镍基超级合金构件的激光添加剂修复的制作方法

文档序号:3111433阅读:131来源:国知局
镍基超级合金构件的激光添加剂修复的制作方法
【专利摘要】含有相对大量的Al和Ti的Ni基超级合金构件被认为难以通过堆焊方法无裂缝地堆焊。随着超级合金的Al和Ti含量增加以改善强度,裂缝敏感性而增大。本发明表明了减少在添加剂堆焊材料中的γ′相改善了抵抗开裂的坚固性。本发明描述了一种和添加剂堆焊方法协同使用的逐步的、可控的加热和冷却方法以减少γ′相的存在,并由此降低开裂。
【专利说明】镍基超级合金构件的激光添加剂修复
[0001]优先权声明
[0002]本申请是按照美国法典第35卷第111条(a)款提交的实用专利申请,并按照美国法典第35卷第119条要求于2012年5月11日提交的序列号为61/645,863的临时专利申请的优先权。本申请是于2012年6月6日提交的序列号为13/489,863的申请(要求于2011年11月7日提交的临时专利申请61/556,395号的优先权)的部分继续申请,并按照美国法典第35卷第120条和/或第365条要求其优先权。本申请还以引用的方式并入在2012年9月12日提交的公众享有的序列号为13/611,034的申请。前述美国申请的全部内容通过引用并入本文用于全部目的。

【技术领域】
[0003]本发明涉及超级合金构件(superalloy component)的修复、再成型和和包覆,并且具体地涉及使用保持和冷却方法对含有相对大量铝和/或钛的镍基超级合金构件堆焊(weld build up)以便降低开裂敏感性,并且涉及由此制造的材料。

【背景技术】
[0004]镍基超级合金(也称为基于镍的(nickel based)超级合金或镍基(nickel-based)超级合金)是即便当温度接近材料的熔点时也表现出优异的抗机械和化学降解性质的高温材料。Ni基超级合金是以镍(Ni)为基础并通常包含大量的其它元素例如铬(Cr)、铝(Al)、钛(Ti)、钨(W)、钴(Co)、钽(Ta)、碳(C)等。早期发现将这种高温超级合金应用于飞机涡轮发动机。更高的运行温度通常导致燃料效能的增加和碳排放物的减少,促使超级合金也在地面涡轮系统中发现越来越多的应用。例如参见Roger C.Reed的《TheSuperalloys》(Cambridge University Press, 2006,具体为第一章)。将该文献的全部内容通过引用并入本文用于全部目的。
[0005]通常增大Ni基超级合金的Al和Ti的含量以便改进高温强度,但是代价是在所述材料的焊接或堆焊方面提出了挑战。通常,增大Ni基超级合金中Al和/或Ti含量增加了在焊接或堆焊期间所述材料对开裂的敏感性。前文引用的我们先前在该领域的工作强调了这种超级合金在焊缝修复上的改进。本工作解决材料堆焊的相关问题,与此同时降低由此构造的材料对开裂的敏感性。
[0006]因此,现有技术中存在对通过堆焊方法、通常是激光添加剂修复方法(laseradditive repair process)堆焊Ni基超级合金材料、特别是那些包含相对大量Al和/或Ti的超级合金的改进方法的需求。


【发明内容】

[0007]本文所描述方法的一个目的是提供通过加热和可控地逐步冷却材料的方式来从粉末堆焊(build up)Ni基超级合金材料的方法,以便在该方法的任何单独冷却和保持(hold)阶段中产生不超过约20%的Y '相以及在最终室温材料中不超过约20%的Y '相。
[0008]含有大量Al和Ti的镍基超级合金被认为是难于堆焊的。随着超级合金中Al和Ti含量的增加以改进组件的高温强度,组件的焊接性急剧下降。本发明的一些实施方式通过可控地逐步冷却(step cool)和保持工艺利用Al和Ti至Y和Y '的元素分配。选择逐步冷却和保持工艺的时间-温度方案使得减少Y中的Al和Ti以便改进焊接性。当将堆焊中Y的Al和Ti含量减少至不超过约20%的的可焊性区域时,用常规的焊接氩气冷却取代可控地逐步冷却和保持工艺。
