用于切割非金属基片的方法

文档序号:3089563阅读:253来源:国知局
专利名称:用于切割非金属基片的方法
技术领域
本发明涉及一种用于切割非金属基片的方法,更具体来讲,涉及这样一种用于切割非金属基片的方法其能对用来快速加热非金属基片的能量源的形状和排列进行优化,由此提高切割速度,同时改善切割面的质量。
背景技术
本申请中描述的非金属基片包括硅质的硅基片和由玻璃制成的玻璃基片。
例如,在该非金属基片为硅基片的条件下,硅基片可用作半导体产品的母质,这些半导体产品用于在每一单位面积内存储大量数据,或用于在每一单位时间内处理大量的数据。
在另一方面,如果该非金属基片为玻璃基片,则该玻璃基片可用作LCD(液晶显示)装置中LCD面板的母材,LCD装置与CRT(阴极射线管)型显示装置相比,具有小得多的尺寸和更轻的重量。
近来,为了最大可能地提高某一产品或多个产品的生产率,在上述的非金属基片上同时制出多个产品—例如是半导体芯片或多个LCD面板,然后再将它们相互分割开。
例如,在非金属基片为硅基片的情况下,在该硅基片上制出多个半导体芯片,然后再将各个芯片分割开,分别进行封装,从而由同一片硅基片制出多个半导体产品。
同时,在非金属基片为玻璃基片的情况下,用同一加工过程在该玻璃基片上制出多块显示面板,然后在随后的过程中对玻璃基片上形成的显示面板进行组装而制造出LCD面板,这样就能使产品生产率达到最大。
因而,在非金属基片上同时制出多块LCD面板的情况下,由于将各块LCD面板分割开的过程差不多是最后执行的一个步骤,所以该过程是非常重要的。如果在分割过程中在LCD面板上造成了缺陷,则成品率就会极大地降低。
另外,由于不可能通过返工来修复分割过程中造成的缺陷,所以分割过程中的缺陷会使得生产率降低。
为了将各块LCD面板从非金属基片上分割开,现有技术中采用了接触—冲击类型的切割方法。
在接触—冲击型的切割方法中,在非金属基片表面上用物理方法形成一条沟槽状的刻痕线。然后,向刻痕线作用一个冲击力而将每个产品从非金属基片上分裂出去。
所用的传统分割装置是金刚石切割器。该金刚石切割器上带有一个金刚石切刃和一个冲击装置,在其中的切刃中,切削金刚石被精致地嵌入到一个薄圆形板的外周表面部分中,并在该圆形板的中心部分上布置一个转动装置;冲击装置用来对非金属基片施加一个轻微的冲击。
然而,这样的接触—冲击型切割方法存在很多的问题。因而,传统的切割方法会造成生产率有很大的降低。
具体来讲,在用接触—冲击型切割方法来分割玻璃基片形式的非金属基片时,存在这样的问题常常会切割到玻璃基片上不希望进行切割的部分。
该问题的原因在于在非金属基片上制成刻痕线的过程中—尤其是用金刚石切刃来加工玻璃基片的过程中,刻痕线的切割面制得很粗糙。
如果刻痕线的切割面是用上述的方法粗糙地制出的,则在粗糙的切割面上就会产生应力集中。因而,外界作用的小应力很容易造成微裂纹。另外,在其它小应力、振动或冲击的作用下,该微裂纹会迅速地扩展到不希望发生断裂的部位。最后,就会将玻璃基片上不希望去掉的部分分割下去。
如上所述,如果不利裂纹扩展到玻璃基片上制出的显示板上,则就会对显示板造成不可修复的严重损坏。
此外,当用传统的接触—冲击型切割方法来分割非金属基片时,由于非金属基片是被直接加工的,会产生大量的碎屑,从而就需要对分割开的非金属基片执行一个清洁过程。因而就出现了另一个问题增加了加工步骤的数目。
作为备选方案,为了用金刚石切刃来切割非金属基片,必须要在非金属基片上留出一个切割区,该切割区包括一个至少与金刚石切刀宽度对应的加工余量。但是,这就会出现另一个问题由于要留出切割面积,所以很难使非金属基片上用来制造产品的有效表面积达到最大。

发明内容
