酰亚胺、N-正丁基马来酰亚胺、N-仲丁基马来酰亚胺、N-叔丁基马来酰亚胺、N-正戊基马来酰亚胺、N-正己基马来酰亚胺、N-正庚基马来酰亚胺、N-正辛基马来酰亚胺、N-月桂基马来酰亚胺、N-硬脂基马来酰亚胺、N-环丙基马来酰亚胺、N-环丁基马来酰亚胺、N-环戊基马来酰亚胺、N-环己基马来酰亚胺、N-环庚基马来酰亚胺、N-环辛基马来酰亚胺等。其中,优选N-甲基马来酰亚胺。这些马来酰亚胺化合物可以单独使用,也可以2种以上组合使用。
在烯烃-马来酰亚胺共聚物中,对烯烃的重复单元的含量没有特别限制,为热塑性树脂(A)的总重复单元的20~70摩尔%,优选为40~60摩尔%,进而优选为45~55摩尔%。马来酰亚胺结构的重复单元的含量为30~80摩尔%左右,优选为40~60摩尔%,进而优选为45~55摩尔%。
热塑性树脂(A)含有上述烯烃的重复单元和马来酰亚胺结构的重复单元,可以只由这些重复单元形成。另外,除了上述以外,也可以以50摩尔%以下的比例含有其它乙烯基系单体的重复单元。作为其它乙烯基系单体,可以举出丙烯酸甲酯、丙烯酸丁酯等丙烯酸系单体,甲基丙烯酸甲酯、甲基丙烯酸环己酯等甲基丙烯酸系单体,醋酸乙烯酯等乙烯酯单体,甲基乙烯醚等乙烯醚单体,马来酸酐之类的酸酐,苯乙烯、α-甲基苯乙烯、对甲氧基苯乙烯等苯乙烯系单体等。
对热塑性树脂(A)的重均分子量没有特别限制,为1×103~5×106左右。上述重均分子量优选为1×104以上、5×105以下。热塑性树脂(A)的玻璃化温度为80℃以上,优选为100℃以上,进而优选为130℃以上。
另外,作为热塑性树脂(A),可以使用戊二酰亚胺系热塑性树脂。戊二酸酰亚胺系树脂在特开平2-153904号公报等中有所记载。戊二酸酰亚胺系树脂具有戊二酸酰亚胺结构单元和丙烯酸甲酯或甲基丙烯酸甲酯结构单元。戊二酸酰亚胺系树脂中也可以导入上述其它乙烯基系单体。
热塑性树脂(B)是在侧链具有取代和/或非取代苯基和腈基的热塑性树脂。热塑性树脂(B)的主链可以例示为与热塑性树脂(A)同样的结构。
作为向热塑性树脂(B)中导入上述苯基的方法,可以举例为使具有上述苯基的单体聚合的方法、使各种单体聚合形成主链之后导入苯基的方法、在侧链上接枝具有苯基的化合物的方法等。作为苯基的取代基,可以使用能取代苯基的氢的以往公知的取代基。可以举例为烷基等。向热塑性树脂(B)中导入腈基的方法也可以采用与苯基的导入方法相同的方法。
热塑性树脂(B),优选含有由不饱和硝酰化合物衍生的重复单元(硝酰单元)和由苯乙烯系化合物衍生的重复单元(苯乙烯系单元)的二元或三元以上的多元共聚物。可以优选使用例如丙烯腈-苯乙烯系的共聚物。
作为不饱和硝酰化合物,可以举出具有氰基和反应性双键的任意化合物。可以举例为丙烯腈、甲基丙烯腈等α-取代不饱和腈,富马腈等具有α、β-双取代烯烃性不饱和键的硝酰化合物等。
作为苯乙烯系化合物,可以举出具有苯基和反应性双键的任意化合物。可以举例为苯乙烯、乙烯甲苯、甲氧基苯乙烯、氯苯乙烯等非取代或取代苯乙烯系化合物、α-甲基苯乙烯等α-取代苯乙烯系化合物。
对热塑性树脂(B)中的硝酰单元的含量没有特别限制,以总重复单元为基准,约为10~70重量%,优选为20~60重量%,进而优选为20~50重量%。特别优选为20~40重量%、20~30重量%。苯乙烯系单元约为30~80重量%,优选为40~80重量%,进而优选为50~80重量%。特别优选为60~80重量%、70~80重量%。
热塑性树脂(B)含有上述硝酰单元和苯乙烯系单元,可以只由这些单元形成。另外,除了上述以外,也可以以50摩尔%以下的比例含有其它乙烯系单体的重复单元。作为其它乙烯基系单体,可以举出热塑性树脂(A)中例示的单体,烯烃的重复单元、马来酰亚胺、取代马来酰亚胺的重复单元等。作为该热塑性树脂(B),可以举出AS树脂、ABS树脂、ASA树脂等。