[0009]本文所描述的方法涉及在保持和冷却过程中Al和Ti的元素分配以便减少Y中的Al和Ti并降低在由此制造的材料中开裂的敏感性。
[0010]一致地且有利地,本发明实现了这些和其它优点,如下文所具体描述的。

【专利附图】

【附图说明】
[0011]图1是作为Ti和Al含量的函数的一些超级合金的焊接性的示意图。
[0012]图2是根据一些本发明实施方式的保持和冷却工艺的详情的示意图:
[0013](2A)N1-Al伪二元相图的全相平衡下的元素分配;
[0014](2B)由于逐步冷却和保持工艺的TTT (时间-温度-转化)图的位移;
[0015](2C)在Al和Ti的分配期间在每个保持温度下的焊接界面的预期应力消除;
[0016](2D)由于分配引起的合金247的组成向无裂缝区域的转移。
[0017]图3是根据本发明一些实施方式的带有预置粉末的用于实施保持和冷却工艺的常规设备的示意图。
[0018]图4是根据本发明一些实施方式的带有同时放置的粉末的用于实施保持和冷却工艺的常规设备的示意图。
[0019]发明详沭
[0020]除非另有声明,下文给出的全部百分比为重量百分比。
[0021]通常将Ti和Al加入Ni基超级合金中以增加构件的高温强度,但是伴随剧增的难于制造令人满意的焊接或堆焊的缺点。为了简便,下文我们将具有相对高Al、Ti含量的Ni基超级合金简称为“Ni基超级合金”或“Ni超级合金”。由这种Ni超级合金通常制备的焊接或堆焊在焊接或堆焊工艺期间或在后续的牵涉这些材料的修复步骤中对开裂是敏感的。本发明人的在先工作(上文引用的),关于影响Ni基超级合金的焊接性和其对开裂的敏感性因素的详细研究,已经引导本发明人总结出以通常小于约20重量%的含量存在的Y,相指示了没有对开裂的不可接受的敏感性的焊接性。超过约60%的含量通常指示不可焊接性(即,对应变时效开裂的敏感性),而中间的值通常表示困难的和昂贵的焊接。能够得出关于添加剂或堆焊工艺基本相同的结论。换言之,以小于约20重量%的含量存在的?'相指示了没有对开裂的不可接受的敏感性的堆焊。超过约60%的含量通常指示具有对开裂不可接受敏感性的堆焊。
[0022]由激光束堆焊(也称为堆焊(build-up welding)或堆焊(bulid up welding))的添加剂制造和等离子堆焊以及等离子喷涂是相当的。就在本说明书中具体而言,本文讨论了重要的实践情形,其中激光束按需提供定向能量以加热材料。这并不是旨在排除其他定向能量来源例如等离子体、第二激光、电子束等定向能量,正如那些对本领域技术人员是显而易见的。然而,为了简明,我们将所有的这些添加剂堆焊工艺(additive build upprocesses)称作激光添加剂工艺(laser additive process)或激光堆焊(laser weldbuild up)或等效语言。
[0023]本发明人的在先工作(前文引入)聚焦于减少在Ni基超级合金的焊接中的开裂。本文所描述的工作涉及材料层(通常厚度为约I毫米(_)至约50_)的添加剂堆焊。本文涉及具有有利焊接特性(即,对开裂的敏感性降低)的修复堆焊(通常I?50mm厚)。因此,本说明书涉及具有有利焊接性质的Ni基超级合金材料或构件的制造。预期能够制造这种材料或构件,其应用于对本领域技术人员是显而易见的多种应用。
[0024]图1是作为Al和Ti含量的函数的常规Ni基超级合金的焊接性的示意图。在图1中处在线100以上的那些合金通常被认为是不可焊接的,并且因此不是可堆焊的。在实践中,这通常表示具有线100以上的组成的材料制造出对在熔化区(FZ)中的应变时效开裂敏感的材料。因此,无论何时商业装置中的这种构件需要修补,通常将其替换而不是修补,因为对开裂的敏感性会很有可能导致修补失败。