因而,本发明的目的是提供一种用于切割非金属基片的方法,在该方法中,利用一种切割工具和非接触式方法来分割非金属基片,而无需采用清洁过程,以此来避免出现对非金属基片的切割失误,并由此使非金属基片上用来制造产品的有效面积达到最大,同时提高切割速度。
为了实现本发明上述目的,本文提供了一种用于切割非金属基片的方法。在上述的方法中,椭圆形的第一激光束扫描照射到非金属基片上形成的一个切割路径上,以对切割路径进行快速加热。第一激光束的椭圆长轴和短轴比在约40∶1到80∶1之间。利用向指定切割路径上喷洒冷却液而产生的热应力,可在非金属基片上形成一条槽状的刻痕线。沿该切割路径扫描照射第二激光束来切开非金属基片。
本文还提供了一种用于切割非金属基片的方法。在上述方法中,第一激光束扫描照射到非金属基片上形成的一切割路径上,以对切割路径进行快速加热。利用向指定切割路径喷洒冷却液而产生的热应力,在非金属基片上形成一条槽状的刻痕线。沿切割路径扫描照射第二激光束来切开非金属基片。第二激光束的长轴和短轴比在约1.1∶1到10∶1之间。
另外,本文提供了一种用于切割非金属基片的方法。在该方法中,一第一激光束扫描照射到非金属基片上形成的一指定切割路径上,以对切割路径进行快速加热。利用向指定切割路径喷洒冷却液而产生的热应力,在非金属基片上形成一条槽状的刻痕线。从某一部位扫描照射第二激光束来切开非金属基片,该部位距离第一激光束一端的距离在5到30毫米之间。此处,第一激光束的这一端靠近冷却液。
此外,本文提供了一种用于切割非金属基片的方法。在该方法中,一第一激光束扫描照射到非金属基片上形成的一切割路径上,以对切割路径进行快速加热。第一激光束的长轴与短轴比在约40∶1到80∶1之间。利用向切割路径喷射冷却液所产生的热应力在非金属基片上形成一条槽状的刻痕线。向某一部位扫描照射第二激光束来切开非金属基片,该部位距离第一激光束一端的距离在5到30毫米之间。第二激光束的长轴和短轴比在约1.1∶1到10∶1之间。
根据本发明,非金属基片是以非接触和非冲击的方式进行,由此来增强切割面的质量,并防止出现异常的切割操作,且使切割速度达到最大。


通过参照附图对本发明的优选实施例作详细的描述,本发明的上述目的和其它优点将变得更加明显,在附图中图1是一个装置的示意图,该装置用来实现根据本发明一个实施例的非金属基片切割方法;图2的示意图示出了用来实现根据本发明一个实施例的非金属基片切割方法的第一激光束、冷却液、冷却液抽吸区和第二激光束;图3的图线示出了在根据本发明的一个实施例中,对非金属基片的切割速度与第一激光束长度之间的关系;图4的图线示出了在根据本发明的一个实施例中,对非金属基片的切割速度与第一激光束宽度之间的关系;图5的图线示出了在根据本发明的一个实施例中,对非金属基片的切割速度与第一激光束长、宽比之间的关系;图6的图线示出了为对非金属基片进行完整的切割、防止出现焦烧现象和防止产生接桥,第二激光束长度、宽度的范围;图7的图线示出了在本发明的一个实施例中,对金属基片的切割速度与第一激光束和第二激光束之间空隙的关系;图8的示意图示出了根据本发明另一实施例的第一激光束;以及图9A和图9B中的工艺流程图示出了在本发明的一个实施例中,制造LCD面板组件的过程。
具体实施例方式
下面,将参照附图对本发明的优选实施例作详细的描述。
首先,根据本发明一个实施例的非金属基片切割方法采用了非接触、非冲击型的切割方式,而不是采用传统的接触冲击型方法。
为了用非接触、非冲击型的方法来切割非金属基片,要充分利用该非金属基片某一特定物理特性。
具体来讲,在非金属基片是玻璃基片的情况下,可利用玻璃基片的体积在受热或冷却时发生膨胀或收缩的物理特性,来将玻璃基片分割成多个片。
在此条件下,为了对非金属基片进行切割,如果对玻璃基片的一部分执行快速加热并冷却的工艺过程,则可在玻璃基片中产生一个热应力,该热应力要大于玻璃基片中玻璃分子之间的分子键力,由此就在玻璃基片上形成了裂缝。此条件下,是通过破坏玻璃基片中玻璃分子之间的键来产生裂缝的。