对热塑性树脂(B)的重均分子量没有特别限制,为1×103~5×106左右。优选为1×104以上、5×105以下。
热塑性树脂(A)与热塑性树脂(B)的比率按照在保护薄膜中求得的相位差进行调整。上述配合比通常优选热塑性树脂(A)的含量为薄膜中的树脂的总量的50~95重量%,更优选为60~95重量%,进而优选为65~90重量%。热塑性树脂(B)的含量优选为薄膜中的树脂的总量的5~50重量%,更优选为5~40重量%,进而优选为10~35重量%。热塑性树脂(A)与热塑性树脂(B)通过对其进行热熔融混炼而混合,从而薄膜化。另外,热塑性树脂(A)与热塑性树脂(B)可以将它们作为溶液并通过流延法等使该溶液薄膜化。
另外,作为形成保护薄膜的材料,可以举出降冰片烯系树脂等光弹性模量低的材料。含有降冰片烯系树脂的保护薄膜,即使在受到尺寸变化引起的应力时,也难以产生相位差,在与偏振镜贴合、与亮度改善薄膜贴合时,抑制保护薄膜出现因光学变形而导致的相位差。作为降冰片烯系树脂,优选热塑性饱和降冰片烯系树脂。热塑性饱和降冰片烯系树脂以环烯烃作为主骨架,实际上不具有碳-碳双键。作为热塑性饱和降冰片烯系树脂,可以举出日本ゼオン(株)制的ゼオネツクス、ゼオノア、JSR(株)制的ア-トン等。
另外,上述保护薄膜可以作为已实施拉伸处理的薄膜使用。通常,薄膜材料通过拉伸可以提高强度,可以得到更坚韧的机械特性。多数材料由于拉伸处理会导致相位差的产生,所以不能用作偏振镜的保护薄膜。含有热塑性树脂(A)、(B)的混合物、降冰片烯系树脂作为主成分的透明性薄膜,即使在拉伸处理的情况下也能够满足上述面内相位差Re、厚度方向相位差Rth。拉伸处理可以是单向拉伸、双向拉伸中的任一种。特别优选双向拉伸的薄膜。
作为形成上述以外的保护薄膜的材料,优选在透明性、机械强度、热稳定性、水分屏蔽性、各向同性等各方面具有良好性质的材料。例如,可以举例为聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯等聚酯系聚合物;二乙酰纤维素或三乙酰纤维素等纤维素系聚合物;聚甲基丙烯酸甲酯等丙烯酸系聚合物;聚苯乙烯或丙烯腈-苯乙烯共聚物(AS树脂)等苯乙烯系聚合物;聚碳酸酯系聚合物等。此外,作为形成上述保护薄膜的聚合物的例子,还可以举例为,例如,类似聚乙烯、聚丙烯、具有环系或降冰片烯结构的聚烯烃,乙烯-丙烯共聚物之类的聚烯烃系聚合物;氯乙烯系聚合物;尼龙或芳香族聚酰胺等酰胺系聚合物;酰亚胺系聚合物;砜系聚合物;聚醚砜系聚合物;聚醚醚酮系聚合物;聚苯硫醚系聚合物;乙烯基醇系聚合物,偏氯乙烯系聚合物;聚乙烯醇缩丁醛系聚合物;烯丙基化物系聚合物;聚甲醛系聚合物;环氧系聚合物;或者上述聚合物的混合物等。保护薄膜还可以形成为丙烯酸系、氨基甲酸酯系、丙烯酸氨基甲酸酯系、环氧系、硅酮系等热固化型、紫外线固化型树脂的固化层。
在上述透明保护薄膜的没有粘接偏振镜的表面上,还可以进行硬涂层或防反射处理、防粘连处理、以扩散或防眩为目的的处理。
实施硬涂层处理的目的是防止偏振片的表面损坏等,例如可以通过在透明保护薄膜的表面上附加由丙烯酸系及硅酮系等适当的紫外线固化型树脂构成的硬度、滑动特性等良好的固化被膜的方法等形成。实施防反射处理的目的是防止在偏振片表面的外光的反射,可以通过形成基于以往的防反射薄膜等来完成。此外,实施防粘连处理的目的是防止与相邻层的粘附。
另外,实施防眩处理的目的是防止外光在偏振片表面反射而干扰偏振片透射光的辨识性等,例如,可以通过采用喷砂方式或压纹加工方式的粗表面化方式以及配合透明微粒的方式等适当的方式,向透明保护薄膜表面赋予微细凹凸结构来形成。作为在上述表面微细凹凸结构的形成中含有的微粒,例如,可以使用平均粒径为0.05~20μm的由氧化硅、氧化铝、氧化钛、氧化锆、氧化锡、氧化铟、氧化镉、氧化锑等组成的往往具有导电性的无机系微粒、由交联或者未交联的聚合物等组成的有机系微粒等透明微粒。当形成表面微细凹凸结构时,微粒的使用量相对于100重量份形成表面微细凹凸结构的透明树脂,通常为2~50重量份左右,优选5~25重量份。防眩层也可以兼当用于将偏振片透射光扩散而扩大视角等的扩散层(视角扩大功能等)。
