丝焊器的校准方法

文档序号:3110816阅读:324来源:国知局
专利名称:丝焊器的校准方法
技术领域
本发明涉及丝焊器的校准方法。
球焊可受到各种因素的影响。为了获得预定质量的焊接,对于专门的工序必须确定多个物理和/或技术参数的最佳值。这些参数的例子为焊接力,它是在焊接过程中由毛细管施加在球珠或半导体芯片的连接点上的力;或交变电流的幅值,通过它超声波换能器对角臂提供超声波。
在焊接期间,毛细管经常地磨损,它必需被新的毛细管替换。当更换毛细管时,通常毛细管顶端的振荡性能改变,因为每个毛细管的特性有些不同及被不同地夹持在角臂上。因此,在每个毛细管更换后,必需重校准丝焊器的具体参数,由超声波换能器对角臂提供的交变电流的幅值必需适应新的条件。
由欧洲专利EP 498 936公知了一种校准角臂振荡幅值的方法。通过该方法,测量角臂顶端在空气中自由振荡的幅值及重新规定由超声波换能器对角臂提供的交变电流的幅值,以使得角臂顶端在空气中的振荡呈现预定值。
由欧洲专利申请EP 953 398公知了一种校准丝焊器参数的方法,通过该方法毛细管的顶端或由毛细管顶端引导的焊球接触到测试芯片的连接点。该测试芯片包括集成在连接点区域中的传感器,传感器的信号用来作校准。譬如预计用测量温度的传感器来校准超声波的功率。
由文章“使用现场压敏电阻微传感器分析超声波丝焊”公知了在焊接期间能够记录在硅片中产生的机械应力的压敏电阻传感器,它被发表在于2001年6月10-14日在慕尼黑召开的关于“Transducers’01Eurosensor XV”会议的会刊上。
本发明的另一在于,在批量生产中在一个丝焊器上得到的最佳参数可发送到另一丝焊器。本发明也提供了对该目的的解决方案及以简单及可靠方式支持参数从一个丝焊器转移到另一丝焊器。
根据本发明所述目的将借助一种方法来解决,其中借助集成在半导体芯片中的传感器首先确定第一丝焊器的第一参考值及使用同一传感器或相同类型传感器在譬如毛细管被更换后来重新校准第一丝焊器或借助参考该参考值来校准另一丝焊器。
每个丝焊器具有一个被夹持在一个角臂上的毛细管。由超声波换能器对角臂提供超声波,其中借助参数P控制超声波换能器。及根据以下步骤确定参考值URefa1)将无导线或线球的毛细管放置在传感器的接触区上,b1)将焊接力FC施加到毛细管上,该焊接力足够地大,以使得在下个步骤中毛细管不会在传感器1的表面上前、后滑动,c1)对超声波换能器提供预定的参数值P1,及一旦进入稳态获得传感器信号的幅值U1,及d1)将传感器信号的值U1作为参考值URef存储。重新校准第一丝焊器,例如当毛细管更换后,或将校准另一丝焊器,这时根据以下步骤来确定校正系数γa2)将无导线或线球的毛细管放置在同一传感器或同一类型的不同传感器的接触区上,b2)将相同的焊接力Fc施加到毛细管上,及c2)在参数P的控制下操作超声波换能器,及d2)确定校正系数γ,以使得当参数P的用值P2=γ*P1操作超声波换能器时传感器信号幅值为值URef。
因此,如果以此方法校准的丝焊器的超声波换能器在焊接生产中被用参数P的值P2=γ*P1操作时,就可保证在与第一丝焊器的半导体芯片相同的物理处理条件下在参考值URef确定的紧后面对半导体芯片进行导线连接。
根据一个优选实施例,在步骤c2)中,参数值P1被提供给超声波换能器及在达到稳态后获得传感器信号的幅值U;及在步骤d2)中,校正系数γ被确定为γ=URef/U。
根据另一实施例,在步骤c2)中,参数值P1被改变直到传感器信号的幅值为值URef及在此状态下参数P的值被表示为P2。校正系数γ则被确定为γ=P2/P1。
以此方法来校准的参数P例如是流过超声波换能器的电流或供给超声波换能器的电压。
具体实施例方式


