一种阵列基板及其制备方法、液晶显示面板与流程

文档序号:13803638阅读:322来源:国知局
一种阵列基板及其制备方法、液晶显示面板与流程
本发明属于显示
技术领域
,具体涉及一种阵列基板及其制备方法、液晶显示面板。
背景技术
:现有薄膜晶体管液晶显示面板中,高级超维场开关(advancedsuperdimensionalswitching;ads)技术具有高穿透率、宽视角等优势,得到了快速发展。一般液晶显示面板在正常工作时,为防止液晶极化,像素电压的极性以公共电压vcom为中心做正、负极性周期性交流变化。发明人发现现有技术中至少存在如下问题:当栅极gate电压由开态高电平vgh向关态低电平vgl切换时,由于寄生电容的存在,导致最终施加到像素的数据线电压同初始电压发生偏移,即馈入电压(feed-through)δvp。由于δvp的存在,导致正、负极性像素电压整体向某一方向偏移,从而两者同公共电压的压差差值不对称,导致液晶显示面板出现比较严重的闪烁(flicker)问题,不仅降低产品质量而且会导致人眼视觉疲劳甚至头晕现象。此外,随着液晶显示装置工作时间的增加,背光源的温度逐渐提升,导致液晶显示面板的闪烁现象越来越严重。技术实现要素:本发明针对现有的液晶显示面板容易出现闪烁的问题,提供一种阵列基板及其制备方法、液晶显示面板。解决本发明技术问题所采用的技术方案是:一种阵列基板,包括第一电极、第二电极,所述第一电极与第二电极之间设有绝缘层,其中,所述绝缘层与第一电极之间还设有膜厚调控层,所述膜厚调控层由负热膨胀材料构成,用于调整第一电极与第二电极之间的距离。优选的是,所述负热膨胀材料包括金属-陶瓷复合材料、三氟化钪晶体、锆钨酸盐中的任意一种或几种。优选的是,所述绝缘层包括栅极绝缘层和钝化层,所述栅极绝缘层相较于所述钝化层更靠近第一电极。优选的是,所述膜厚调控层设于栅极绝缘层与钝化层之间。优选的是,所述膜厚调控层设于栅极绝缘层与第一电极之间。优选的是,所述负热膨胀材料热膨胀系数范围为-27×10-6k-1~-5×10-6k-1。优选的是,受热前所述第一电极与第二电极之间极之间的距离为h1,受热后所述第一电极与第二电极之间极之间的距离为h2,h1与h2的差值为1-10nm。本发明还提供一种液晶显示面板,包括上述的阵列基板。优选的是,液晶显示面板还包括彩膜基板,所述彩膜基板与所述阵列基板之间设有液晶,其中,栅极的高电平信号为vgh,栅极的低电平信号为vgl,液晶电容为clc,像素存储电容为cst,耦合电容为cgs,馈入电压为△vp,并且,△vp为定值。本发明还提供一种阵列基板的制备方法,包括以下步骤:形成第一电极;采用负热膨胀材料形成膜厚调控层;形成绝缘层;形成第二电极。本发明的阵列基板的第一电极与第二电极相互绝缘,在第一电极与第二电极之间设置由负热膨胀材料构成的膜厚调控层,膜厚调控层。当该阵列基板通电工作时,膜厚调控层受光照升高温度后收缩,降低第一电极与第二电极的间距,增大存储电容,从而使得馈入电压维持稳定,改善液晶面板的画面闪烁不良。本发明的阵列基板适用于各种显示装置,尤其适用于ads模式的显示装置。附图说明图1为本发明的实施例1的阵列基板的结构示意图;图2、图3为本发明的实施例2的阵列基板的结构示意图;图4为本发明的实施例3的液晶显示面板的结构示意图;图5为本发明的实施例4的阵列基板的制备流程图;其中,附图标记为:1、第一电极;2、第二电极;3、绝缘层;31、栅极绝缘层;32、钝化层;4、膜厚调控层;51、栅极;52、有源层;53、源极;54、漏极;6、液晶;7、彩膜基板;71、彩膜;72、黑矩阵。具体实施方式为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。实施例1:本实施例提供一种阵列基板,如图1所示,包括第一电极1、第二电极2,所述第一电极1与第二电极2之间设有绝缘层3,其中,所述绝缘层3与第一电极1之间还设有膜厚调控层4,所述膜厚调控层4由负热膨胀材料构成,用于调整第一电极1与第二电极2之间的距离。本实施例的阵列基板的第一电极1与第二电极2相互绝缘,在第一电极1与第二电极2之间设置由负热膨胀材料构成的膜厚调控层4,膜厚调控层4。