还有,上述防反射层、防粘连层、扩散层和防眩层等除了可以设置在透明保护薄膜自身上以外,还可以作为与透明保护薄膜分开配置的另一光学层进行设置。
在上述偏振镜和保护薄膜的粘接处理中,可以使用异氰酸酯系胶粘剂、聚乙烯醇系胶粘剂、明胶系胶粘剂、乙烯基系胶乳系、水系聚酯等。其中,优选聚乙烯醇系胶粘剂。在上述胶粘剂中,为了提高耐久性,可以含有交联剂。在聚乙烯醇系胶粘剂中可以添加金属盐、乙二醛、醇系溶剂、聚氨基葡糖(chitosan)、甲壳质(chitin)、三聚氰胺等交联剂。偏振镜与保护薄膜的粘接处理是通过借助上述胶粘剂将它们贴合并在30~90℃左右干燥1~5分钟而进行的。由此得到偏振片。
作为亮度改善薄膜,使用具有将从光源(背光灯)发射出的发射光分离为透过偏振光和反射偏振光或散射偏振光的功能的偏振光转换元件。这种亮度改善薄膜利用反射偏振光或散射偏振光从背光灯的循环光,可以提高直线偏振光的发射效率。
作为亮度改善薄膜,可以举例为各向异性反射偏振镜。作为各向异性反射偏振镜,可以举出透过一个振动方向的直线偏振光而反射另一个振动方向的直线偏振光的的各向异性多重薄膜。作为各向异性多重薄膜,可以举例为3M制的DBEF(例如,参照特开平4-268505号公报等)。另外,作为各向异性反射偏振镜,可以举出胆甾醇型液晶层和λ/4片的复合体。作为该复合体,可以举出日东电工制的PCF(参照特开平11-231130号公报等)。另外,作为各向异性反射偏振镜,可以举出反射格栅偏振镜。作为反射栅偏振镜,可以举出对金属实施微细加工并在可见光区域也可以发出反射偏振光的金属格栅反射偏振镜(参照美国专利第6288840号说明书等)、将金属微粒加入高分子基质中拉伸的反射格栅偏振镜(参照特开平8-184701号公报等)。
另外,作为亮度改善薄膜,可以举出各向异性散射偏振镜。作为各向异性散射偏振镜,可以举出3M制的DRP(参照美国专利第5825543号说明书)。
另外,作为亮度改善薄膜,可以举出可以用一次性进行偏振光转换的偏振光元件。可以举例为使用碟状液晶分子C*的薄膜等(参照特开2001-201635号公报等)。另外,作为亮度改善薄膜,可以使用各向异性衍射格栅。
对作为贴合偏振片和亮度改善薄膜的胶粘剂没有特别限制。可以适当选择使用将例如丙烯酸系聚合物、硅酮系聚合物、聚酯、聚氨基甲酸酯、聚酰胺、聚乙烯醚、醋酸乙烯酯/氯乙烯共聚物、改性聚烯烃、环氧系、氟系、天然橡胶、合成橡胶等橡胶系等聚合物作为基础聚合物的材料。特别是可以优选使用在光学透明性上出色、显示出适度的润湿性和凝聚性以及粘接性的粘合特性且耐气候性或耐热性等出色的胶粘剂。
在上述胶粘剂中,可以含有对应基础聚合物的交联剂。另外,在胶粘剂中还可以含有例如天然或合成树脂类、特别是增粘性树脂或由玻璃纤维、玻璃珠、金属粉、其它的无机粉末等构成的填充剂、颜料、着色剂、抗氧化剂等添加剂。另外也可以是含有微粒并显示光扩散性的胶粘剂层等。
胶粘剂通常是作为向溶剂中溶解或分散基础聚合物或其组合物的固体成分浓度为10~50重量%左右的胶粘剂溶液使用。作为溶剂,可以适当选择使用甲苯或醋酸乙酯等有机溶剂或水等与胶粘剂的种类对应的溶剂。
上述偏振片可以作为层叠了相位差板的椭圆偏振片或圆偏振片使用。对上述椭圆偏振片或圆偏振片进行说明。它们是通过相位差板,将直线偏振光改变为椭圆偏振光或圆偏振光,或者将椭圆偏振光或圆偏振光改变为直线偏振光,或者改变直线偏振光的偏振方向。特别是,作为将直线偏振光改变为圆偏振光或将圆偏振光改变为直线偏振光的相位差板,可使用所谓的1/4波长片。1/2波长片通常用于改变直线偏振光的偏振方向的情形。