图1及2表示集成在半导体芯片中的传感器1的平面图及横截面图,该芯片包括4个压敏电阻元件2至5,它们被电连接成惠斯登电桥。传感器1的输出信号相应于惠斯登电桥的输出信号。该传感器最好由n掺杂的硅6组成,压敏电阻元件2至5埋入在硅表面7中作为p掺杂的硅作成的波状电阻路径。传感器1的表面7上覆盖着传统的钝化层8。压敏电阻元件2至5被布置在近似方的接触区9的外部,当超声波功率校准时一个丝焊器的毛细管10的顶端在该接触区内压在半导体芯片上。毛细管10顶端理想地压在传感器1上的区域用虚线圆环10’表示。在图1中,笛卡儿坐标系的轴用X及Y表示。X方向最好平行于硅晶体轴[110]延伸。压敏电阻元件2至5的波状路径沿X方向延伸,及从X方向看,被布置于接触区9的左面及右面。它们用于检测机械应力,该应力是当对毛细管10提供超声波时在传感器1中X方向上引起的剪切力FX。在校准时,传感器1相对丝焊器定向,以使得毛细管10的振荡方向尽可能平行于X方向地延伸。
图3表示由4个压敏电阻元件2至5形成的惠斯登电桥的电路图。这4个压敏电阻元件2至5通过铝作的通用导体连接。该惠斯登电桥最好由来自恒定电压源的电压U供电。惠斯登电桥的输出电压UOut=V1-V2则由下式产生Uout=R2R4-R3R5(R3+R4)*(R2+R5)U---(1)]]>式中R2至R5表示压敏电阻元件2至5的欧姆电阻。
传感器1适用于丝焊器的超声波换能器的校准,或更确切地,适用于控制超声波换能器的参数的校准。图4表示丝焊器各部分的概图,即包括角臂17,由压敏电阻元件组成的超声波换能器18及供给超声波换能器18的能源19。当根据以上导言部分所述步骤借助丝焊器对半导体芯片焊接导线时,对于专门的产品,即对于半导体芯片及衬底的专门组合必需优化各个焊接参数。在文献中,甚至在专利文献中已经广泛地描述了球焊的无数细节。以下球焊过程的简单例子用来理解本发明。在毛细管顶端形成线球后,使毛细管降低直到该线球冲击到半导体芯片上的接触点上及直到毛细管用预定力、即所谓焊接力FB将线球压到接触点上为止。然后,对毛细管供给超声波一个预定的焊接时间τ。接着,再次抬起毛细管及形成导线环。毛细管被夹持在角臂17的顶端。当焊接时,借助超声波换能器18对角臂17提供超声波。在此情况下,恒定的交流电流或恒定的交流电压或恒定的能量从能源19供给到超声波换能器18。在该例中,对超声波换能器18供给交流电流I=IT*sin(ωt),其中IT表示幅值,ω表示频率及t表示时间。因此,在该例中,施加给超声波换能器18的参数P是由能源19提供的交流电流I。
在一个新的产品开始接线前,对于用于新产品的焊接力FB、交流电流幅值IT及焊接时间τ的合适参数将首先被确定。
使用第一毛细管进行这些参数的确定,及对这些参数找到的最佳值用FB1,IT1及τ表示。在这些参数被确定后,根据以下步骤确定参考值URef1.将无导线或线球的毛细管放置在传感器1的接触区9上。该毛细管应尽可能靠近接触区9的中间放置。
2.将焊接力FC施加到毛细管上,该焊接力足够地大,以使得在下个步骤3中毛细管不会在传感器1的表面上前、后滑动。1N的焊接力被证明是可靠的。
3.将具有值IT1的恒定交流电流幅值供给超声波换能器。这时一直等待到瞬态响应结束及达到稳态。该稳态的特征是传感器信号UOut(t)的幅值U0不再改变。
4.在稳态时出现的传感器信号UOut(t)的幅值U0被作为参考值URef存储URef=U0(2)然后将导线再穿到毛细管中及用前面找到的焊接力的值FB1、流过超声波换能器的交流电流的幅值IT1及焊接时间τ来开始焊接生产。
在毛细管更换或角臂更换或甚至当生产期间重校准后,对于流过超声波换能器的交流电流的幅值IT总是确定一个新值IT2。这例如可根据以下步骤确定一个校正系数γ来进行1.再次地将无导线或线球的新毛细管放置在传感器1上并尽可能靠近接触区9的中间。
2.将焊接力FC施加到毛细管上。