[0025]图1中给出的组成转化为所存在的多种相的分数表明不可焊接性合金在它们的最终结构中通常具有超过约60%的Y '相。作为对比,图1中可焊接的Ni基超级合金在它们的最终结构中通常具有小于约20%的Y'相,图1中线101以下。因此,预期具有小于约20%的Y '的Ni基超级合金会是可焊接的,而没有在FZ中的有害量的应变时效开裂。
[0026]在高强度Ni基超级合金中的热影响区(heat affected zone)开裂由于含低熔点元素的晶界的存在而出现。在激光堆焊期间大量热量输入由此形成大块热影响区并由于在晶界处的熔融导致大量HAZ开裂。这在之前的堆焊过程中是常见问题,其中激光束在粉末沉积期间通常和基底金属相互作用。在超级合金的添加剂堆焊领域中重要的问题是为了制造不含裂缝、接近100%的基底金属激光堆焊,特别是关于用于燃气涡轮组件的超级合金的重要商业用途。正如本文所详细描述的,本方法的一个优点涉及相对小的HAZ、通常不超过约 100 μ m 的 HAZ ( μ m =微米=lCT6m)。
[0027]本发明焊接设备200的常规实施方式包括将构件基底201设置于包含惰性气氛220的室210,并将待熔化于移动激光240前面的粉末230预沉积至具有和粉末230基本相同组成的基底201上,如图3所示意性示出的。其它实施方式包括在施加激光240能量dQ之前和/或之后同时沉积粉末230,如图4所示出的。就本说明书具体而言,我们最详细地描述了图3所示的预放置粉末的实例,从而理解处理同时粉末铺设(图4)的修改是所描述的预放置粉末技术的修改,其对本领域技术人员是显而易见的。
[0028]相对于常规堆焊工艺,本文所描述的方法包括以下步骤中的一些或全部:
[0029]a:将粉末230预放置于其中需要相同组成的堆焊的构件基底或基底201上,并且粉末和基底具有基本相同的组成(图3),或者将粉末放置于移动激光束242 (或其它定向能量束,如图4所示)的前面和后面;
[0030]b:加热预放置的粉末230至大于约1200°C ;
[0031]c:激光240熔融预放置的粉末230以便产生热影响区(范围小于约100毫米的HAZ);
[0032]d:在固化粉末250的冷却中的每个冷却步骤期间生成已知分数的Y ',导致:
[0033]e:在Y和Y '之间分配Al和Ti以降低熔化区(FZ)的开裂敏感性。
[0034]这些步骤代表对用于超级合金的常规堆焊技术的改进,常规堆焊技术通常在消除应变时效开裂和初熔方面不是十分成功。为了避免开裂,一些现有技术使用较低温度方法例如硬焊(brazing),但这通常具有降低强度的缺点。
[0035]几乎全部常规使用的激光堆焊工艺包括激光束和基体材料的相互作用。该过程导致HAZ变大,并增加基体金属对晶界开裂的敏感性。本发明的一些实施方式将和构件相同或相似组成的粉末预放置在其中需要堆焊的构件的表面,达到厚度为约1.0?50_(毫米)。粉末尺寸通常在约10微米至约100微米之间的范围内。
[0036]在惰性气氛下用第一热源将这种预放置的粉末加热至约1200°C,并在该温度下保持最少5分钟以溶解基本全部的Y'相。可以优选使用电感线圈作为如图3所示的第一热源。这是示例性的而不是加以限定,因为还可以使用对本领域技术人员是显而易见的其它第一热源。
[0037]产生激光束242的第二热源例如激光240或其它定向能量源扫描预放置的粉末230并加热该粉末。由此该粉末230熔化并固化至如图3A所示的特定第一厚度250。为了避免制造过大的HAZ,优选调整激光功率dQ使得通常需要超过一次激光扫描以熔化并固化预放置的粉末。换言之,调整激光功率dQ使得当预放置的粉末230的熔化过程完成时发生相对少量的被基体金属的稀释,理解少量稀释意味着小的HAZ。
[0038]图3是预放置粉末230 (图3)和同时放置粉末230 (图4)的常规熔化设备201的示意图。预放置粉末230阻止完全强激光束242和基底201基体金属相互作用,并导致大的HAZ。预加热粉末230旨在减少FZ裂缝。预放置230旨在阻止激光束242和基底201基体金属相互作用,并减少晶界开裂。
