一种MiniLED扩散片及其制备工艺、背光模组

文档序号:26001367发布日期:2021-07-23 21:18阅读:111来源:国知局
一种Mini LED扩散片及其制备工艺、背光模组

本发明涉及背光显示技术领域,尤其涉及一种miniled扩散片及其制备工艺、背光模组。



背景技术:

mini-led阵列作为背光模组的光源,在电视、电脑、手机、车载等显示行业有广泛应用前景。mini-led芯片尺寸通常在100um-500um左右,主要应用于直下式背光显示系统,相对于传统的led光源,具有尺寸更小、亮度更高、响应更快、局部调光的优点。

单个mini-led点光源发出的光线的发散角度有限,使得出光面出现中心区域能量大周围区域能量,且芯片之间的距离在1mm-4mm左右,因此多个led芯片组成的阵列光会使得屏幕上出现周期性明暗区域,视觉效果较差,影响用户的体验感。传统技术通常在mini-led的出射面上方覆盖基于扩散粒子的扩散膜,实现对光的扩散和混光,从而实现出射面出光均匀,然而这种方式对应的混光距离在几个毫米到几个厘米得范围,不满足未来显示行业轻薄化的要求。

虽然市场上也出现了很多型号的匀光片,但在匀光片雾度和透光率上的平衡处理上还不够优秀,无法保证在达到一定雾度时还能够保证较好的透光率。尤其是在制备一些较厚的匀光片,在制造过程中为了能够达到一定雾度,往往会在制备材料中加入大量的扩散粒子,而扩散粒子吸收光,会影响匀光片的透光率。而透光率不高,则会需要较大的背光功率,能耗大的同时还会影响灯珠的使用寿命。在部分现有技术中,匀光片的两侧结构分别为棱锥、棱柱或正交圆柱,是通过金刚石车床加工出来的,至少需要两层膜片才可实现匀光效果,且需要对准,正交叠加,在组装背光模组时十分不便。也有部分现有技术是在匀光板基板上涂布玻璃微珠的方式形成凸凹点,形成的过程中会存在光学胶,进而影响匀光片的透光率。还有的现有技术是采用的复合膜,即通过两片单面带有棱镜或玻璃微珠结构的匀光膜胶粘获得,厚度比较大,不适用于超薄设备。

在本部分公开的信息仅用于对本发明构思的背景技术理解,并结合上述存在的技术问题,提出一种新的技术方案。



技术实现要素:

本发明的目的在于提供一种在保证高雾度的同时,还能够有很高透光率的miniled扩散片。同时通过对微结构,比如微透镜的排布进行设计,采用叠加光刻技术,克服光刻机激光头的定位误差,进而保证产品的高质量、高成品率。同时提供一种该miniled扩散片的制备工艺以及使用该miniled扩散片的背光模组。

本文中所提到的扩散片在厚度较薄时,亦可以称作扩散膜,为了方便描述,在本说明书中,将扩散片和扩散膜统一称作扩散片。

为实现发明目的,根据本发明的一个方面,本发明提供一种miniled扩散片,其包括基底、设于所述基底一侧的若干个微结构及设于所述基底另一侧的填充结构,所述微结构包括若干个微透镜结构和/或若干个凸镜体,所述填充结构包括若干个结构单元,所述结构单元包括若干个等密度线排布的填充图形,在同一所述结构单元中,所述填充图形的排布密度自所述结构单元中心向四周逐渐变小,所述填充图形为凹槽结构,所述填充图形内填充有反射性材料。

进一步的,所述微透镜结构包括凹陷结构和/或凸起结构,若干个所述微透镜结构排成多行,相邻两行中的若干个所述微透镜结构呈交错排布、或随机排布、或正交排布,相邻的两个微透镜结构之间部分重叠,所述凸起结构的凸起面为曲面,所述凹陷结构的凹陷面为曲面。