在本发明中,根据裂纹是否受到控制而将其分为效果有利的裂纹和效果消极的裂纹。
换言之,预测之中的裂纹是积极有利的裂纹,而不可预测的裂纹则是消极的。对于不可预测的裂纹,没有可能预计它的裂纹扩展方向。不可预测的裂纹会造成致命的损坏,例如会在切割过程的执行中造成基片的断裂。基片的断裂是不可修复的损坏。
对于可预测的裂纹,由于可以预测裂纹的扩展方向,同时还可以控制裂纹的扩展方向。因而,这些可预测裂纹使对所需部分的选择性切割成为了可能。
图1的示意图示出了一种用来切割非金属基片的装置,该装置能精确地计算裂纹方向,从而能有选择性地将玻璃基片上所希望的那一部分切割下来。
参见图1,用来切割非金属基片的装置800具有一个基片切割模块600、一个传送装置700和一个控制装置100。
图中,传送装置700上固定了一个工件,该工件例如是将要被基片切割模块600或传送装置700切割的非金属基片1。
此时,在传送装置700固定在基片切割模块600的情况下,由于非金属基片1处于固定状态,而基片切割模块600在非金属基片1上方运动,所以是由基片切割模块600对非金属基片1进行切割操作的。
另一种方案是,在非金属基片1固定在传送装置700上的情况下,基片切割模块600保持固定,由非金属基片1相对于基片切割模块600进行运动来完成切割。
如上所述,传送装置700可在非金属基片1所在的平面内自由地运动。在一个优选实施例中,该传送装置700是一个X-Y平面内的移动平台,其可以在X轴和Y轴方向上自由移动。
在本发明中,将以图1所示情况作为一个优选实施方式即在基片切割模块600保持不动的条件下,由传送装置700来使非金属基片1运动。
此时,非金属基片1由传送装置700进行运动,且非金属基片1由基片切割模块600进行切割。
用来切割非金属基片1的基片切割装置600包括一个第一激光束扫描装置200、一个第二激光束扫描装置500、一个冷却液供应装置300和一个冷却液抽吸装置400。
这样,由第一激光束扫描装置200发出第一激光束210,第二激光束扫描装置500发出第二激光束510。第一和第二激光束对非金属基片1上非常小的表面进行加热。
用来喷射冷却液310的冷却液供应装置300被布置在第一激光束扫描装置200和第二激光束扫描装置500之间。
另外,在第一激光束扫描装置200和第二激光束扫描装置500之间设置了用来抽吸冷却流体310的冷却液抽吸装置400,其中的冷却流体310即是从冷却液供应装置300中喷洒出来的。
这样,第一激光束扫描装置200发射的第一激光束210和从冷却液供应装置300输送来的冷却液310就会造成一定的热应力,但该热应力不足以使非金属基片1完全切开,从而在非金属基片1的表面上生成了一条具有所需深度的诱导裂纹。
此外,第二激光束扫描装置500发出的第二激光束510在诱导裂纹上再次施加所需的热应力,从而将非金属基片1完全切开。
基片切割装置600和传送装置700都与控制装置100相连,用于精确地控制基片切割装置600和传送装置700的工作。
装置800的生产率受第一激光束210形状、第二激光束510的形状、以及第一激光束210和第二激光束510之间距离的影响很大。
在下文中,将讨论三个优选实施例,在这三个实施例中,装置所产生的第一和第二激光束210和510、以及第一激光束210和第二激光束510之间的距离被进行了优化设计,以此来改善切割质量、提高切割速度。
实施例1首先,为了用装置800来切割非金属基片1,控制装置100向传送装置700发送一个控制信号,这样就使传送装置700定位在非金属基片1的一条指定切割线处。
然后,控制装置100向第一激光束扫描装置200发送一个控制信号,从而使第一激光束扫描装置200发射的第一激光束210精确地扫描到非金属基片1的指定切割线上。