当阵列基板通电工作时,膜厚调控层4受光照升高温度后收缩,降低第一电极1与第二电极2的间距,增大存储电容,从而使得馈入电压维持稳定,改善液晶6面板的画面闪烁不良。实施例2:本实施例提供一种阵列基板,如图2、图3所示,包括衬底,以及设于衬底上方的第一电极1和第二电极2,所述第一电极1与第二电极2之间设有栅极绝缘层31、透明的膜厚调控层4、钝化层32,膜厚调控层4由负热膨胀材料构成,用于调整第一电极1与第二电极2之间的距离。在本实施例对应的附图中显示了:该阵列基板包括显示区和非显示区,在非显示区的衬底上设有多个薄膜晶体管,薄膜晶体管包括栅极51,有源层52,源极53,漏极54;第一电极1和第二电极2设在显示区,第一电极1与栅极51同层,当该阵列基板通电工作用于显示时,膜厚调控层4受光照升高温度后收缩,降低第一电极1与第二电极2的间距,增大存储电容,从而使得馈入电压维持稳定,改善液晶6面板的画面闪烁不良。在一个实施例中,所述膜厚调控层4设于栅极绝缘层31与钝化层32之间。参见图2,栅极绝缘层31覆盖第一电极1和栅极51,本实施例中靠近衬底的第一电极1作为公共电极,远离衬底的第二电极2作为像素电极,覆盖第一电极1和栅极51的栅极绝缘层31的上表面为一个平面,在栅极绝缘层31的上表面上的显示区域内形成膜厚调控层4,这样当该阵列基板用于显示装置后,随着液晶6显示装置点灯时间增加,背光温度逐渐升高,液晶6电容受热逐渐下降;膜厚调控层4受光照加热后发生收缩,降低像素电极和公共电极的间距,储存电容逐渐增加;两电容的相互补偿,最终使得馈入电压维持稳定,改善闪烁。在一个实施例中,所述膜厚调控层4设于栅极绝缘层31与第一电极1之间。参见图3,本实施例的阵列基板与图2类似,其不同之处仅在于,膜厚调控层4覆盖第一电极1和栅极51,栅极绝缘层31设于膜厚调控层4上,本实施例的阵列基板的膜厚调控层4也可以调整第一电极1与第二电极2的间距,增大存储电容,从而使得馈入电压维持稳定,改善液晶6面板的画面闪烁不良。作为本实施例中的一种可选实施方案,所述负热膨胀材料包括金属-陶瓷复合材料、三氟化钪晶体、锆钨酸盐中的任意一种或几种。其中,金属-陶瓷复合材料例如pbtio3和batio3等,其由铁电相转变为顺电相时,可产生体积收缩。具有层状网络结构或管状网络结构的晶体,例如nazr2p3o12中,各种键的强度键角不同,其受温度影响程度各异,随着温度升高,在第一方向上键长变长,而在第二方向上由于离子之间相互作用,键长没有变化,键长变化的差异引起了层间距离的减小,从而出现负热膨胀现象。钨酸锆盐例如zrw2o8负热膨胀材料是由多面体耦合转动导致负热膨胀行为。需要说明的是,负热膨胀材料包括但不限于上述例举的几种具体材料,其它的可以引起负热膨胀的材料例如磁容积效应引起负热膨胀的材料也在本发明保护的范围内,在此不再一一例举。作为本实施例中的一种优选实施方案,所述负热膨胀材料热膨胀系数范围为-27×10-6k-1~-5×10-6k-1。由于显示装置工作时,背光点灯后温度在60℃左右,因此在此选用热膨胀系数为-27×10-6k-1~-5×10-6k-1的负热膨胀材料,即热膨胀系数为-27×10-6k-1~-5×10-6k-1的负热膨胀材料的作用是:补偿部分由于液晶6电容下降引起的馈入电压δvp的变化。作为本实施例中的一种优选实施方案,受热前所述第一电极1与第二电极2之间极之间的距离为h1,受热后所述第一电极1与第二电极2之间极之间的距离为h2,h1与h2的差值为1-10nm。也就是说,形成的膜厚调控层4的厚度在0.5-1μm范围内,这样当其用于60℃左右时,使得h1与h2的差值在1-10nm范围内,刚好补偿部分由于液晶6电容下降引起的馈入电压δvp的变化。在本实施例对应的附图中,显示了附图所示各结构层的大小、厚度等仅为示意。在工艺实现中,各结构层在衬底上的投影面积可以相同,也可以不同,可以通过刻蚀工艺实现所需的各结构层投影面积;同时,附图所示结构也不限定各结构层的几何形状,例如可以是附图所示的矩形,还可以是梯形,或其它刻蚀所形成的形状,同样可通过刻蚀实现。