[0039]在图4中,通过感应预加热器将预放置粉末230的薄层加热至约1200°C,并且一旦激光开始扫描,预放置粉末的进一步加热发生。激光束242在上方移动并熔化预放置粉末230,从而将其熔至基体材料,与此同时,在移动激光的前面和后面连续地预放置额外的粉末232。重复该过程以得到所需的足够多的粉末层。图4中示意性示出的这个实施方式同样使用激光束242撞击粉末230而不是基底的理念。
[0040]在预放置的粉末230上方第一次经过(pass)中(图3),只熔化了预放置粉末的顶部250,通常每次经过只有数微米。后续的通过熔化具有相似厚度的层252直至熔化和基底201基体金属相接触的最终层并完成熔合。该方法显著减少HAZ厚度,因为激光束242和基底201基体金属的直接接触大幅减少。
[0041]一旦完成预放置粉末230的熔化过程并且熔融粉末固化至不小于1200°C的温度,在该温度下保持固化粉末250最少一分钟,随后进行保持和冷却过程。
[0042]保持和冷却过程在全热力学相平衡中使用Al和Ti至Y和Y '的元素分配以在连接和堆焊过程中的任何时刻实现不超过20%的r的形成。该过程减少Y中的Al和Ti。如图2所示,使最终的Y组成在SCH(逐步的保持和冷却)过程结束时移动至可焊接区域以阻止应变时效开裂(FZ开裂)。
[0043]图2是用本文所述的方法激光堆焊的高强度Ni基超级合金的冶金反应的示意图。当激光熔化操作完成时热源(例如,图3中的感应线圈260或类似的热源)是可操作的并利用以下过程:
[0044]a.在T1下保持I?3分钟;
[0045]b.冷却至T2并保持2?15分钟:制造少于20%的Y ';
[0046]c.冷却至T3并保持2?30分钟:制造少于20%的Y ';
[0047]b.冷却至T4并保持0.1?2小时:制造少于20%的Y ';
[0048]..
[0049]..
[0050]..
[0051]
[0052]冷却至Tn并保持I?20小时(η = I?20):制造少于20%的Y ';
[0053]冷却至室温以制造最终的Y '含量,其少于约20%。
[0054]预期的是,能够使用本发明的一些实施方式用于激光堆焊在室温结构中通常具有大于约20% Υ '的高温镍基超级合金,但是按照本发明的一些实施方式,在各个保持和冷却步骤中导致小于约20%的Y '。这些不可焊接的超级合金包括在图1中不可焊接线100以上列出的各个超级合金,但是按照本发明的一些实施方式,将其改进至位于更接近可焊接区域。
[0055]本发明的一些实施方式优选使用两个热源。第一热源用于熔化预放置的粉末,通常是激光束240或其它定向能量束,如图3所示意性示出的。第二热源用于预加热沉积粉末,并且应用于该过程的可控冷却和保持部分。为了方便将第二热源视为如图3和图4所示的感应线圈260,但是并不排除其它热源。该感应线圈260或其它第二热源调节堆焊温度以便在任意保持温度下从Y中产生20%或更少的Υ '。利用可获得的热力学数据从所使用的加工条件计算进入Y和Y'中的Al和Ti的元素分配。选择条件以便在任何保持温度下产生最大20%的Y1形成。根据现有的' 体系的相转变原理,例如从SenteSoftware, Inc., Pittsbrugh, PA可获得的JmatPro热力学软件中的那些,计算实现20 %
的保持时间。
[0056]因此,简而言之,本发明的一些实施方式涉及对通常被认为是不可焊接的Ni基超级合金材料的激光堆焊,这例如在基本无裂缝的堆焊、燃气轮机构件上接近100%基体金属堆焊中会是有用的。
[0057]本文所描述的焊接方法通过逐步冷却和保持过程利用进入Y和Y '相的Al和Ti的元素分配。这减少了 Y相中的Al (以可控制的方式)和Ti并改善了焊接性,通常实现了低重量%的Y '。当将接合处的应力消除的Y的Al和Ti的含量减少至可焊接的数值时,终止逐步冷却和保持过程并用常规的焊接氩气冷却取代。