此时,第一激光束210的作用是对非金属基片1进行局部预热,从而在非金属基片1上形成诱导裂纹。
为了提高对非金属基片1的切割速度,第一激光束210的能量必须高效地传递到非金属基片1上。
第一激光束210的形状是一个很重要的因素,该因素选择适当能在很短时间内提高非金属基片1上指定切割线处的温度。
这就意味着对非金属基片1的切割速度要随第一激光束210形状的不同而变化。
具体来讲,假定第一激光束210长轴的长度为SL,第一激光束210短轴的长度(即宽度)为SW,第一激光束210的强度为P,且第一激光束210的速度为V,则被第一激光束210照射所升高的最终温度T(f)可由如下公式计算[公式1] T(f)∝P/(SW×V)按照公式1,可以看出在理论上,第一激光束210长轴的长度SL对由第一激光束210产生的最终温度T(f)无任何影响。
理论上来讲,在第一激光束210的长度SW、速度V和短轴强度P保持恒定的条件下,如果只是对第一激光束210的长轴长度SL进行调节,则由于不论第一激光束210的长轴长度SL如何变化,第一激光束通过路径上受到的总能量都是相同的,所以第一激光束210的长度SL对最终温度T(f)并无任何影响。
但是,在实际的加工过程中,公式1难于作到精确适用。这是因为公式1未考虑到在实际过程中非金属基片可能产生的热损耗以及辐射热量。
如果考虑到了热损耗和辐射热,则非金属基片1的最终温度T(f)就不但要受第一激光束210的长度影响,而且会受到第一激光束210的宽度影响。因而,非金属基片1的切割速度受到影响。
下文中,将参照一个模拟结果进行描述。如图3所示,第一激光束210的长轴最好是控制在30毫米到70毫米长度之间,而第一激光束210的短轴则要保持恒定,这样来达到一个最大切割速度Vmax。
此条件下,切割条件是CO2激光束用作第一激光束210,第一激光束210的强度在50到250瓦之间,且用LCD基片作为非金属基片1,它是由厚度为0.7毫米的TFT(薄膜晶体管)基片和厚度为0.7毫米的滤光基片粘结而成的。
如图3所示,当第一激光束210的长轴为30毫米或更小时,相比于最大切割速度Vmax,切割速度的下降显著。
这一现象是因为第一激光束210的能量强度非常高,如果能量过于集中就会在非金属基片1表面上发生燃烧或碎剥现象,因而部分能量就没有被传递到非金属基片1上,而是被损耗了。
另外,如图3所示,在第一激光束210长轴长度大于70毫米的情况下,相比于最大切割速度Vmax,切割速度也显著降低。
同时,图4中的模拟结果表示了在第一激光束210的长轴长度保持恒定的情况下,非金属基片1的切割速度随第一激光束210宽度的变化情况。
根据该模拟结果,当第一激光束210的短轴长度在1到2毫米之间时,非金属基片1的切割速度达到最大值Vmax。
此条件下,如果第一激光束210的短轴长度为1毫米或更小,在非金属基片1上就会出现这样一个部分,在该部分中切割操作不是局部进行的。另外,在非金属基片1表面上就会作用一个过高的能量,从而使非金属基片1的表面发生燃烧,出现烧焦现象。因而就会出现这样的问题相比于最大切割速度Vmax,切割速度反而显著地降低了,同时切割表面的质量也下降了。
另外,在第一激光束210的短轴长度为2毫米或更大的情况下,能量强度显著降低。因而,相比于最大切割速度Vmax的情况,切割速度也显著降低。且由于切割面呈现波纹状,切割表面的质量也恶化了。
因而,如图5所示,在第一激光束210的长轴长度与短轴长度比值在40∶1到80∶1(长轴短轴)范围中时,对基片1进行切割的速度为最大值Vmax,且能改善切割面的质量。
同时,第一激光束210的形状改变能进一步提高对非金属基片1的切割速度。