椭圆偏振片可以有效地用于以下情形,即补偿(防止)超扭曲向列相(STN)型液晶显示装置因液晶层的双折射而产生的着色(蓝或黄),从而进行所述没有着色的白黑显示的情形等。另外,控制三维折射率的偏振片还可以补偿(防止)从斜向观察液晶显示装置的画面时产生的着色,因而十分理想。圆偏振光片可以有效地用于对以彩色显示图像的反射型液晶显示装置的图像的色调进行调整的情形等,而且还具有防止反射的功能。
相位差板可以是例如各种波长片或用于补偿由液晶层的双折射造成的着色或视角等的材料等,也可以是具有对应于使用目的的适宜的相位差的层叠2种以上的相位差板而控制了相位差等光学特性的材料。除了可以将上述例示的材料用于该相位差板以外,也可以单独或与其它薄膜组合使用本发明的垂直(homeotropic)取向液晶薄膜。
另外,上述相位差板作为视角补偿薄膜层叠于偏振片上而作为宽视角偏振片使用。视角补偿薄膜是从不垂直于画面的稍微倾斜的方向观察液晶显示装置的画面的情况下也使图像看起来比较清晰的、用于扩大视角的薄膜。
作为此种视角补偿相位差板,还可以使用具有被实施了双向拉伸处理或在正交的两个方向上被实施了拉伸处理的具有双折射的薄膜、类似倾斜取向薄膜的双向拉伸薄膜等。作为倾斜取向薄膜,例如可以举出在聚合物薄膜上粘接热收缩薄膜后在因加热形成的收缩力的作用下,对聚合物薄膜进行了拉伸处理或/和收缩处理的材料、使液晶聚合物倾斜取向而成的材料等。可以以防止基于由液晶单元造成的相位差而形成的辨识角的变化所带来的着色等或扩大辨识度良好的视角等为目的适当组合视角补偿薄膜。
另外,从实现辨识度良好的宽视角的观点等来看,可以优选使用用三乙酰纤维素薄膜支撑由液晶聚合物的取向层、特别是圆盘状液晶聚合物的倾斜取向层构成的光学各向异性层的光学补偿相位差板。
除了上述之外,在实际使用时对层叠的光学层没有特别限定,例如可以使用例如反射板或半透过板等在液晶显示装置等的形成中可以使用的光学层1层或2层以上。特别是可以举出在椭圆偏振片或圆偏振片上进一步层叠反射板或半透过反射板而成的反射型偏振片或半透过型偏振片。
反射型偏振片是在偏振片上设置反射层而成的,可以用于形成反射从辨识侧(显示侧)入射的入射光来进行显示的类型的液晶显示装置等,并且可以省略内置的背光灯等光源,从而具有易于使液晶显示装置薄型化等优点。形成反射型偏振片时,可以通过根据需要借助透明保护层等在偏振片的一面上附设由金属等组成的反射层的方式等适当的方式进行。
作为反射型偏振片的具体例子,可以举例为通过根据需要在经消光处理的保护薄膜的一面上,附设由铝等反射性金属组成的箔或蒸镀膜而形成反射层的偏振片等。另外,还可以举例为通过使上述保护薄膜含有微粒而形成表面微细凹凸结构,并在其上具有微细凹凸结构的反射层的反射型偏振片等。上述的微细凹凸结构的反射层通过漫反射使入射光扩散,由此防止定向性和外观发亮,具有可以抑制明暗不均的优点等。另外,含有微粒的保护薄膜还具有当入射光及其反射光透过它时可以通过扩散进一步抑制明暗不均的优点等。反映保护薄膜的表面微细凹凸结构的微细凹凸结构的反射层的形成,例如可以通过用真空蒸镀方式、离子镀方式及溅射方式等蒸镀方式或镀覆方式等适当的方式在透明保护层的表面上直接附设金属的方法等进行。
作为代替将反射板直接附设在上述偏振片的保护薄膜上的方法,还可以在以该透明薄膜为基准的适当的薄膜上设置反射层形成反射片等后作为反射板使用。还有,由于反射层通常由金属组成,所以从防止由于氧化而造成的反射率的下降,进而长期保持初始反射率的观点和避免另设保护层的观点等来看,优选用保护薄膜或偏振片等覆盖其反射面的使用形式。