[0058]本发明的典型实施方式使用两个热源。一个热源(第一)用于如常规焊接过程中的熔化/接合。优选使用激光热源240作为这种第一热源,但是并不固有地排除其它热源例如电弧、放电、电子束、粒子束等。
[0059]其它(第二)热源用于预设置粉末的最初加热并用于该过程的保持和冷却部分。这种第二热源调整接合处的等温保持温度以在任何等温保持温度下产生不超过约20%的Y '。优选使用感应热源260作为这种第二热源并且不是固有地排除其它热源。当然,沉积粉末230和熔化步骤同时进行时,如图4示出的,不是准确知晓预加热温度。然而,即使同时进行粉末沉积,预放置粉末也快速达到基底201的裸金属(bare metal)的温度。
[0060]如图4所示的同时沉积粉末的一个重要目的是为了阻止激光束242和裸金属基底201直接相互作用。然而,对于该步骤的成功重要的是,在约1200°C或更高的温度下开始保持和冷却过程。借助感应加热器260以及通过邻近的激光产生的熔化槽250实现的粉末加热,该同时沉积过程实现了这一开始温度。
[0061]由可获得的热力学数据计算Al和Ti的元素分配,其使得在任何等温保持温度下最大20%的Y '形成。由已知的' 体系的相转变原理计算需要实现20% Y '的保持时间。这里特别重要的合金包括图1中所给出的那些。
[0062]从其熔融温度冷却Ni基Y '超级合金导致该超级合金经历从Y相至Y + Y '相的转变。本文所描述的保持和冷却过程使用在全热力学相平衡下进入Y和Y'的Al和Ti的元素分配以在保持和冷却过程期间的任何保持时刻下产生不超过20%的Y'。这减少了 Y相中的Al和Ti,并使最终的Y组成转移至如图1所示的可焊接区域。
[0063]在如图2所示的过程中,通过元素分配减少Y中的Al和Ti直至使其最终组成减少至低于图2D中的可焊接线100。Y的组成变化在图2A中用圆点T1?Tn标示。图2B和2C示出了在各个保持步骤后在冷却曲线和应力vs.时间曲线中的预期位移,这归因于在各个保持步骤下的焊接的应力消除。
[0064]预计本文所描述的一般保持和冷却方法能够应用于经受应变时效开裂的几乎任何超级合金。在该方法的保持阶段期间的Al和Ti的元素分配降低了应变时效开裂和热开裂的可能性。这种分配还显著降低在后焊接热处理期间应变时效开裂的趋势,因为在保持和冷却过程的各个步骤中从Y中基本消除了 Al和Ti,且应力消除。
[0065]尽管本文已经具体示出和描述了并入本发明教导的各种实施方式,但是本领域技术人员能够容易地推导出仍能并入这些教导的其它多种实施方式。
【权利要求】
1.一种对含大量钛(Ti)和铝(A1)的镍(Ni)基超级合金的进行修复性添加剂堆焊的方法,其包括: a)将具有大量Ti和A1的Ni基超级合金粉末预放置于与所述Ni基超级合金粉末基本相同或相似组成的基底上; b)用第一热源预加热所述预放置的粉末至高于约1200°C的温度; c)用定向能量束的第二热源的一次或多次经过熔化所述预放置的粉末以便产生具有宽度小于约100微米的热影响区,当熔化完成时移去所述第二热源; d)用所述第一热源对所述熔化的预放置粉末实施可控的分步和保持性冷却,使得在所述分步和保持性冷却期间形成已知分数的Y'相;以及 e)调整所述分步和保持性冷却过程使得在所述添加剂堆焊中Y相和Y/相之间的A1和Ti的分配导致开裂敏感性的降低。
2.如权利要求1的方法,其中所述分步和保持性冷却过程产生不超过约20重量%的 相。
3.如权利要求1的方法,其中所述添加剂堆焊的厚度在约1毫米?约10毫米的范围内。
4.如权利要求1的方法,其中所述预放置的粉末具有范围为约10微米?约100微米的粒径。
5.如权利要求1的方法,其中所述镍基超级合金构件的超级合金选自713C、247、PW1480、MARM200、R77、PW1483、R80、U720、738 或其混合物。