进一步的,所述微透镜结构的大小为0.03mm-0.09mm,所述微透镜结构的深度或高度为0.01mm-0.05mm。

进一步的,所述基底的厚度为0.1mm-2.0mm,相邻两个微透镜结构的重叠范围在5%-25%。

进一步的,所述凸镜体为棱柱形、棱锥形、半圆柱形和圆锥形中一种或几种,或者为由前述一种或几种形状按设定规律组成的复合形状;所述凸镜体的高度为0.01mm-0.1mm,所述凸镜体为锥形时,其尖端夹角为60-120度。

进一步的,所述填充图形为柱状沉孔状,所述填充图形的槽底为圆弧形;所述反射性材料为反光油墨、金属银、金属铝中的一种或几种的组合,所述填充图形的大小为0.005mm-0.1mm,所述填充图形的深度为0.004mm-0.05mm。

根据本发明的另一个方面,本发明还提供了上述的miniled扩散片的制备工艺,其特征在于,其包括:提供两个模具辊,一个模具辊表面设有若干个与所述微结构形状对应的第一图形结构,相邻的第一图形结构之间部分重叠,另一种模具辊表面设有若干个与所述填充图形形状对应的第二图形结构;对用于形成所述扩散片的材料进行压印或挤压,获得两侧表面分别具有微结构和填充结构的扩散片半成品;在所述填充结构内填充反射性材料,经固化成型获得扩散片成品。

进一步的,用于形成所述扩散片的材料包括扩散粒子和透明有机高分子材料,将扩散粒子与透明有机高分子材料混合后熔融至熔体状态;将熔融后的材料经两个模具辊之间形成的流道进行挤压成型;经冷却固型后获得两侧表面分别具有微结构和填充结构的扩散片半成品;在所述填充结构内填充反射性材料,经固化成型获得扩散片成品。

进一步的,用于形成所述扩散片的材料包括基材层和uv固化树脂,在所述基材层表面均匀涂布所述uv固化树脂;将带有图形结构的模具辊与涂布有uv固化树脂的基材层贴合在一起,对所述基材层表面的uv固化树脂层进行固化,在所述基材层表面形成呈固体状的uv固化树脂层,获得两侧表面分别具有微结构和填充结构的扩散片半成品;在所述填充结构内填充反射性材料,经固化成型获得扩散片成品。

根据本发明的另一个方面,本发明还提供了一种背光模组,其包括上述的miniled扩散片。

进一步的,其还包括依次设置的灯珠面板、蓝光膜、量子点膜、第一增亮膜、第二增亮膜和扩散膜,所述扩散片设于所述灯珠面板与所述蓝光膜之间,所述扩散片至少为一层,所述扩散片填充有反射性材料的一侧朝向所述灯珠面板,所述扩散片上的结构单元与所述灯珠面板上的灯珠一一对应。

本申请具有如下一个或多个有益效果:

(1)本申请的miniled扩散片,其一侧设有微结构,另一侧设有填充有反射性材料的填充结构,使扩散片具有较高的雾度,可以有效保证扩散片对miniled灯珠所发光线的扩散效果;

(2)本申请的miniled扩散片,其一侧设置有微结构,特别是在制备较厚的扩散片时,可以减少扩散粒子的添加量,在保证较高雾度的同时还能够有很高的透光率,进而可以降低对miniled功率的需求,从而降低功耗和散热,延长其使用寿命,且更加环保;

(3)本申请的miniled扩散片,其微结构之间部分重叠,使扩散片上的微结构占空比可以达到100%,同时还可以克服光刻机激光头的定位误差;

(4)本申请的miniled扩散片,其另一侧采用变密度填充反射性材料结构设计,靠近灯珠的填充图形分布密度大于远离灯珠的填充图形分布密度,使所述扩散片在靠近所述灯珠处的反射效率大于远离所述灯珠处的反射效率,使得灯珠面板均匀出光、提高了光的利用效率、达到视觉逼真感的效果、以及更高的动态范围和对比度的效果。

附图说明

图1为本申请实施例一提供的扩散片在一个角度上的立体结构示意图;

图2为本申请实施例一提供的扩散片在另一个角度上的立体结构示意图;

图3a-3c为本申请实施例一提供的扩散片上微透镜结构的局部排布示意图;

图4为本申请实施例一提供的扩散片的截面结构示意图;

图5a和5b为本申请实施例一提供的扩散片的微透镜结构排布效果图;

