用于玻璃基片的支承件的制作方法

文档序号:2798529阅读:146来源:国知局
专利名称:用于玻璃基片的支承件的制作方法
技术领域
本发明涉及在玻璃基片(玻璃片)上的电子部件的制造,具体涉及在所述制造过程中用来支承薄基片的支承件。定义在本说明书以及权利要求书中,术语"玻璃"同时包括玻璃和玻璃-陶瓷材料。
背景技术
例如在像素化显示器(如液晶显示器(IXD)和有机发光二极管(OLED)显示器) 的生产过程中,在玻璃基片上制造各种电子部件,包括薄膜晶体管(TFT)。此种应用的标准基片厚度过去是0. 7毫米,显示器制造商使用更精密的制造设备来代替使用该种基片的应用。近来,玻璃制造商制造了薄得多的基片,例如厚度低达0. 1毫米以及小于0. 1毫米的基片。为了进行加工,需要将此种薄基片暂时地结合在较厚的支承件上,所述支承件能够在制造工艺结束的时候松脱所述基片而不会造成破坏。另外,如果可能的话,还希望所述支承件能够重复使用至少数次,而不用进行大量的再循环步骤。另外,为了利用现有的设备, 所述支承件/基片组合件优选适合用电子部件(包括TFT)制造中使用的常规设备和试剂来进行加工,只需要很少的改进,或者不需要进行改进。尽管迄今为止,人们提出了各种用来解决该问题的方案,但是本领域仍然需要该问题的解决方案。这个问题之所以如此棘手,是因为支承件必须满足以下严格的要求1) 能够耐受在玻璃基片上制造电子部件的过程中使用的化学处理以及升高的温度,2)能够在制造工艺过程中将玻璃基片牢牢地保持在支承件上,使得基片和支承件之间没有相对移动,基本上实现零故障,这是因为故障会造成整个生产线关停,以及幻能够在制造工艺之后松脱所述玻璃基片以及其上形成的电子部件,而且对此二者都不会造成破坏。在下文将会更全面地讨论到,根据本发明,我们发现一种支承件结构以及所述支承件和玻璃基片之间界面的临界参数能够同时满足以上所有的要求。发明概述根据第一个方面,本发明揭示了一种用于厚度小于或等于0.5毫米的薄玻璃片 (7)的支承件(31),该支承件包括(A)弹性体(9),该弹性体具有相反的第一表面(15)和第二表面(17);以及(B)支承体(11),该支承体结合于所述弹性体(9)的第一表面(15),所述支承体 (11)的厚度为所述薄玻璃片(7)厚度的1-10倍;其中
(i)在使用过程中,所述薄玻璃片(7)与所述弹性体的第二表面(17)直接接触,并且以可松脱的形式结合于所述弹性体的第二表面;(ii)所述弹性体的第二表面(17)具有以下性质(a)肖氏A硬度为10-90,和(b)粗糙度(Ra值)小于或等于185纳米;以及(iii)采用20毫米/分钟的剥离速度和90度的剥离角度测量,所述第一表面(15) 和支承体(11)之间结合的剥离强度至少为0. 5千牛顿/米。根据第二个方面,本发明揭示了一种组合件(13),该组合件包括第一方面所述的支承件(31)以及厚度小于或等于0.5毫米的薄玻璃片(7)。在以上对本发明的各方面的概述中使用的标记数字只是为了读者的方便,并未用来限制本发明的范围,也不应被理解为对本发明范围的限制。一般而言,应理解前面的一般性描述和以下的详细描述都只是对本发明的示例,用来提供理解本发明的性质和特性的总体评述或框架。在以下的详细描述中提出了本发明另外的特征和优点,对于本领域的技术人员而言,由所述内容或通过按照本文所述实施本发明而了解,其中的部分特性和优点将是显而易见的。包括的附图提供了对本发明的进一步理解,附图被结合在本说明书中并构成说明书的一部分。应理解,在本说明书和附图中揭示的本发明的各种特征可以以任意和所有的组合方式使用。附图简要说明