6.如权利要求1的方法,其中从最初温度?\至室温的所述可控分步和保持性冷却由以下多个步骤组成: a.在?\下保持范围为约1分钟?约3分钟的时间; b.冷却至小于?\的温度Τ2并保持范围为约2分钟?约15分钟的时间以便产生少于约20重量%的Υ ^相; c.冷却至小于Τ2的温度Τ3并保持范围为约2分钟?约30分钟的时间以便产生少于约20重量%的Υ ^相; d.冷却至小于T3的温度Τ4并保持范围为约6分钟?约120分钟的时间以便产生少于约20重量%的、' 相;和 e.在多个从!\至室温的冷却步骤中冷却至室温,其中保持各个步骤下的温度约1小时?约20小时以便产生少于约20重量%的Y丨。
7.一种在基底上通过添加剂堆焊的方法制造的含大量钛(Ti)和铝(A1)的镍(Ni)基超级合金材料,所述方法包括: a)将Ni基超级合金粉末放置于与其基本相同或相似组成的基底上; b)用第一热源预加热所述预放置的粉末至高于约1200°C的温度; c)用第二移动激光热源的单次经过熔化所述预放置的粉末以便产生具有宽度小于约100微米的热影响区,同时在所述第二移动激光热源的前面和后面预放置粉末; c-Ι)扫描所述第二移动激光热源并同时预放置粉末多次直至达到所需的材料厚度; c-2)关闭所述第二移动激光热源; d)用所述第一热源对所述熔化的预放置粉末实施可控的分步和保持性冷却,使得在所述分步和保持性冷却期间形成已知分数的V'相; 6)调整所述分步和保持性冷却过程使得在所述添加剂堆焊中、相和、,相之间的八1和丁1的分配导致开裂敏感性的降低;以及 调整所述分步和保持性冷却过程使得在所述添加剂堆焊中、相和、1相之间的八1和!'1的分配导致开裂敏感性的降低。
8.如权利要求7的方法,其中所述分步和保持性冷却过程产生不超过约20重量%的卜相。
9.如权利要求7的方法,其中所述添加剂堆焊的厚度在约1毫米?约50毫米的范围内。
10.如权利要求7的方法,其中所述预放置的粉末具有范围为约10微米?约100微米的粒径。
11.如权利要求7的方法,其中所述镍基超级合金构件的超级合金选自7131247、?胃1480、嫩咖200、877、?11483、880、1720、738 或其混合物。
12.如权利要求7的方法,其中从最初温度至室温的所述可控分步和保持性冷却由以下多个步骤组成: 在下保持范围为约1分钟?约3分钟的时间; 匕冷却至小于的温度12并保持范围为约2分钟?约15分钟的时间以便产生少于约20重量%的V丨相; 0.冷却至小于12的温度13并保持范围为约2分钟?约30分钟的时间以便产生少于约20重量%的V丨相; (1.冷却至小于13的温度14并保持范围为约6分钟?约120分钟的时间以便产生少于约20重量%的V丨相;和 0.在多个从14至室温的冷却步骤中冷却至室温,其中保持各个步骤下的温度约1小时?约20小时以便产生少于约20重量%的V ,。
13.一种对含大量钛(11)和铝(八1)的镍(附)基超级合金进行添加剂堆焊的方法,其包括: 将附基超级合金粉末放置于与其基本相同或相似组成的基底上; 幻用第一热源预加热所述预放置的粉末至高于约12001的温度; 0)用定向能量束的第二热源的一次或多次经过熔化所述预放置的粉末以便产生具有宽度小于约100微米的热影响区,当熔化完成时移去所述第二热源; (1)用所述第一热源对所述熔化的预放置粉末实施可控的分步和保持性冷却,使得在所述分步和保持性冷却期间形成已知分数的X丨相;以及 6)调整所述分步和保持性冷却过程使得在所述添加剂堆焊中、相和、,相之间的八1和!'1的分配导致开裂敏感性的降低。
【文档编号】B23K26/342GK104364045SQ201380029025
【公开日】2015年2月18日 申请日期:2013年5月13日 优先权日:2012年5月11日
【发明者】K.奥兹贝萨尔 申请人:西门子能量股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1