图6为本申请实施例一提供的在存在误差时扩散片的截面结构示意图;

图7为本申请实施例一提供的在存在误差时扩散片微透镜结构的一种排布效果图;

图8为本申请实施例一提供的在存在误差时扩散片微透镜结构的另外一种排布效果图;

图9为本申请实施例一提供的扩散片填充图形的排布示意图;

图10为本申请实施例一提供的给扩散片填充图形内填充反射性材料时的示意图;

图11为本申请实施例一提供的填充图形内填充有反射性材料时的结构示意图;

图12为本申请实施例一提供的填充图形与灯珠间的位置示意图;

图13为本申请实施例一提供的一种用于制备扩散片的设备结构示意图;

图14为本申请实施例一提供的另一种用于制备扩散片的设备结构示意图;

图15为本申请实施例一提供的背光模组的层结构示意图;

图16为本申请实施例一提供的背光模组中扩散片与灯珠间的位置示意图;

图17为本申请实施例二提供的背光模组中扩散片与灯珠间的位置示意图;

图18为本申请实施例三提供的扩散片在凸镜体为三棱锥形时的立体结构示意图;

图19为图18所述扩散片在俯视方向上的结构示意图;

图20为图18所述扩散片在侧视方向上的结构示意图;

图21为图19中a位置的截面剖视图;

图22为本申请实施例三提供的扩散片在凸镜体为四棱锥形时的立体结构示意图;

图23为图22所述扩散片在俯视方向上的结构示意图;

图24为图22所述扩散片在侧视方向上的结构示意图;

图25为图23中b位置的截面剖视图。

其中,1-凸台状结构,2-凹陷状结构,3-熔体材料,4-模具辊,5-基材层,6-胶头,7-挤压辊,8-模具辊,9-导向辊,10-紫外灯,11-灯珠面板,111-灯珠,12-扩散片,121-基底,122-微透镜结构,1221-凹陷结构,1222-凸起结构,123-填充图形,1231-反射性材料,124-凸镜体,13-蓝光膜,14-量子点膜,15-第一增亮膜,16-第二增亮膜,17-扩散膜,18-匀光片。

具体实施方式

为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下。

实施例一

本实施例提供一种miniled扩散片,其包括基底121、设于所述基底121一侧的若干个微透镜结构122及设于所述基底121另一侧的填充结构,如图1和图2所示,图中展示的微透镜结构122为圆形的凹陷结构1221。所述微透镜结构122的凹陷面优选为曲面。若干个所述微透镜结构122排成多行,相邻两行中的若干个所述微透镜结构122呈交错排布,如图3a所示,或随机排布,如图3b所示、或正交排布,如图3c所示。相邻的两个微透镜结构122之间部分重叠,如图3a-3c和图4所示。相邻微透镜结构122之间的重叠范围在5%-25%,优选为10%。相邻微透镜结构122之间采用部分重叠设计,一方面可以有效提高扩散片上微透镜结构122的覆盖范围,占空比可以达到100%,如图5a和5b所示;另一方面还可以克服光刻机激光头的定位误差。就目前市场上光刻机来说,所能达到的定位精度大概在4um-5um,在对光刻件进行光刻时,定位误差则会有可能导致光刻形成的图形结构之间产生间隙,故而形成一凸台状结构1和凹陷状结构2,如图6所示,此结构在压印或挤压形成扩散片上的微透镜结构122时,则将会造成所述扩散片上会存在没有微透镜结构122的区域,如图7和图8所示,故而会影响扩散片的扩散效果。

所述扩散片的扩散效果与所述微透镜结构122的曲率半径和大小有关,优选的,所述微透镜结构122的大小为0.03mm-0.09mm,深度为0.01mm~0.05mm,曲率半径为0.06mm~0.2mm。需要知道的是,以上微透镜结构122的相关参数范围仅是本申请的优选范围,在具体实施时,所述微透镜结构122的相关参数均可以根据需要进行设计。