图1是包括以可松脱的方式结合于支承件的薄玻璃片的支承件的一个实施方式的示意图。图2是从图1所示的支承件除去薄玻璃片的示意图。图3是用来测量弹性体和玻璃表面之间的粘着能量的实验设备的示意图。图4是针对肖氏 A硬度为10的硅酮弹性体,其支承件故障-表面粗糙度关系图。图5是针对图4的硅酮弹性体和肖氏A硬度,其支承件故障-粘着能量关系图。对由抛光的Pyrex 玻璃组成的圆柱体以及0. 1米/秒的圆柱体转速测定粘着能量。图6是针对肖氏A硬度为22的硅酮弹性体,其支承件故障-表面粗糙度关系图。图7是针对图6的硅酮弹性体和肖氏A硬度,其支承件故障-粘着能量关系图。对由抛光的Pyrex玻璃组成的圆柱体以及0. 1米/秒的圆柱体转速测定粘着能量。图8是针对肖氏A硬度为33的硅酮弹性体,其支承件故障-表面粗糙度关系图。图9是针对图8的硅酮弹性体和肖氏A硬度,其支承件故障-粘着能量关系图。对由抛光的Pyrex玻璃组成的圆柱体以及0. 1米/秒的圆柱体转速测定粘着能量。图10是将图4、6和8的数据合并得到的支承件故障_表面粗糙度关系图。在此图中,实心菱形、空心菱形和实心三角分别表示肖氏A硬度为10、22和33的数据。图11是将图5、7和9的数据合并得到的支承件故障-粘着能量关系图。在此图中,实心菱形、空心菱形和实心三角分别表示肖氏A硬度为10、22和33的数据。图1-3并不是按照比例绘制的,并不表示所示部件的相对尺寸。附图中使用的附图标记对应于以下部件7薄玻璃基片
9 弹性体11支承体13支承件/薄玻璃基片组合件15弹性体的第一表面17弹性体的第二表面19玻璃圆柱体21粘着能量测试设备23薄玻璃基片的裸露表面25薄玻璃基片的结合表面27弹性体层31支承件优选实施方式图1和图2显示了本发明的结构方面。如图所示,支承件31包括弹性体9,所述弹性体9具有第一表面15和第二表面17。所述第一表面15结合于支承体11,第二表面17 在支承件使用过程中与玻璃片7直接接触,具体来说与玻璃片7的表面25直接接触。在此使用过程中,在玻璃片7的裸露表面23上形成电子部件。玻璃片7可以具有各种组成。代表性的组成包括用于液晶显示器的那些,例如康宁有限公司(Corning Incorporated)的EAGLE XG玻璃,NEG公司的0A-20玻璃,以及旭硝子(Asahi)的AN-100玻璃。与常规LCD玻璃不同的是,玻璃片7的厚度小于或等于0. 5毫米,例如其厚度可以小于0. 1毫米。所述玻璃可以是裸露的,或者可以涂覆有任何能够赋予其所需性质(例如防磨损的保护,调节粘着性以及/或者减小易碎性)的聚合物或分子。例如,可以用全氟十八烷基三氯硅烷调节玻璃与弹性体的粘着性,可以用聚酰亚胺减小玻璃的易碎性。支承体11也可以具有各种组成。通常支承体由玻璃组成,例如由与玻璃片7相同的玻璃组成,但是也可以由不同的玻璃或金属组成,例如由不锈钢组成。支承体11的厚度为玻璃片7的厚度的1-10倍。在一个实施方式中,支承体11的厚度在用来制造LCD显示器的玻璃基片的厚度范围之内,例如厚度为0.7毫米。支承体11的长度和宽度可以根据将要支承的薄玻璃片的尺寸发生很大的变化。例如,用于LCD显示器制造的Gen 5基片的单侧表面积为1.5米2。支承体11可以具有类似的表面积,或者根据应用,具有更小的或者更大的面积。弹性体9发挥以下重要功能在表面15提供与支承体11之间基本不可松脱的结合,同时在表面17提供与玻璃片7的牢固但可松脱的结合。根据应用,弹性体9可以覆盖支承体11的整个表面,或者仅仅覆盖该表面的一些部分。可以采用部分覆盖来调节弹性体 9和薄玻璃片7之间的所述可松脱结合。弹性体9的厚度可以发生很大的变化,例如可以是0.1毫米到数毫米的范围。弹性体的杨氏模量也可以是很宽的范围。例如,杨氏模量可以约为Ι-lOMPa,例如约为l-5MPa。为了获得具有足够平滑的表面17的弹性体层,可以在固化过程中用平滑的疏水化的玻璃片,例如通过气相沉积全氟硅烷(例如全氟癸基三氯硅烷)薄层以进行疏水化的玻璃片覆盖弹性体。较佳的是,所述弹性体是非极性弹性体,其例子包括硅酮弹性体、氟化硅酮弹性体和全氟弹性体。其中,全氟弹性体由于具有以下特性而非常适合用于许多的应用所有的氢原子都被氟原子替代,能够实现完美的交联,这两种特性使得全氟弹性体的排气量很少 (例如在325°C浸泡1小时之后没有可检测到的排气),具有高水平的热稳定性和化学稳定性,例如在高达40(TC的温度下具有热稳定性,其化学耐久性高于硅酮和氟化硅酮。