3.将具有值IT1的恒定交流电流幅值供给超声波换能器。这时一直等待到瞬态响应结束及达到稳态。在该稳态中产生的传感器信号的幅值UOut(t)作为值U被获得。
4.确定校正系数γ,有γ=URef/U。
接着,可重新开始焊接生产,由此恒定交流电流供给超声波换能器,该交流电流的幅值由式IT2=γ*IT1给出。
该同样的方法适用于从参考丝焊器向另一丝焊器转移参数。将参考丝焊器的参数URef及IT1以及另外的过程参数如焊接力作为参考值存储在另一丝焊器中。然后,借助根据上述步骤的校准确定系数γ。现在可重新开始焊接生产,其中对超声波换能器供给恒定交流电流,该交流电流幅值由式IT2=γ*IT1给出。
根据本发明的方法的确定因素是在校准期间毛细管10不在传感器1上前后地滑动。但是,在供给超声波时,毛细管10在传感器1上施加剪切力,它由压敏电阻元件2至5转换成电信号。图5表示作为时间t的函数的惠斯登电桥振荡输出信号UOut(t)的幅值(A)(包络线绝对值),在毛细管10未滑动的情况下为实线及在毛细管10突然开始滑动时为虚线。超声波在时间t1上供给超声波换能器。毛细管开始振荡及振荡幅值持续增加。如果该毛细管不滑动,则在瞬变响应时幅值持续增加,直到瞬变响应结束为止。这时幅值A具有恒定值U0。另一方面,如果焊接力相对超声波幅值过低,则毛细管10突然开始滑动。在传感器1中产生的剪切力FX不再增加。幅值A的曲线具有一个折点16,同时在瞬变响应结束前幅值A(虚线)保持恒定水平。
以此方式确定的惠斯登电桥的输出信号UOut的值U0相对于供给超声波换能器的交流电流的幅值IT很线性。温度依赖性也很低,当各个校准程序期间温度恒定保持在约±5℃上时便可满足。此外该校准可在生产中进行焊接时的温度上进行。这具有其优点,即在更换毛细管时不会损失有价值的时间,因为丝焊器不需要被冷却及再加热到处理温度。
此外,因为传感器之间的区别足够小,不一定总是使用相同传感器。甚至当传感器固定安装在每个丝焊器上时这也允许参数转移。
这里必需指出,对于参数P的重新校准,在该例中流过超声波换能器的交流电流的幅值的重新校准,可使用稍微修改的程序,通过该程序可直接重新规定流过超声波换能器的交流电流的幅值IT2。在此情况下,上述方法的步骤a2及b2首先被执行。然后在步骤c2中,对超声波换能器提供恒定交流电流,它的幅值为值IT1。这时一直等待到瞬态响应结束及达到稳态。现在,在步骤d2中幅值IT1被改变直到传感器信号UOut(t)的幅值具有值URef为止。幅值IT2的相应值被存储。校正系数则为γ=IT2/IT1。
然后,可重新开始焊接生产,其中对超声波换能器供给的恒定交流电流,其幅值由新确定的值IT2给出,从而IT2=γ*IT1。
图6表示一个传感器1的平面图,它包括用于测量在X方向产生的剪切力FX的4个压敏电阻元件2至5及包括用于测量在Y方向产生的剪切力FY的4个压敏电阻元件11至14。4个压敏电阻元件2至5电连接成第一惠斯登电桥,它的输出信号表示为UOut,x(t)。4个压敏电阻元件11至14电连接成第二惠斯登电桥,它的输出信号表示为UOut,y(t)。通过传感器1可确定参考值URef,而不必需使毛细管10的振荡方向对准平行于传感器1的X方向。一旦瞬态响应结束及达到稳态,参考值URef将由输出信号UOut,x(t)及UOut,y(t)的幅值U0,x及U0,y如下地确定URef=U0,x2+U0,y2---(3)]]>接触区9的尺寸典型为80μm*80μm,而毛细管10的顶端直径约为20μm至30μm。