所述填充结构包括若干个结构单元,所述结构单元包括若干个等密度线排布的填充图形123。在同一所述结构单元中,所述填充图形123的排布密度自所述结构单元中心向四周逐渐变小。如图9-12所示,扩散片上的填充图形123分布不均匀,有填充图形123分布密度较大的区域和分布密度较小的区域。每一个结构单元中,靠近中心位置(即靠近灯珠111位置)的填充图形123分布密度大于远离中心位置(即远离灯珠111位置)的填充图形123分布密度。所述填充图形123为凹槽结构,所述填充图形123内填充有反射性材料1231,如图10所示。优选的,所述填充图形123为柱状沉孔状,所述填充图形123的槽底为圆弧形。其截面形状为圆形、方形或其他任意形状,优选为圆形。所述凹槽结构的大小为0.005mm-0.1mm,所述凹槽结构的深度为0.004mm-0.05mm。柱状沉孔设计的填充图形123,可以保证在刮涂反射性材料1231时,反射性材料1231可以完美的填充至所述填充图形123内,有效避免反射性材料1231填充不进或在刮涂过程中被带出等现象的发生。

所述反射性材料1231为反光油墨、金属银、金属铝中的一种,但不仅限于此,也可以是其他反射性材料,或者多种反射性材料的混合。优选采用反光油墨。反射性材料1231的作用是使光线反射,经反射性材料1231反射的光线可以在经过灯珠面板11再次反射向扩散片,充分利用光能,同时可提升整体光线的均匀度。在此需要说明是,反光油墨与金属银或者金属铝混合后形成的反射性材料1231为现有材料。由于在填充时,反射性材料1231中会掺有如水等可挥发物质,故在固化反射性材料1231时,每一个填充图形123中的反射性材料1231会在靠近中间的位置朝内凹陷,约有1-2um的凹陷,进而会在反射性材料1231外形成一凹陷面,如图11所示。该凹陷面则可以很好的改变灯珠111所发光线的传播方向,有助于提高微透镜扩散板对灯珠111所发光线的扩散效果。

通过上述的变密度设计,靠近灯珠111处的高光强通过较高聚集系数的填充图形123时,光线透射效果差,光线扩散效果好;而远离灯珠111处的低光强通过较低聚集系数的填充图形123时,光线透射效果好,光线扩散效果差,这样使所述扩散片在靠近所述灯珠111处的反射效率大于远离所述灯珠111处的反射效率,从而实现扩散片表面的均匀出光、达到消除灯珠111间亮暗不均的效果。需要说明的是,扩散片上每个结构单元填充图形123分布密度较大的区域都对应一个灯珠111,填充图形123分布密度较小的区域都对应两个灯珠111之间的中间区域,如图12所示。也就是说,每个灯珠111对应扩散片上的位置处都有多个填充图形123且填充图形123的分布密度随着与灯珠111的距离的增加而减小。

所述扩散片基底121的厚度为0.1mm-2.0mm,其中所述扩散片基底121越厚,则扩散片的雾化效果越好,基底121越薄,则扩散片的透光率越高。本申请的扩散片在基底121两侧分别设置微透镜结构122和填充结构,既可以保证扩散片的雾度,又可以提高扩散片的透光率。比如在制备较厚的扩散片(厚度大于0.6mm)时,为了保证扩散片的雾度,会在制备扩散片的材料中添加扩散粒子,而扩散粒子吸收光,会影响扩散片的透光率。本申请的微透镜结构122可以降低在生产扩散片时扩散粒子的添加量,减少扩散粒子对光线的吸收程度,在保证扩散片雾度的同时,大大提高了扩散片的透光率。经测试可知本申请的扩散片的雾度可以达到95%,透光率可以达到85%,远远大于现有扩散片50%-60%的透光率。透光率的提高,可以减少对miniled功率的需求,从而降低功耗和散热,延长miniled灯的使用寿命,并在一定程度上更加环保。

在本实施例中,还提供一种对上述miniled扩散片的制备工艺,具体步骤如下:

步骤s1:在第一光刻件的一侧光刻若干个与所述微透镜结构122形状对应的第一图形结构,相邻的第一图形结构之间部分重叠。在第二光刻件的一侧光刻若干个与所述填充图形123形状对应的第二图形结构。所述第一光刻件和第二光刻件可以为一侧涂覆有光刻胶的玻璃基板。之后根据所需图形对光刻胶层进行曝光,将显影的部分蚀刻掉,在光刻胶层上形成若干个凹陷的图形结构。所述第一光刻件和第二光刻件也可以由镜面金属材料制成,该金属材料可以是不锈钢、镍、铜等,直接通过大功率脉冲激光器经整形光路聚焦于金属基材表面进行光刻,形成所需要的图形结构。

步骤s2:通过uv转印技术或金属生长技术,将所获得的光刻件上的图形结构转移至模板,获得具有图形结构的模板。本实施例中,通过uv转印的方式,将第一光刻件上凹陷的第一图形结构转移至模板表面,从而获得表面具有凸出的图形结构的第一模板。将第二光刻件上凹陷的第二图形结构转移至另一模板表面,从而获得表面具有凸出的图形结构的第二模板。又或通过电铸使用金属生长的方式获得表面具有凸出的图形结构的第一模板和表面具有凸出的图形结构的第二模板。当然,亦可以通过其他方式获得。

步骤s3:将所述第一模板和第二模板分别包裹至两个模具辊4上,对用于形成所述扩散片的材料进行压印或挤压,获得两侧表面分别具有微透镜结构122和填充结构的扩散片半成品。

步骤s4:在所述填充结构内填充反射性材料1231,经固化成型获得扩散片成品。

其中,在步骤s3中,如果在制备较厚的扩散片时,优选采用挤压的方式一体成型,该方式需要采用挤压设备完成。所述挤压设备包括两个用于挤压的模具辊4,两个模具辊4之间平行间隔设置,两者之间形成挤压流道。在两个模具辊4的外部分别包裹有第一模板和第二模板,且所述第一模板和第二模板上的图形结构朝外,如图13所示。用于形成所述扩散片的材料包括扩散粒子和透明有机高分子材料。所述有机高分子材料为pet、pc、pmma中的任一种,但不仅限于此,在此不再一一列举。所述扩散粒子可以为pet扩散粒子、pc扩散粒子,pmma扩散粒子等,且扩散粒子为白色扩散粒子或黄色扩散粒子,优选为白色扩散粒子,但亦不限于此,也可以为其他颜色的扩散粒子。具体制备步骤如下:

步骤s311:提供扩散粒子和透明高分子材料,将其混合后熔融至熔体状态;

步骤s312:将熔融后的熔体材料3加入至所述挤压设备的挤压流道内进行挤压成型,通过调整两个模具辊4之间的距离,以获得对应厚度且均匀的扩散片初成品;

步骤s313:经冷却固型后获得表面具有微透镜结构122和填充结构的扩散片半成品。需要知道的是,在本步骤中,冷却方式可以采用自然冷却的方式,亦可以通过冷却辊冷却,但亦不限于此,也可以为其他的冷却方式。

本实施例还提供了另外一种制备方法,此方法较为适合制备较薄的扩散片。需要知道的是,本文中所提到的扩散片在厚度较薄时,亦可以称作微透镜扩散膜,为了方便描述,在本说明书中,将扩散片和扩散膜统一称作扩散片。此方法采用的用于形成所述扩散片的材料包括基材层5和uv固化树脂。所述基材层5可以为pet、pc、pmma中的任一种,但不仅限于此,在此不再一一列举。如图14所示,具体制备步骤如下:

步骤s321:提供一基材层5;所述基材层5可以为pet、pc、pmma中的任一种,但不仅限于此,在此不再一一列举;也可以是在上述基材中添加了扩散粒子子的扩散材料。

步骤s322:在基材表面涂覆上uv固化树脂,比如通过如图14中所示的胶头6,将uv固化树脂涂覆在所述基材层5表面,之后可选的再利用紫外预固化设备对uv固化树脂进行预固化,在所述基材层5表面形成呈半固体状的uv固化树脂层。该紫外预固化设备譬如是一低功率的紫外灯,可以使原本液态的uv固化树脂变成半固体状,便于压印;