图8中第一激光束220的形状与图2中第一激光束210的形状不同。图2中的第一激光束220的形状相对于长轴和短轴都是对称的。但是,图8中的第一激光束220只相对于长轴SL1对称,而相对于位于长轴SL1中间位置的短轴则是不对称的。
在此条件下,依据短轴将第一激光束220分成了两个部分,第一激光束220a前部分的表面积被设计成大于第一激光束220b后部分的表面积,其中的前部分也被称为第一激光束220的前导方向。
如图8所示,当第一激光束扫描装置200发出的激光束通过由一凸透镜和一凹透镜组成的透镜组时,激光束经过从透镜组的焦距中心向一侧偏离一个部位后,就能获得相对于第一激光束220不对称的第一激光束。
同时,参见图2,冷却液310从冷却液供应装置300输送到被第一激光束210迅速加热的指定切割线1a上(如图1、2或图8所示)。因而,在被迅速加热的指定切割线1a上就会产生非常大的热应力。从而,由于在指定切割线1a上产生了热应力,所以就在非金属基片1表面上形成了所需深度的诱导裂纹。下文中,诱导裂纹被称为划痕线1b。
然后,冷却液抽吸装置400将形成刻痕线1b过程中喷洒到指定切割线1a处的冷却液310完全地抽吸走。
下面将解释为什么要再次吸走冷却液310的原因首先,抽吸能防止对装置800周边部分的污染。其次,由于如果向浸污了冷却液310的非金属基片1扫描第二激光束510时,冷却液310和第二激光束510的扩散会使能量损耗最小。第三,用第二激光束510对冷却液进行加热,由此将非金属基片1上的热量损耗减到最小。
然后,如图2所示,第二激光束510扫描到刻痕线1c上,从而使刻痕线1c的两侧由于受热而发生体积膨胀,由此在刻痕线1c上产生非常高的热应力。这样,裂纹就沿刻痕线1c扩展。该裂纹的扩展方向是受到导向的,由此来将非金属基片1完全地切开。
实施例2下文中,将对实现非金属基片切割方法的第二实施例进行描述。
根据本发明的第二实施例,为了对非金属基片1进行切割,如图1或图2所示,第一激光束扫描装置200产生的第一激光束210扫描照射到非金属基片1的指定切割线1a上,从而对指定切割线1a进行快速局部加热。
然后,从冷却液喷射装置300向快速加热的切割缝1a喷洒冷却液310,从而沿指定的切割线1a产生一条细微的诱导裂纹。下文中,该诱导裂纹被称为刻痕线1b。
为了沿其中已出现微裂纹的刻痕线1b将非金属基片1完全地切开,向刻痕线1b扫描照射第二激光束510。第二激光束束510的作用是将第一激光束210和冷却液310形成的刻痕线1b完全地切开。
在此条件下,为了完全地切开刻痕线1b,第二激光束510的强度比第一激光束210的大。例如,第二激光束510的强度在200到500瓦之间。
上述的第二激光束510为椭圆状,其长轴方向为刻痕线1b的方向。下文中,长轴BL定义为与指定切割线1a平行的轴线,而短轴BW则定义为与指定切割线1a垂直的轴线。
在此条件下,就可根据第二激光束510的形状来讨论非金属基片1是否被完全切割、是否出现了烧焦现象并形成了接桥体。
参见图2或图6,按照一个模拟结果,当第二激光束510的长轴长度为4到20毫米、短轴长度为3到10毫米时,非金属基片1可被完全地切开,且不会出现烧焦现象和接桥。
在此条件下,如果保持第二激光束510的长轴长度恒定,但缩短其短轴长度,则不产生接桥,而且非金属基片1不能被完全地切开。另外,也易于发生烧焦现象。
与此相反,如果保持第二激光束510的长轴长度恒定,但加大其短轴长度,则非金属基片1能被完全地切开,且不会出现烧焦现象。但会产生接桥。
因而,当第二激光束的长轴与短轴比在约1.1∶1到10∶1之间时,非金属基片1能被完全地切开,且不会产生烧焦现象,同时也不会出现桥接。
实施例3下文中,将对实现非金属基片切割方法的第三实施例进行描述。
根据本发明的第三实施例,为了对非金属基片1进行切割,如图2所示,第一激光束扫描装置200产生的第一激光束210扫描照射到非金属基片1的指定切割线1a上,从而对指定切割线1a进行快速局部加热。