所述全氟弹性体与玻璃的结合能可以高于硅酮弹性体,根据薄玻璃片7和支承体11的组成,对于一些应用,这一特征可能会带来额外的益处。硅酮弹性体的优点在于,可以通过改变固化过程中交联剂的用量,简便地调节它们的粘着程度。但是,最终产品中未反应的交联剂和/或低分子量物质可能会在电子部件的制造过程中产生无法接受的排气水平。如上文所讨论,全氟弹性体通常不会造成排气问题。至于与支承体11的基本不可松脱的结合,根据支承体的组成,可以通过将一些弹性体施涂在所述支承体上,并使其原位固化,从而形成这样的结合。可以通过改变硫化速率来提高粘着性能。参见Gent的“粘着学报(The Journal of Adhesion) ”,79,第315-325 页,(2003)。对于其它的弹性体,增粘剂可能有助于获得所需的结合程度。参见L.L6ger的 “大分子合成(Macromol. Symp) 149,第 197-205 页 Q000)。例如,对于全氟弹性体和由玻璃形成的支承体,可以使用一种或多种氟化硅烷,例如FDS (全氟十八烷基三氯硅烷)作为粘着促进剂。可以将氟化硅烷气相沉积在玻璃上,使得氟化的链渗入全氟弹性体中,从而改进所述弹性体和玻璃支承体之间的粘着性。也可以使用粘着剂将弹性体连接于支承体,但是该方法通常不是优选的,这是因为在支承件使用过程中,有可能对薄玻璃片7的表面23上形成的电子部件造成污染。粘合剂与增粘剂的区别在于聚合物分子量。因此,粘合剂通常是大分子聚合物,而增粘剂是分子聚合物,因此粘合剂的分子量明显大于增粘剂的分子量。无论通过何种方式形成,弹性体和支承体之间形成的结合需要具有足够高的剥离强度,使得一旦对所述支承件/玻璃片组合件的加工完成之后,将玻璃片7从弹性体剥离的时候,弹性体仍保持连接于所述支承体。从定量的角度来说,为了实现此种功能,当以20毫米/分钟的剥离速度以及90度的剥离角度条件进行测量的时候,所述弹性体9的表面15 和支承体11之间的结合的剥离强度需要至少为0. 5千牛顿/分钟。使用配置用来测量抗张强度的INSTR0N机械来测量该剥离强度。对于弹性体9和支承体11之间的界面采用特定的剥离速度和角度,即剥离速度为20毫米/分钟,角度为90度,对拉张负荷力进行监控,将其转化为能量。与弹性体9和支承体11之间的结合相比,需要弹性体和薄玻璃片之间的结合较弱,但是不能太弱,在加工过程中不会使得玻璃片松脱。如以下实施例所示,我们发现通过确保弹性体9的表面17具有以下性质,可以实现一方面产生足够的结合以及另一方面产生过高的结合这两种情形之间的艰难的平衡(i)肖氏A硬度为10-90,和(ii)粗糙度小于或等于185纳米,例如粗糙度约等于或小于100纳米。肖氏A硬度是用来衡量柔软材料的硬度的标准化的测试。与其它的硬度测试类似,在特定作用力条件下使得压头透入某种材料,用压痕深度(即该种材料的抗透入性能) 来确定肖氏A硬度值。使用扫描干涉显微镜来测量粗糙度,所述显微镜包括干涉指纹图谱 (表面质量)已知的参照表面。为了测定某种样品的粗糙度,用光源对所述样品和所述参照表面进行照射。将样品和参照表面反射的光重新合并,得到取决于所述样品粗糙度的干涉指纹图谱,将其转化为粗糙度值,单位为纳米。除了肖氏A硬度和表面粗糙度测试以外,还可以通过在制造电子部件过程中在所述支承件/玻璃片组合件将会遇到的条件下测试对弹性体9进行表征,具体来说,所述条件指最有可能导致所述玻璃片和支承件之间分离的条件。可以通过在25°C的超声(50/60赫兹)丙酮浴中对所述组合件的样品进行20分钟测试,从而有效地近似模拟这些条件。该测试的剧烈程度足以将在实际中基本上零故障的组合件与无法做到零故障的组合件区别开。 从定量的角度来说,如果超过45%的样品能够通过该测试,也即是说,如果玻璃片7能够在表面17上保留的可能性大于45%,则实际中的故障率将基本为零。需要注意的是,所述薄玻璃片7和表面17之间的结合属于范德华作用力类型。因此,将薄玻璃片从表面17除去几乎不会给表面造成破坏。这意味着所述支承件可以重复使用,由此带来显著的经济效益,其原因在于,如果支承件无法再利用,则意味着在制造过程中将会消耗比最终产品更多的材料(例如,如果支承体11是用玻璃制造的,则会消耗更多的玻璃,如果支承体的厚度比薄玻璃片7的厚度大十倍,则消耗的玻璃也就多十倍)。