步骤s323:使用表面带有图形结构的模具辊8对所述uv固化树脂层进行uv压印,模具辊8的制作方式同前步骤s1至s3。压印时,通过挤压辊7使模具辊8设有图形结构的一侧与所述uv固化树脂紧密接触,然后通过一紫外灯10照射,使uv固化树脂上的图形结构在与模具辊8剥离前成型,将模具辊8表面的图形结构转印到基材层5表面。

步骤s324:通过使用导向辊9翻转基材层5,并在基材层5另一面的表面均匀涂布uv固化树脂,将另一个模具辊8与涂布有uv固化树脂的基材贴合在一起,对基材层5表面的uv固化树脂层进行固化,在基材层5另一面的表面形成呈固体状的uv固化树脂层,获得两侧表面分别具有微透镜结构122和填充结构的扩散片半成品。

步骤s325:在所述填充结构内填充反射性材料1231,经固化成型获得扩散片成品。

此制备方法中,所制备的扩散片半成品的两侧分别为微透镜结构122和填充结构,故而在进行压印时,可以采用依次单面压印制得,也可以采用双面同时压印制得,两者的压印原理基本一致,在此不在赘述。

需要注意的是,上述两种制备方法中,模具辊可以通过在其表面贴敷一张设有所需图形结构的模板制得,也可以直接在模具辊的表面制作所需的图形结构,模板或模具辊的材质可以是镍、钢、铜、铝等材料。

本实施例还提供了一种背光模组,其包括上述的miniled扩散片12。

所述背光模组还包括依次设置的灯珠面板11、蓝光膜13、量子点膜14、第一增亮膜15、第二增亮膜14和扩散膜17,如图15所示。所述扩散片12设于所述灯珠面板11与所述蓝光膜13之间,所述扩散片12至少为一层。所述扩散片12填充有反射性材料1231的一侧朝向所述灯珠面板11,如图16所示。所述扩散片12上的结构单元与所述灯珠面板11上的灯珠111一一对应。另外,还可以根据需要在所述蓝光膜13和扩散膜17之间或者在所述第一增亮膜15和量子点膜14之间再增加一层或多层匀光片,该匀光片可以是两侧均设有微透镜结构122的匀光片,也可以是如图15所示的一侧设有微透镜结构122,另一侧设有凸镜体的匀光片等。

实施例二

本实施例与实施例一不同的是,本实施例中的扩散片的一侧微透镜结构122为圆形的凸起结构1222,如图17所示。所述微透镜结构122的凸出面优选为曲面。本实施例中的扩散片的制备方法和背光模组结构同实施例一,在此不在赘述。

实施例三

本实施例与实施例一不同的是,本实施例中的扩散片的一侧的微结构为凸镜体124。所述凸镜体124为棱柱形、棱锥形、半圆柱形和圆锥形中一种或几种,或者为由前述一种或几种形状按设定规律组成的复合形状。所述凸镜体124为棱柱形(比如三棱柱等)或半圆柱形时,各凸镜体124平行且连续的排列在所述基底121的一侧,且轴线方向与所设面平行,相邻的两个凸镜体124的底边相交。所述凸镜体124为棱锥时,比如为三棱锥形时,如图18至图21所示,或为四棱锥形时,如图22至图25所示等,各凸镜体124之间连续排列,相邻的两个凸镜体124的底边相交,且两条相交的底边与相交线重合,如图19或图23所示。当然,所述凸镜体124也可以为其它的棱锥形状,情况基本相同,在此不再赘述。所述凸镜体124为圆锥时,各凸镜体124的底部部分重合,同微透镜结构122一样,可以提高匀光片上凸镜体124的覆盖范围,占空比可以达到100%。另外,所述凸镜体124也可以为由两个半圆柱形组合形成的交叉半圆柱形,比如正交圆柱形等,在所述匀光片的一侧呈网格状。当然亦可以为由两个棱柱形等其他形状交叉获得的复合形状。所述凸镜体124的尺寸为微米级别,优选所述凸镜体124的高度为0.01mm-0.1mm。当所述凸镜体124为锥形时,其尖端夹角优选为60-120度。所述锥体优选的纵切面顶角为90度。

本实施例中的扩散片的制备方法和背光模组结构同实施例一,在此不在赘述。

在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。

在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。

在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1