输出信号UOut,x(t)及UOut,y(t)的幅值依赖于毛细管10压到接触区9的位置。为了增加校准精确度,因此建议将毛细管10放在接触区9的不同位置上及基于在这些位置上获得的测量值确定参考值URef及校正系数γ,例如如下所述在图6中,毛细管10的各中间接触点15概要表示为,它由一对坐标(xi,k,yi,k)表示,其中下标i,k在该例中例如各有5个不同的值。两个接触点15之间的距离典型在5μm至10μm之间。根据上述方法所测量的各幅值U0,x(xi,k,yi,k)及-需要的话-U0,y(xi,k,yi,k)各来自一个鞍形区域。现在,该鞍形函数U0,x的鞍部坐标(xS,x,yS,x)及值U0,x(xS,x,yS,x)以及-需要的话-该鞍形函数U0,y的鞍部坐标(xS,y,yS,y)及值U0,y(xS,y,yS,y)通过数学被确定,及最后分别根据式(2)及(3)计算参考值URef。
在供给超声波换能器的是恒定交流电压而非恒定交流电流的情况下,类似地进行校准,其中用电压来取代电流。
权利要求
1.借助集成在半导体芯片中的传感器(1)校准一个或多个丝焊器的方法,其中每个丝焊器具有一个被夹持在一个角臂上的毛细管(10),其中由超声波换能器对角臂提供超声波,借助参数P控制超声波换能器及借助第一丝焊器根据以下步骤确定参考值URefa1)将无导线或线球的毛细管(10)放置在传感器(1)的接触区(9)上,b1)将焊接力施加到毛细管(10)上,该焊接力足够地大,以使得在下个步骤中毛细管(10)不会在传感器(1)的接触区(9)上前、后滑动,c1)对超声波换能器提供预定的参数值P1,及一旦进入稳态获得传感器信号的幅值U1,及d1)将传感器信号的值U1作为参考值URef存储,及其中例如当毛细管更换后使丝焊器的参数P重新校准,或校准另一丝焊器的参数P以便在焊接生产中用参数P的值P2=γ*P1操作超声波换能器,其中γ为校正系数,它根据以下步骤来确定a2)再次地将无导线或线球的毛细管(10)放置在同一传感器(1)或同一类型的不同传感器(1)的接触区(9)上,b2)将相同的焊接力施加到毛细管(10)上,及c2)在参数P的控制下操作超声波换能器,及d2)确定校正系数γ,以使得当值P2=γ*P1提供给超声波换能器时传感器信号幅值为值URef。
2.根据权利要求1的方法,其特征在于在步骤c2)中,参数值P1被提供给超声波换能器及一旦进入稳态就获得传感器信号的幅值U;及在步骤d2)中,校正系数γ被确定为γ=URef/U。
3.根据权利要求1的方法,其特征在于在步骤c2)中,参数P的值被改变直到传感器信号的幅值为值URef及校正系数γ被确定为γ=P2/P1。
4.根据权利要求1至3中一项的方法,其特征在于毛细管(10)被放置在传感器(1)的接触区(9)的多个位置上;及基于在这些位置上获得的测量值确定参考值URef及校正系数γ。
5.根据权利要求1至4中一项的方法,其特征在于参数P是流过超声波换能器的交流电流。
6.根据权利要求1至5中一项的方法,其特征在于传感器(1)包括压敏电阻元件(2,3,4,5)。
7.根据权利要求6的方法,其特征在于传感器(1)包括第一压敏电阻元件(2,3,4,5),用于测量第一方向上产生的剪切力,及包括第二压敏电阻元件(11,12,13,14),用于测量第二方向上产生的剪切力;及由第一压敏电阻元件与第二压敏电阻元件所输出信号用于确定参考值URef及校正系数γ。
全文摘要
本发明涉及丝焊器的校准方法,其中丝焊器具有一个被夹持在一个角臂上的毛细管(10)。超声波换能器对角臂提供超声波,其中借助参数P控制超声波换能器。为了校准参数P,使用了集成在半导体芯片上的压敏电阻传感器(1)。将毛细管(10)放置在半导体芯片上及对其施加焊接力。然后对超声波换能器提供参数P的值P
文档编号B23K20/10GK1413791SQ0212241
公开日2003年4月30日 申请日期2002年6月6日 优先权日2001年10月26日
发明者迈克尔·梅耶, 乔吉·斯切威尔 申请人:Esec贸易公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1