一种产生旋转的复合涡旋光束的装置的制作方法

文档序号:2674986阅读:281来源:国知局
专利名称:一种产生旋转的复合涡旋光束的装置的制作方法
技术领域
本发明涉及一种产生旋转的复合涡旋光束的装置,是一种基于拓扑荷不同的两个涡旋光束产生旋转的复合涡旋光束的装置。
背景技术
涡旋光束在近几十年中由于其独特的相位结构和拓扑特性在基础研究和应用研究等领域均受到了广泛的关注。与流体中的涡旋现象类似,在光学领域,涡旋光束的光波场的中心存在相位奇点,且相位围绕该奇点呈螺旋连续变化,光波波前会绕在传播方向上的一条线以螺旋方式旋转,形成螺旋形的波前。早在2003年I. D. Maleev和G. A. Swartzlander等人就分析了两个平行不同轴的涡旋叠加,描述了光学相位奇点随两涡旋的相对相位或幅值的变化情况,并得到涡旋产生和湮灭的临界条件。近几年对光学涡旋的同轴叠加研究逐渐增多,其中A. Ya. Bekshaev 等在2005年研究了两拉盖尔-高斯涡旋光束模式分别为LGc^1 LG0^1)同轴叠加后的传输特性,并预言若两拉盖尔-高斯涡旋光束频率不同,干涉图样将在同一平面内旋转; E. J. Galvez领导的研究小组在2006-2009年间致力于复合光学涡旋的研究,得出了两涡旋叠加后产生的复合涡旋的分布规律。但这些工作仅局限于频率相同的两涡旋光束同轴叠加,而不同频率的两涡旋光束的同轴叠加尚未报道。
发明内容要解决的技术问题为了避免现有技术的不足之处,本发明提出一种通过同轴叠加频率不同且拓扑荷不同的两涡旋光束产生旋转的复合涡旋的装置。本发明的思想在于通过空间光调制器分为反射式和透射式对高斯激光光束调制引入拓扑荷因子,然后通过空间滤波得到具有指定拓扑荷的涡旋拉盖尔-高斯光束LG光束。通过频移器件产生频率差。任何已有的频移器件都可以用在此技术中,如声光调制, 电光调制,旋转光栅,或者能连续改变相位光程的方法。最后,通过本技术中设计的光路可以简单的实现光束同轴叠加。技术方案一种产生旋转的复合涡旋光束的装置,其特征在于包括激光器1、光束扩束器2、 分束镜3、第一半透半反镜4、第一空间光调制器5-1、第二空间光调制器5-2、第一傅里叶空间滤波器6-1、第二傅里叶空间滤波器6-2、频移器件7、第二半透半反镜8和合束镜9 ;激光光源1出射的光束依次经过光束扩大器2和分束镜3,经分束的两光束其中一束由第二半透半反镜8部分反射到空间光调制器调制5-1表面,被调制后的光束原路返回并部分透射过第二半透半反镜8,透射光通过第一傅里叶空间滤波器6-1 ;另一束光经第一半透半反镜 4反射后依次通过第二空间光调制器5-2,第二傅里叶空间滤波器6-2和频移器件7 ;这两束光通过合束镜9实现同轴叠加得到产生旋转的复合涡旋光束;所述的第一空间光调制器5-1和第二空间光调制器5-2采用反射式空间光调制器。采用图像采集器件10将经分束镜9同轴叠加得到螺旋桨式旋转光束进行采集,并观察到旋转的图样。在第一空间光调制器5-1和第二空间光调制器5-2上采用图形控制器11控制调制光的涡旋全息图。在频移器件7上采用频差控制器12控制频移器的频移量。所述频移器件7为任何现有的声光频移器件或旋转玻片频移器件。工作原理激光光源1出射的光束依次经过光束扩大器2和分束镜3。经分束的两光束其中一束依次由第一空间光调制器5-1,第一傅里叶空间滤波器6-1分别进行调制和滤波。另一束经第一反射镜4反射后依次由第二空间光调制器5-2,第二傅里叶空间滤波器6-2分别进行调制和滤波,并由频移器件7产生频移。之后,这两束光通过第二反射镜8 和合束镜9实现同轴叠加,并由图像采集器件10进行接收。有益效果本发明提出的旋转复合涡旋光束的装置能方便地控制复合涡旋光束的转速和光斑图样;用其产生的光束可以作为“光学扳手”,凭借其特有的轨道角动量特征来操纵和旋转微粒。

图1 本发明的基于拓扑荷不同且频率不同的两涡旋光同轴叠加产生旋转的复合涡旋光束装置的第三种形式应用一个反射式空间光调制器和一个透射式空间光调制器结构图;1-激光光源,2-光束扩束器,3-分束镜,4-第一半透半反射镜,5-1-反射式空间光调制器,5-2-透射式空间光调制器,6-1-第一傅里叶空间滤波器,6-2-第二傅里叶空间滤波器,7-频移器件,8-第二半透半反镜,9-合束镜,10-图像采集器件,11-图形控制器, 12-频差控制器,13-计算机;图2 根据图1的结构形式产生的旋转复合涡旋光束的理论结果。其中,图ace分别对应拓扑荷为士 1、士2、士3的两涡旋光束同轴叠加产生光斑的旋转过程模拟图样,图b 为拓扑荷为2mi和拓扑荷为5m2的两涡旋光叠加结果。图d为拓扑荷为-Im1和拓扑荷为4m2 的两涡旋光叠加结果。