还有,在上述中,半透过型偏振片可以通过作成用反射层反射光的同时使光透过的半透半反镜等半透过型的反射层而获得。半透过型偏振片通常被设于液晶单元的背面侧,可以形成如下类型的液晶显示装置等,即,在比较明亮的环境中使用液晶显示装置等的情况下,反射来自于辨识侧(显示侧)的入射光而显示图像,在比较暗的环境中,使用内置于半透过型偏振片的背面的背光灯等内置光源来显示图像。即,半透过型偏振片在如下类型的液晶显示装置等的形成中十分有用,即,在明亮的环境下可以节约使用背光灯等光源的能量,在比较暗的环境下也可以使用内置光源的类型的液晶显示装置等的形成中非常有用。
另外,偏振片如同所述偏振光分离型偏振片,可以由层叠了偏振片和2层或3层以上的光学层的构件构成。所以,也可以是组合所述反射型偏振片或半透过型偏振片和相位差板而成的反射型椭圆偏振片或半透过型椭圆偏振片等。
上述椭圆偏振片或反射型椭圆偏振片是通过适当地组合并层叠偏振片或反射型偏振片和相位差板而成的。这类椭圆偏振片等也可以通过在液晶显示装置的制造过程中依次分别层叠(反射型)偏振片及相位差板来形成,以构成(反射型)偏振片及相位差板的组合,而如上所述,预先层叠而形成为椭圆偏振片等光学薄膜的构件,由于在质量的稳定性和层叠操作性等方面出色,因此具有可以提高液晶显示装置等的制造效率的优点。
在本发明的高亮度偏振片中,也可以设有粘合层。粘合层除了可以用于贴付在液晶单元上之外,也用于层叠光学层。在粘接上述高亮度偏振片时,它们的光学轴可以根据目标相位差特性等而采用适宜的配置角度。
对形成粘合层的粘合剂没有特别限制,可以例示出与上述例示相同的粘合剂。另外,还可以用同样的方式设置。
粘合层也可以是作为不同组成或种类等的粘合层的重叠层而设于偏振片或光学薄膜的一面或两面上。另外,当设于两面时,也可以在偏振片或光学薄膜的内外面上设有不同组成或种类或厚度等的粘合层。粘合层的厚度可以根据使用目的或粘接力等适宜决定,通常为1~500μm,优选为5~200μm,特别优选为10~100μm。
对于粘合层的露出面,在供于使用前为了防止其污染等,可以临时粘贴隔离件覆盖。由此可以防止在通常的操作状态下与粘合层接触的现象。作为隔离件,在满足上述的厚度条件的基础上,例如可以使用根据需要用硅酮系或长链烷基系、氟系或硫化钼等适宜剥离剂对塑料薄膜、橡胶片、纸、布、无纺布、网状物、发泡片材或金属箔、它们的层叠体等适宜的薄片体进行涂敷处理后的材料等以往常用的适宜的隔离件。
还有,在本发明中,也可以在形成上述的偏振片的偏振镜、透明保护薄膜、光学薄膜等以及粘合层等各层上,利用例如用水杨酸酯系化合物或苯并苯酚(benzophenol)系化合物、苯并三唑系化合物或氰基丙烯酸酯系化合物、镍配位化合物系化合物等紫外线吸收剂进行处理的方式等,使之具有紫外线吸收能力等。
也可以在亮度改善薄膜和反射层等之间设置扩散板。由亮度改善薄膜反射的偏振光状态的光朝向所述反射层等,所设置的扩散板可将通过的光均匀地扩散,同时消除偏振光状态而成为非偏振光状态。即,扩散板使偏振光恢复到原来的自然光状态。反复进行如下的作业,即,将该非偏振光状态即自然光状态的光射向反射层等,经过反射层等而反射后,再次通过扩散板而又入射到亮度改善薄膜上。如此通过在亮度改善薄膜和所述反射层等之间设置使偏振光恢复到原来的自然光状态的扩散板,可以在维持显示画面的亮度的同时,减少显示画面的亮度的不均,从而可以提供均匀并且明亮的画面。通过设置该扩散板,可适当增加初次入射光的重复反射次数,并利用扩散板的扩散功能,可以提供均匀的明亮的显示画面。