然后,从冷却液喷射装置300向快速加热的切割缝1a喷洒冷却液310,从而沿指定的切割线1a产生一条细微的诱导裂纹。下文中,该诱导裂纹被称为刻痕线1b。
为了沿其中已出现微裂纹的刻痕线1b将非金属基片1完全地切开,向刻痕线1b扫描照射第二激光束510。第二激光束510的作用是将第一激光束210和冷却液310所形成的刻痕线1b完全地切开。
在此条件下,最好能消除第一激光束210靠近冷却液310的那一端与第二激光束510之间的间隙,但这在实现起来是非常困难的。
这是因为在第一激光束210和第二激光束510之间布置了用来抽吸冷却液的冷却液抽吸装置400。
在此条件下,第一激光束210和第二激光束510之间的空间是很重要的。在该实施例中,该空间最好为5到30毫米。但是,如果空间为5毫米或更小,就存在这样的问题与冷却液抽吸装置400发生干涉。如果空间为30毫米或更大,则会出现刻痕线1b发生复原的问题,其中的刻痕线1b是由第一激光束210和冷却液310形成的。
另外,参见图7,在切割速度方面,如果在第一激光束210和第二激光束510之间的空隙为5毫米或更小,则相比于最大切割速度Vmax,切割速度显著降低。如果空间为30毫米或更大,则相比于最大切割速度Vmax,切割速度也有显著的降低。
下文中,将参照图9A和图9B对根据第一、第二、第三实施例中的方法制造LCD面板组件的方法完整地进行描述。
首先,LCD面板组件960的制造方法是从制造组合基片930的过程开始的。
如图9A所示,在两片透明的基片上分别形成滤色基片部件915和TFT基片部件925,其中的两透明基片是分别由不同的半导体加工工艺制成的玻璃基片910、920。然后,上面分别制出了滤色基片部件915和TFT基片部件925的这两片玻璃基片910和920组装在一起而形成组合基片930。
在组合基片930上,相互正对的滤色基片部件915和TFT基片部件925被称为LCD装置单元935。然后,在该LCD装置单元935中注入液晶。
同时,如图9B所示,第一激光束210扫描照射到指定切割线940、945上,从而对这些指定切割线940、945进行快速加热,其中的切割线对应于组合基片930上制成的、要切割下来的LCD装置单元935部分。在此条件下,第一激光束210的光束为椭圆形。换言之,第一激光束210的长轴与短轴比被控制在约40∶1到80∶1之间,由此,在光学条件下对指定切割线940、945进行了快速加热。
如上所述,在指定切割线940、945被快速加热的条件下,向指定切割线940、945处施加冷却液310,从而,由于快速加热和冷却操作的联合作用而形成了一条切割槽。下文中,该切割槽被称为刻痕线。
在沿指定切割线940、945形成刻痕线、并随后抽走冷却液310之后,第二激光束510扫描照射到距离第一激光束210的端部为5到30毫米的部分上,以对刻痕线再次进行加热。
在此条件下,第二激光束510长轴与短轴之比约在1.1∶1到10∶1之间,其中的长轴与第二激光束510的经过方向一致,而短轴垂直于第二激光束510的长轴方向。因而,LCD装置单元935就从组合基片930上切割下来,该切割过程具有最优的速度和很高的质量,这样就制成了一片LCD面板950,其是由一片TFT基片957和一片滤色基片955构成的。
然后,在该LCD面板950上组装一个驱动模块而形成LCD面板组件960,其中的驱动模块例如是一个驱动印刷电路板962、966和一个带式信号载波插件964、968等。
如上所述,根据本发明,以非接触和非冲击的方式对非金属基片进行了切割,由此来改善了切割面的质量,并避免了不正常的切割操作,且使切割速度达到了最大。