实施例以下非限制性实施例进一步用来说明本发明。实施例中报道的粘着能量是使用图 3的示意图显示的辊筒测定的。参见Μ. E. R. Shanahan, A. Carr6,润湿和粘着现象中的粘弹性耗散(Viscoelastic dissipation in wetting and adhesion phenomena), Langmuir, 11,第 1396 页,1995。该测试使用的设备21包括平面,该平面具有可调节倾斜角度α。将一个被测弹性体层27固定于所述平面,如箭头所示,将玻璃辊筒19从该平面滚下。针对特定的角度α 测量该辊筒的速度。然后通过以下公式计算粘着能量G(V),其单位为焦/米2 G(v) = (m · g · sin(a ))/w其中g为重力常数,m和w分别是辊筒的质量和宽度。实施例1该实施例显示了肖氏A硬度和表面粗糙度对支承件/玻璃片组合件耐受电子部件制造过程中可能遇到的条件的能力的影响。如上文所述进行"牢固程度"测试,也即是说,将所述组合件的样品在25°C的超声(50/60赫兹)丙酮浴中处理20分钟,测定在测试中不合格/通过的样品的数量。考虑到该测试的剧烈程度,如果通过可能性大于45% (失败率低于55%),则认为是可以接受的程度。在对所述弹性体进行压塑之后,使用硅酮弹性体进行测试,所述弹性体通过在康宁有限公司(Corning Incorporated)的EAGLE XG 玻璃表面上直接交联,从而结合在所述玻璃上。将由EAGLE XG玻璃组成的玻璃片施加于所述硅酮弹性体的裸露表面。对具有三种肖氏A硬度值(10,22和33)以及各种表面粗糙度的弹性体样品进行测试。使用图3 的辊筒测试来测定粘着能量。所述辊筒由抛光的斯派克斯玻璃(Pyrex glass)组成。测试速度为0. 2毫米/秒-0.1米/秒。测试结果见表1、2、3和图4-11。从该数据可以看到,肖氏A硬度和表面粗糙度值相互影响,因此如果肖氏A硬度值较低,则表面粗糙度可以较大。但是,一般来说,低表面粗糙度值和低肖氏A值的组合能够给出最高的粘着能量和最高的支承件成功率。实施例2该实施例在用来模拟TFT沉积过程的测试中将硅酮弹性体与全氟弹性体相比较。用以上实施例1所述的超声波清洁对支承件/玻璃片组合件进行两次20分钟的处理,在浓的光刻胶显影剂中处理5分钟,并且在270°C的温度下在金和铬蚀刻剂中处理14 小时。所述硅酮弹性体和全氟弹性体在超声波清洁和光刻胶测试中都能够良好地发挥功效。在升高温度条件下的蚀刻测试中,所述全氟弹性体的性能优于所述硅酮弹性体,但是二者的结果都是可以接受的。在测试完成之后,与将玻璃片从硅酮弹性体上除去的情况相比, 玻璃片更易于从全氟弹性体上除去。在进一步的比较测试中,对硅酮弹性体和全氟弹性体的热稳定性和排气性能进行比较。全氟弹性体能够在高于425°C的温度下保持稳定,而硅酮弹性体则做不到这一点。在排气测试中,全氟弹性体在325°C保持1小时之后,观察不到有排气发生,而硅酮弹性体在相同条件下则出现环状硅氧烷的气体排出。但是,通过在炉内预热(例如在200°C预热10 个小时),可以显著减少购自瓦克化学公司(Wacker Chemie AG)的硅酮橡胶RT622的排气。 该处理使得TFT加工过程中的排气减少。还使用图3的辊筒测试来对硅酮弹性体和全氟弹性体进行粘着能量实验。实验表明全氟弹性体获得的粘着能量总是高于硅酮弹性体,在一些情况下,前者比后者高最多40 倍。基于这些实验的结果,尽管可以将硅酮弹性体用于许多的用途,但是全氟弹性体的实用性范围更宽,因此更为优选。本文揭示的内容,在不偏离本发明的精神和范围下所做的各种修改对于本领域的技术人员而言将是显而易见的。下面的权利要求书的目的是覆盖本文中提出的具体实施方式
以及这些实施方式的修改、变化和等同项。表 1肖氏A硬度=10
粗糙度Ra(纳米)能量(毫焦/米2)支承件失败(% )支承件成功(%)18526354±5461774525±5952026720±0100272000±0100表2肖氏A硬度=2权利要求