本发明的高亮度偏振片可以适用于液晶显示装置等各种装置的形成等中。液晶显示装置的形成可以按照以往的方式进行。即,一般来说,液晶显示装置可以通过适宜地组合液晶单元和高亮度偏振片以及根据需要而加入的照明系统等构成部件并装入驱动电路等而形成,但除了使用本发明的高亮度偏振片这一点以外,并没有特别限定,可以按照以往的方式进行。对于液晶单元而言,也可以使用例如TN型或STN型、π型等任意类型的液晶单元通过本发明可以形成在液晶单元的一侧或两侧配置了偏振片、光学薄膜的液晶显示装置、在照明系统中使用了背光灯或反射板的装置等适宜的液晶显示装置。此时,本发明的光学薄膜可以设置在液晶单元的一侧或两侧上。此外,液晶单元的两侧的偏振片,既可以是相同的材料,也可以是不同的材料。另外,在形成液晶显示装置时,可以在适宜的位置上配置1层或2层以上的例如扩散板、防眩层、防反射膜、保护板、棱镜阵列、透镜阵列薄片、光扩散板、背光灯等适宜的部件。作为背光灯,可以使用扩散板、棱镜薄片、导光板、冷阴极管光源等。对扩散板和棱镜薄片的配置顺序以及张数没有特别限制。
下面对有机电致发光装置(有机EL显示装置)进行说明。一般来说,在有机EL装置中,在透明基板上依次层叠透明电极、有机发光层和金属电极而形成发光体(有机电致发光体)。这里,有机发光层是各种有机薄膜的层叠体,已知有例如由三苯基胺衍生物等构成的空穴注入层和由蒽等荧光性的有机固体构成的发光层的层叠体、或此种发光层和由二萘嵌苯衍生物等构成的电子注入层的层叠体、或者这些空穴注入层、发光层及电子注入层的层叠体等各种组合。
有机EL显示装置根据如下的原理进行发光,即,通过在透明电极和金属电极上加上电压,向有机发光层中注入空穴和电子,由这些空穴和电子的复合而产生的能量激发荧光物质,被激发的荧光物质回到基态时,就会放射出光。中间的复合机理与一般的二极管相同,由此也可以推测出,电流和发光强度相对于外加电压显示出伴随整流性的较强的非线性。
在有机EL显示装置中,为了取出有机发光层中产生的光,至少一方的电极必须是透明的,通常将由氧化铟锡(ITO)等透明导电体制成的透明电极作为阳极使用。另一方面,为了容易进行电子的注入而提高发光效率,在阴极中使用功函数较小的物质是十分重要的,通常使用Mg-Ag、Al-Li等金属电极。
在具有此种构成的有机EL显示装置中,有机发光层由厚度为10nm左右的极薄的膜构成。所以,有机发光层也与透明电极一样,使光基本上完全地透过。其结果是,在不发光时从透明基板的表面入射并透过透明电极和有机发光层而在金属电极反射的光会再次向透明基板的表面侧射出,因此,当从外部进行辨识时,有机EL装置的显示面如同镜面。
在包括如下所述的有机电致发光体的有机EL显示装置中,可以在透明电极的表面侧设置偏振片,同时在这些透明电极和偏振片之间设置相位差板,在所述有机电致发光体中,在通过施加电压而进行发光的有机发光层的表面侧设有透明电极,同时在有机发光层的背面侧设有金属电极。
由于相位差板及偏振片具有使从外部入射并在金属电极反射的光成为偏振光的作用,因此由该偏振光作用具有使得从外部无法辨识出金属电极的镜面的效果。特别是,在采用1/4波长片构成相位差板,并且将偏振片和相位差板的偏光方向的夹角调整为π/4时,可以完全遮蔽金属电极的镜面。
即,入射于该有机EL显示装置的外部光因偏振片的存在而只有直线偏振光成分透过。该直线偏振光一般会被相位差板转换成椭圆偏振光,而当相位差板为1/4波长片并且偏振片和相位差板的偏光方向的夹角为π/4时,就会成为圆偏振光。
该圆偏振光透过透明基板、透明电极、有机薄膜,在金属电极上反射,之后再次透过有机薄膜、透明电极、透明基板,由相位差板再次转换成直线偏振光。由于该直线偏振光与偏振片的偏光方向正交,因此无法透过偏振片。其结果是,可以将金属电极的镜面完全地遮蔽。
实施例下面,举出实施例和比较例对本发明进行具体地说明。还有,各例中的%是重量%。