实施例3:本实施例提供一种液晶6显示面板,包括上述的阵列基板。作为本实施例中的一种优选实施方案,如图4所示,液晶6显示面板还包括彩膜基板7,所述彩膜基板7与所述阵列基板之间设有液晶6。彩膜基板7上对应显示区的位置分别设有红色(r)、绿色(g)、蓝色(b)的彩膜71,彩膜基板7上对应非显示区的位置设有黑矩阵72。其中,本实施例的液晶6的介电常数ε随温度变化见表1。表1ε∥ε⊥δε20℃5.32.62.725℃5.22.62.640℃4.92.62.350℃4.72.62.1栅极51的高电平信号为vgh,栅极51的低电平信号为vgl,液晶6电容为clc,像素存储电容为cst,耦合电容为cgs,馈入电压为△vp,随着液晶6显示装置点灯时间增加,背光温度逐渐升高,液晶6电容受热逐渐下降;温度上升时,参见表1,ε∥下降,因此,液晶6电容clc随之下降;与此同时,膜厚调控层4受光照加热后发生收缩,降低像素电极和公共电极的间距d调整降低,从而使得像素存储电容为cst升高,最终维持△vp为定值。具体的,以lafe10.5co1.0si1.5的化合物构成的膜厚调控层4,背光点灯后温度达到60℃为例进行说明:lafe10.5co1.0si1.5的化合物在240k-350k温区内热膨胀系数为-26.1×10-6k-1,开尔文温度为333k(273+60),其热膨胀率为-8.7×10-3(-26.1×10-6k-1*333=-0.0087),像素电极和公共电极间间距下降0.87%,则两者之间的储存电容上升0.87%,以此补偿部分由于液晶6电容下降引起的馈入电压δvp变化。同理,zrw2o8构成的膜厚调控层4,背光点灯后温度达到60℃为例,zrw2o8热膨胀系数为-8.7×10-6k-1,换算成开尔文温度为273+60=333k,所以受热后的膨胀率为-2.9*10-3(-8.7×10-6*333=-0.0029),基于膜厚调控层4面积不变考虑,则膜厚调控层4的厚度变化率为-0.0029。即如果膜厚调控层4的初始厚度为1μm,则吸热后的其厚度变为0.997μm。实施例4:本实施例提供一种阵列基板的制备方法,包括以下步骤:s01、在衬底上形成第一电极1;其中,衬底采用玻璃等透明材料制成、且经过预先清洗。具体的,可以采用沉积的方式形成第一金属层,并图案化第一金属层得到薄膜晶体管的栅极51和第一电极1。其中,第一金属层的材料包括但不仅限于al,mo,cu,ag、cr、ti、alni、moti等金属材料中的一种或者多种。s02、采用负热膨胀材料形成膜厚调控层4;具体的,可以采用涂覆的方式在第一电极1上涂覆一层负热膨胀材料。负热膨胀材料可以是选自金属-陶瓷复合材料、三氟化钪晶体、锆钨酸盐中的任意一种或几种s03、形成栅极绝缘层31;具体的,可以采用等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式或溅射方式在完成上述步骤的衬底上方形成栅极绝缘层31。s04、形成钝化层32,具体的,可以采用等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式沉积钝化膜,更具体的,钝化膜可采用单层的氧化硅材料或者氧化硅材料、氮化硅材料形成多个子层的叠层形成。s05、形成第二电极2,且第二电极2通过钝化层32的过孔与漏极54连接。具体的,可以采用溅射方式、热蒸发方式或等离子体增强化学气相沉积方式、低压化学气相沉积方式、大气压化学气相沉积方式或电子回旋谐振化学气相沉积方式沉积导电金属膜。需要说明的是,步骤s02形成膜厚调控层4与步骤s03形成栅极绝缘层31的先后顺序可以调换,当二者调换后形成的产品的结构为图2所示的结构。显然,上述各实施例的具体实施方式还可进行许多变化;例如:各工艺步骤的具体参数可以根据需要进行调整,不同产品的具体步骤可以根据实际情况进行改变。实施例5:本实施例提供了一种显示装置,其包括上述任意一种液晶显示面板。所述显示装置可以为:液晶显示面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1