具体实施方式
现结合实施例、附图对本发明作进一步描述实施例请参阅图1。激光光源1出射的光束依次经过光束扩大器2和分束镜3。经分束的两光束其中一束由半透半反射镜8部分反射到反射式空间光调制器调制5-1表面,被调制后的光束原路返回并部分透射过半透半反镜8,透射光通过第一傅里叶空间滤波器6-1。另一束光经反射镜4反射后依次通过第二空间光调制器5-2,第二傅里叶空间滤波器6-2和频移器件7。 之后,这两束光通过合束镜9实现同轴叠加,并由图像采集器件10进行接收。系统还包括控制两个空间光调制器的图形控制器11,控制频移器件频率改变量的频差控制器12和计算机13。探测所得的理论结果如图4所示。本方案中,通过计算机控制空间光调制器的图像即可控制旋转光斑的“叶片”个数,控制频移器产生的频移大小即可控制光斑的转速。通过本实施方式产生与控制旋转的复合涡旋光束的过程为将拓扑荷为mdnm2的计算涡旋全息图经图形控制器分别输入空间光调制器5-1和5-2中,并且在空间滤波器6-1 和6-2的频谱面上仅保留1级或-1级频谱光。当这两个滤波器都保留+1级频谱时,在滤波器的后方将对应得到拓扑荷为Hi1和m2的LG涡旋光,当保留-1级时,将得到对应的拓扑荷为I1或-m2的LG涡旋光,并将这两束涡旋光记为U1和U2,其光场表达式为
权利要求1.一种产生旋转的复合涡旋光束的装置,其特征在于包括激光器(1)、光束扩束器 (2)、分束镜C3)、第一半透半反镜(4)、第一空间光调制器(5-1)、第二空间光调制器(5-2)、 第一傅里叶空间滤波器(6-1)、第二傅里叶空间滤波器(6-2)、频移器件(7)、第二半透半反镜(8)和合束镜(9);激光光源(1)出射的光束依次经过光束扩大器( 和分束镜(3),经分束的两光束其中一束由第二半透半反镜(8)部分反射到空间光调制器调制(5-1)表面, 被调制后的光束原路返回并部分透射过第二半透半反镜(8),透射光通过第一傅里叶空间滤波器(6-1);另一束光经第一半透半反镜(4)反射后依次通过第二空间光调制器(5-2), 第二傅里叶空间滤波器(6- 和频移器件(7);这两束光通过合束镜(9)实现同轴叠加得到产生旋转的复合涡旋光束;所述的第一空间光调制器(5-1)和第二空间光调制器(5-2采用反射式空间光调制器。
2.根据权利要求1所述的产生旋转的复合涡旋光束的装置,其特征在于采用图像采集器件(10)将经分束镜(9)同轴叠加得到螺旋桨式旋转光束进行采集,并观察到旋转的图样。
3.根据权利要求1所述的产生旋转的复合涡旋光束的装置,其特征在于在第一空间光调制器(5-1)和第二空间光调制器(5- 上采用图形控制器(11)控制调制光的涡旋全息图。
4.根据权利要求1所述的产生旋转的复合涡旋光束的装置,其特征在于在频移器件 (7)上采用频差控制器(1 控制频移器的频移量。
5.根据权利要求1所述的产生旋转的复合涡旋光束的装置,其特征在于所述频移器件(7)为任何现有的声光频移器件或旋转玻片频移器件。
专利摘要本实用新型涉及一种产生旋转的复合涡旋光束的装置,技术特征在于激光光源出射的光束依次经过光束扩大器和分束镜,经分束的两光束其中一光束通过第二半透半反镜后由第一空间光调制器进行调制,然后通过第一傅里叶空间滤波器进行滤波;另一光束经第一半透半反镜反射后由第二空间光调制器进行调制,然后通过第二傅里叶空间滤波器进行滤波,并由频移器件产生频移;两束光通过合束镜实现同轴叠加得到产生旋转的复合涡旋光束。本实用新型提出的装置,能方便地控制复合涡旋光束的转速和光斑图样;用其产生的光束可以作为“光学扳手”,凭借其特有的轨道角动量特征来操纵和旋转微粒。
文档编号G03H1/12GK202102255SQ20112002917
公开日2012年1月4日 申请日期2011年1月27日 优先权日2011年1月27日
发明者孔令臣, 杨德兴, 赵腾, 赵锦虎 申请人:西北工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1