(偏振镜的制作)在面内100mm的范围内,使用厚度偏差的极大值和极小值之间的差的最大值为1.2μm的聚乙烯醇系薄膜卷筒((株)クラレ制、维尼纶(vinylon)薄膜VF-9P75RS)。首先对该卷筒实施溶胀工序。溶胀工序是在30℃的纯水中浸渍120秒,同时以2倍的拉伸倍率拉伸而进行。接着,实施染色工序。染色工序是在染色浴(以1∶10的比例(重量)分别溶解碘与碘化钾的水溶液,调整浓度使最终单体透过率为44.0%。)中浸渍50秒,同时以1.5倍的拉伸倍率进行拉伸。接着,实施硼酸交联工序。硼酸交联工序是在硼酸交联浴(30℃,硼酸浓度5%,碘化钾浓度2%)中浸渍,同时以1.1倍的拉伸倍率进行拉伸。接着,实施拉伸工序。拉伸工序是在拉伸浴(60℃,硼酸浓度5%,碘化钾浓度5%)中浸渍,同时以1.8倍的拉伸倍率进行拉伸。接着,实施水洗工序。水洗工序是在水洗浴(碘化钾浓度5%)中浸渍5秒,同时进行拉伸并使总拉伸倍率为6.1倍。接着,在控制水份比例为20%的同时进行干燥。得到的拉伸薄膜(偏振镜)相对卷筒为42%,厚度为39%。
(保护薄膜A)熔融混炼由异丁烯与N-甲基马来酰亚胺组成的交替共聚物(N-甲基马来酰亚胺含量50摩尔%,玻璃化温度157℃)100重量份(60重量%),和丙烯腈与苯乙烯的含量分别为27重量%和73重量%的由苯乙烯和丙烯腈组成的热塑性共聚物67重量份(40重量%),制作颗粒(pellet)。向具备T模头的熔融挤出机中提供该颗粒,得到厚度100μm的卷筒薄膜。在拉伸速度100cm/分、拉伸倍率1.45倍、拉伸温度162℃的条件下在自由端纵单向拉伸该卷筒薄膜,接着,以同样的拉伸条件在与前面的拉伸方法正交的方向上进行自由端单向拉伸,得到厚度49μm的拉伸薄膜(保护薄膜A)。保护薄膜A的面内相位差Re为1.1nm,厚度方向相位差Rth为-2.8nm。其中,保护薄膜的面内相位差Re、厚度方向相位差Rth是从通过使用自动双折射测量装置(王子计测机器株式会社制,自动双折射计KOBRA21ADH)测量在590nm处的折射率nx、ny、nz得到的值而计算出的。
另外,保护薄膜A的光弹性模量的绝对值为1.9×10-13cm2/dye。其中,光弹性模量是通过向薄膜施加应力时的相位差测量的值。具体地说,光弹性模量的测量具体是以东京都立科学技术大学纪要第10卷(1996,12)第54页~第56页中记载的测量法为基础。
将该保护薄膜浸渍于40℃且浓度为5%的氢氧化钠水溶液中2分钟,进而在30℃下利用纯水水洗1分钟,然后进行100℃下干燥2分钟的皂化处理而使用。
(保护薄膜B)将厚度80μm的三乙酰纤维素薄膜(富士写真胶片制,TD-80U)浸渍于40℃且浓度为50%的氢氧化钠水溶液中2分钟,进而在30℃下利用纯水水洗1分钟之后,进行100℃下干燥2分钟的皂化处理而使用。该保护薄膜B的面内相位差Re为3nm,厚度方向相位差Rth为-60nm。
(亮度改善薄膜A)使用3M公司制的DBEF(各向异性多重薄膜)。
(亮度改善薄膜B)使用日东电工制的PCF400(胆甾醇型液晶和λ/4片的层叠物)。
实施例1通过含有聚乙烯醇(日本合成化学制,NH-18)75份和乙二醛25份的浓度为25%的水溶液,在上述偏振镜的两面上贴合保护薄膜A,50℃下干燥5分钟,得到偏振片。用丙烯酸系透明粘合剂贴合该偏振片和亮度改善薄膜A,得到图1所示的高亮度偏振片。在高亮度偏振片中,以使偏振片的吸收轴与亮度改善薄膜A的透过轴正交的方式进行贴合。
实施例2通过含有聚乙烯醇(日本合成化学制,NH-18)75份和乙二醛25份的浓度为25%的水溶液,在上述偏振镜的两面上贴合保护薄膜A,50℃下干燥5分钟,得到偏振片。用丙烯酸系透明粘合剂贴合该偏振片和亮度改善薄膜A,得到图2所示的高亮度偏振片。在高亮度偏振片中,将亮度改善薄膜B的λ/4片的滞相轴相对偏振片的吸收轴倾斜45℃贴合。亮度改善薄膜B是将λ/4片的一侧贴合在偏振片上。
比较例1在实施例1中,除了将保护薄膜A变成保护薄膜B以外,与实施例1一样,获得高亮度偏振片。
比较例2在实施例2中,除了将保护薄膜A变成保护薄膜B以外,与实施例2一样,获得高亮度偏振片。