尽管已对本发明进行了详细的描述,但可以理解可对本发明作出多种形式的改动、替换和变更,且这都不悖离由所附权利要求书限定的本发明思想和范围。
权利要求
1.一种用于切割非基片的方法,该方法包括步骤i)向形成在非金属基片上的一切割路径扫描照射呈椭圆状的第一激光束,以对该切割路径进行快速加热,其中第一激光束的长轴与短轴比在约40∶1到80∶1之间;ii)利用向指定切割路径喷洒冷却液所产生的热应力,在非金属基片上形成一条槽状的刻痕线;以及iii)沿所述切割路径扫描照射第二激光束来切开非金属基片。
2.根据权利要求1所述的方法,其特征在于第一激光束相对于其长轴和短轴均是对称的。
3.根据权利要求1所述的方法,其特征在于第一激光束相对于其长轴对称,但相对于短轴则是不对称的。
4.根据权利要求3所述的方法,其特征在于在用短轴来划分第一激光束的情况下,第一激光束的表面积是这样的在第一激光束前进侧的前部分大于在与前进侧相对一侧的后部分。
5.根据权利要求1所述的方法,其特征在于短轴的长度约为1到2毫米,且长轴的长度约为40到80毫米。
6.一种用于切割非金属基片的方法,该方法包括步骤i)将第一激光束扫描照射到非金属基片上形成的切割路径上,以对切割路径进行快速加热;ii)利用向指定切割路径上喷洒冷却液所产生的热应力在非金属基片上形成一条槽状的刻痕线;iii)沿所述切割路径扫描照射第二激光束来切开非金属基片,其中第二激光束的长轴和短轴比在1.1∶1到10∶1之间。
7.根据权利要求6所述的方法,其特征在于第一激光束为椭圆形,椭圆长、短轴之比在40∶1到80∶1之间。
8.根据权利要求6所述的方法,其特征在于第二激光束的短轴长度约为3到10毫米,其长轴长度约为4到20毫米。
9.一种用于切割非金属基片的方法,该方法包括步骤i)将第一激光束扫描照射到非金属基片上形成的切割路径上,以对该切割路径进行快速加热;ii)利用向切割路径喷洒冷却液所产生的热应力在非金属基片上形成一条槽状的刻痕线;以及iii)向距离第一激光束一端的距离在约5到30毫米之间的部位扫描照射第二激光束,以切开非金属基片,其中第一激光束的所述端靠近冷却液。
10.根据权利要求9所述的方法,其特征在于第一激光束为椭圆形,且椭圆长轴与短轴比约在40∶1到80∶1之间。
11.根据权利要求9所述的方法,其特征在于第一激光束是功率约为50到250瓦的二氧化碳激光束,第二激光束是功率约为200到500瓦的二氧化碳激光束。
12.根据权利要求9所述的方法,其特征在于第一激光束靠近冷却液的所述端与第二激光束之间的距离小于第一激光束的长度。
13.根据权利要求9所述的方法,其特征在于所述非金属基片为玻璃基片或硅基片。
14.一种用于切割非金属基片的方法,该方法包括步骤i)向形成在非金属基片上的切割路径扫描照射呈椭圆形的第一激光束,以对切割路径进行快速加热,其中第一激光束的长轴与短轴比在约40∶1到80∶1之间;ii)利用向指定切割路径喷射冷却液所产生的热应力在非金属基片上形成一条槽状的刻痕线;以及iii)向距离第一激光束一端的距离在约5到30毫米之间的部位扫描照射第二激光束,以切开非金属基片,其中第二激光束的长轴和短轴比在约1.1∶1到10∶1之间。
全文摘要
本发明公开了一种用于切割非金属基片的方法。该方法利用对指定切割线进行快速加热和冷却所产生的热应力来将非金属基片上的该指定切割线切开。另外,本发明对能量源的形状和排列等指标进行了优化,由此可将对非金属基片的切割速度达到最大,并实现对非金属基片的精确切割。
文档编号B23K26/40GK1408498SQ0210652
公开日2003年4月9日 申请日期2002年2月26日 优先权日2001年9月29日
发明者全柏均, 秋大镐, 南亨佑, 权容俊 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1