1.一种用于厚度小于或等于0. 5毫米的薄玻璃片的支承件,所述支承件包括(A)弹性体,所述弹性体具有第一表面和相反的第二表面;以及(B)支承体,所述支承体结合于所述弹性体的第一表面,所述支承体的厚度为所述薄玻璃片厚度的1-10倍;其中(i)在使用过程中,所述薄玻璃片与所述弹性体的第二表面直接接触,并且以可松脱的形式结合于所述弹性体的第二表面;( )所述弹性体的第二表面具有以下性质(a)肖氏A硬度为10-90,和(b)粗糙度小于或等于185纳米;以及(iii)采用20毫米/分钟的剥离速度和90度的剥离角度测量,所述第一表面和支承体之间的结合的剥离强度至少为0. 5千牛顿/米。
2.如权利要求1所述的支承件,其特征在于,所述弹性体在不使用粘合剂的情况下结合于所述支承体。
3.如权利要求1所述的支承件,其特征在于,在置于25°C的50赫兹或60赫兹的超声波丙酮浴中20分钟的条件下,所述薄玻璃片保留在所述第二表面上的可能性大于45%。
4.如权利要求1所述的支承件,其特征在于,所述弹性体是非极性弹性体。
5.如权利要求4所述的支承件,其特征在于,所述弹性体是硅酮弹性体。
6.如权利要求4所述的支承件,其特征在于,所述弹性体是全氟弹性体。
7.如权利要求1所述的支承件,其特征在于,所述支承体由玻璃组成。
8.如权利要求7所述的支承件,其还包括位于所述支承件和所述弹性体之间的增粘剂。
9.如权利要求8所述的支承件,其特征在于,所述弹性体是全氟弹性体。
10.如权利要求9所述的支承件,其特征在于,所述增粘剂是氟化硅烷。
11.如权利要求10所述的支承件,其特征在于,所述增粘剂是全氟十八烷基三氯硅烷。
12.如权利要求1所述的支承件,其特征在于(a)所述弹性体是全氟弹性体;(b)所述支承体由玻璃组成;(c)所述弹性体在不使用粘合剂的情况下结合于所述支承体;以及(d)在置于25°C的50赫兹或60赫兹的超声波丙酮浴中20分钟的条件下,所述薄玻璃片保留在所述第二表面上的可能性大于45%。
13.如权利要求12所述的支承件,其还包括位于所述全氟弹性体和所述玻璃支承件之间的全氟十八烷基三氯硅烷增粘剂。
14.一种组合件,其包括如权利要求1所述的支承件以及厚度小于或等于0. 5毫米的薄玻璃片。
15.一种组合件,其包括如权利要求12所述的支承件以及厚度小于或等于0. 5毫米的薄玻璃片。
16.一种组合件,其包括如权利要求13所述的支承件以及厚度小于或等于0. 5毫米的薄玻璃片。
17.如权利要求14所述的组合件,其特征在于,所述薄玻璃片包含适合用作用于像素化显示器的基片的玻璃。
18.如权利要求15所述的组合件,其特征在于,所述薄玻璃片包含适合用作用于像素化显示器的基片的玻璃。
19.如权利要求16所述的组合件,其特征在于,所述薄玻璃片包含适合用作用于像素化显示器的基片的玻璃。
全文摘要
本发明揭示了一种用于薄玻璃片(7)的支承件(31)。所述支承件包括弹性体(9)和支承体(11),所述弹性体(9)具有相反的第一表面(15)和第二表面(17),所述支承体(11)结合于所述弹性体(9)的第一表面(15)。在使用过程中,所述薄玻璃片(7)与所述弹性体的第二表面(17)直接接触,并且以可松脱的形式结合于所述弹性体的第二表面。为了提供与所述薄玻璃片(7)的牢固的但是可松脱的结合,所述弹性体的第二表面(17)的肖氏A硬度为10-90,粗糙度小于或等于185纳米。通过这种方式,所述支承件/玻璃片组合件(13)能够耐受在薄玻璃片(7)的裸露表面(23)上制造电子部件的过程中遇到的条件。
文档编号G02F1/13GK102422406SQ201080020324
公开日2012年4月18日 申请日期2010年5月3日 优先权日2009年5月6日
发明者A·R·卡雷, E·J·法兰西斯, J·瓦库-斯马巴, K·冯德拉切克 申请人:康宁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1