对在实施例和比较例中得到的高亮度偏振片进行下述评价。结果显示于表1。
(色度变化的测量)通过层叠机将高亮度偏振片的亮度改善薄膜一侧贴合于玻璃板上。将其配置于背光灯上以使亮度改善薄膜一侧为背光灯一侧。作为背光灯,使用在IBM公司制的Think Pat A30中使用的LCD用背光灯。相对高亮度偏振片的正面,测量法线方向(0°)与相对法线方向倾斜的方向(70°)的色度变化。色度变化的测量是通过TOPCON公司制的BM-7进行的。
表1

色移量是从正面(0°)和倾斜(70°)的X轴、Y轴的色度值算出的量。它们是用绝对值评价的。由实施例1和比较例1、实施例2和比较例2可知,当分别对比色移量时,实施例的色移量明显小于比较例的色移量。
工业上的可利用性本发明的层叠了偏振片和亮度改善薄膜的高亮度偏振片,可以单独或与其它光学薄膜组合应用于液晶显示装置、有机EL显示装置、PDP等各种图像显示装置中。
权利要求
1.一种高亮度偏振片,是在偏振镜的一面或两面上设有保护薄膜的偏振片与亮度改善薄膜夹持所述保护薄膜并借助粘合剂层进行层叠的高亮度偏振片,其特征在于,在所述保护薄膜中,当以面内折射率最大的方向为X轴,以与X轴方向垂直的方向为Y轴,以薄膜的厚度方向为Z轴,将各轴方向的折射率分别设为nx、ny、nz,将透明薄膜的厚度设为d(nm)时,面内相位差Re=(nx-ny)×d为0~10nm,而且厚度方向相位差Rth={(nx+ny)/2-nz}×d}为-30~10nm。
2.根据权利要求1所述的高亮度偏振片,其特征在于,保护薄膜含有(A)在侧链上具有取代和/或非取代亚氨基的热塑性树脂和(B)在侧链上具有取代和/或非取代苯基和腈基的热塑性树脂而成。
3.根据权利要求1或者2所述的高亮度偏振片,其特征在于,保护薄膜是双向拉伸的薄膜。
4.根据权利要求1~3中任意1项所述的高亮度偏振镜,其特征在于,偏振镜是含有碘的聚乙烯醇系薄膜。
5.根据权利要求1~4中任意1项所述的高亮度偏振片,其特征在于,亮度改善薄膜是各向异性反射偏振镜。
6.根据权利要求5所述的高亮度偏振片,其特征在于,各向异性反射偏振镜是胆甾醇型液晶层与λ/4片的复合体。
7.根据权利要求5所述的高亮度偏振片,其特征在于,各向异性反射偏振镜是透过一个振动方向的直线偏振光而反射另一个振动方向的直线偏振光的各向异性多重薄膜。
8.根据权利要求5所述的高亮度偏振片,其特征在于,各向异性反射偏振镜是反射格栅偏振镜。
9.根据权利要求1~4任意1项所述的高亮度偏振片,其特征在于,亮度改善薄膜是各向异性散射偏振镜。
10.一种高亮度偏振片,其特征在于,在权利要求1~9中任意一项所述的高亮度偏振片上,进而组合光学薄膜至少1张。
11.一种液晶面板,其特征在于,在液晶单元的至少一面上贴合有权利要求1~10中任意一项所述的高亮度偏振片。
12.一种液晶显示装置,其特征在于,使用权利要求11所述的液晶面板。
13.一种图像显示装置,其特征在于,使用权利要求1~10中任意一项所述的高亮度偏振片。
全文摘要
本发明涉及一种高亮度偏振片,是在偏振镜的一面或两面上设有保护薄膜的偏振片与亮度改善薄膜夹持所述保护薄膜并借助粘合剂层进行层叠的高亮度偏振片,其面内相位差Re=(nx-ny)×d为0~10nm,而且厚度方向相位差Rth={(nx+ny)/2-nz}×d}为-30~10nm。该高亮度偏振片色移量少,而且可以应用于液晶显示装置等各种图像显示装置中。
文档编号G02F1/1335GK1756973SQ20048000557
公开日2006年4月5日 申请日期2004年3月1日 优先权日2003年3月7日
发明者龟山忠幸, 高桥直树 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1