基于空间点误差修正的两工件自动对准方法与流程

文档序号:11220861阅读:465来源:国知局
基于空间点误差修正的两工件自动对准方法与流程

本发明涉及两工件的自动对准方法。



背景技术:

目前装配诸如法兰、圆管等工件的过程基本都是由手动完成的,这种手动装配工件的方法效率较低,需要花费大量的人力,使成本增加。

如今机器人实现自动化生产正在逐渐取代人工手动操作,而针对于装配法兰、圆管等工件的过程也可以采用机器人来完成,但是自动化装配法兰、圆管等工件时,由于装配机器人端和小工作台端的两个工件存在系统误差,因此导致装配过程中存在着较大的装配误差。以机器人装配法兰为例,自动装配前,法兰a装在机器人的末端,法兰b安装在小工作台夹持工具的末端,两法兰会出现系统误差,如图1所示,若此误差不修正,当两法兰继续装配时,会出现如图2所示的状况。两工件的系统误差消除过程仍需要人工介入调整,不能完全实现自动化安装,而且仍然存在花费人力,增加成本的问题。



技术实现要素:

本发明为了解决目前的机器人安装会出现系统误差而导致不能完全实现自动化安装的问题。进而提出了一种基于空间点误差修正的两工件自动对准方法。

基于空间点误差修正的两工件自动对准方法,是基于工件自动安装机械臂工作系统实现的,工件自动安装机械臂工作系统包括测量仪器、大工作台、小工作台和机器人机械臂,机器人机械臂简称机械臂,机器人机械臂末端简称机械臂末端;小工作台位于大工作台的台面上,小工作台能够沿着大工作台的导轨做直线运动,第二工件安装在小工作台的夹持工具的末端,小工作台的夹持工具朝向机械臂,第一工件由机械臂夹持;测量仪器与小工作台、大工作台无连接关系,用于测量工件。

所述的两工件需要对准的面能够重合,所述的基于空间点误差修正的两工件自动对准方法,包括以下步骤:

步骤1、第二工件的理想坐标系的建立:

第二工件安装在小工作台的夹持工具的末端,小工作台的夹持工具朝向机械臂,利用测量仪器测得第二工件夹持外侧一端的中心以及法向量,将测量仪器的测量坐标系建立在第二工件夹持外侧一端的中心;以第二工件夹持外侧一端的中心为原点,以第二工件夹持外侧一端的中心的法向量为x轴向量,y、z轴的建立满足右手定则,建立第二工件理想坐标系base1;

步骤2、工具坐标系的标定:

步骤2.1、在机械臂末端夹持带有尖端的标定件;

步骤2.2、手动控制机械臂使夹持的标定件尖端以任意四种姿态触大工作台上同一标记点,在标定件尖端标定出工具坐标系tool1;

步骤3、实际工件坐标系base2的标定:

步骤3.1、撤去标定件,在机械臂末端安装第一工件;

步骤3.2、使小工作台回归零位;

步骤3.3、手动控制机械臂移动,使第一工件夹持外侧一端的中心与第二工件夹持外侧一端的中心对准,确保第一工件、第二工件的中心线重合;

步骤3.4、移动小工作台到任意位置,重复步骤3.3;

步骤3.5、针对步骤3.3和步骤3.4所对应的机械臂末端,两次中心线重合时假设机械臂末端设有标定件,得到的标定件的尖端在工具坐标系tool1中的连线定为实际工件坐标系base2的x轴正方向;

步骤3.6、手动控制机械臂,将第一工件夹持外侧一端的中心移动到base2的x轴空间上方某点,过该点作x轴的垂线,即为base2的y轴;定义实际工件坐标系base2的y轴正方向;

步骤3.7、根据base2的xy平面及右手定则,确定出base2的z轴正方向,确定实际工件坐标系base2;

步骤4、获取修正信息并修正:

步骤4.1、将机械臂坐标系tool0的原点移至第一工件的夹持外侧一端中心处;

步骤4.2、在base2坐标系下,机械臂末端沿base2的x轴移动若干个位置(两个以上);能够得到若干个位置处对应的第一工件夹持外侧一端的中心在base2下的坐标p′;

步骤4.3、使用测量仪器分别测量出机械臂末端沿base2的x轴移动若干个位置处对应的第一工件夹持外侧一端的中心,得到第一工件夹持外侧一端的中心在base1下的坐标p,将这若干个夹持外侧一端的中心坐标拟合成一条直线,该直线方向向量即为base2的x轴在base1中的方向信息;

步骤4.4、在base2坐标系下,机械臂末端沿base2的y轴移动若干个位置(两个以上);能够得到若干个位置处对应的第一工件夹持外侧一端的中心在base2下的坐标p′;

步骤4.5、使用测量仪器分别测量出机械臂末端沿base2的y轴移动若干个位置处对应的第一工件夹持外侧一端的中心,得到第一工件夹持外侧一端的中心在base1下的坐标p,将这若干个夹持外侧一端的中心坐标拟合成一条直线,该直线方向向量即为base2的y轴在base1中的方向信息;

步骤4.6、将base2的x、y轴向量叉乘得到base2的z轴在base1中的方向信息;

根据base2的x、y、z轴在base1中的方向信息能够得到两坐标系之间的旋转矩阵r;

步骤4.7、利用旋转矩阵r和步骤4.3、4.4中所述若干个位置处对应的第一工件夹持外侧一端的中心在base1和base2下的坐标计算出base1和base2之间的平移矩阵t,取平均值;

步骤4.8、根据旋转矩阵r和平移矩阵t对两工件之间的误差进行修正,通过控制机械臂对第一工件、第二工件进行自动对准。

进一步地,所述两工件需要对准的面为规则的圆形、椭圆形、矩形或三角形。

进一步地,所述旋转矩阵其中,分别表示base2在base1中x、y、z轴的方向信息。

进一步地,所述平移矩阵t=p′-p×r。

进一步地,步骤4.2所述的机械臂末端沿base2的x轴移动若干个位置为四个位置。

进一步地,步骤4.4所述的机械臂末端沿base2的y轴移动若干个位置为四个位置。

进一步地,所述测量仪器为三坐标扫描仪或激光跟踪仪。

本发明具有以下有益效果:

采用本发明对机器人自动化装配工件时存在的系统误差进行修正,然后通过修正后的坐标控制机器人带着卡盘上的工件精确运动到另一个工件的对正位置,再进行焊接或者其他操作,由于利用本发明能够极大地提高两个工件之间的对准程度,从而提高后续焊接或者其他操作的成功率。在不影响后续操作的误差范围内,利用本发明进行对准,两个工件之间的对准率为98%以上,为实现工件的机器人自动化装配法兰提供了条件,奠定了基础。

附图说明

图1为装配前两个法兰之间出现系统误差的示意图;

图2为利用现有的对准方法将存在系统误差的两个法兰对准后的示意图;

图3为实施例1中第二法兰安装在小工作台上的示意图;

图4为实施例1中建立第二法兰理想坐标系base1示意图;

图5为实施例1中消除系统误差后的两个法兰对准后的示意图。

具体实施方式

具体实施方式一:

基于空间点误差修正的两工件自动对准方法,是基于工件自动安装机械臂工作系统实现的,工件自动安装机械臂工作系统包括测量仪器、大工作台、小工作台和机器人机械臂,机器人机械臂简称机械臂,机器人机械臂末端简称机械臂末端;小工作台位于大工作台的台面上,小工作台能够沿着大工作台的导轨做直线运动,第二工件安装在小工作台的夹持工具的末端,小工作台的夹持工具朝向机械臂,第一工件由机械臂夹持;测量仪器与小工作台、大工作台无连接关系,用于测量工件。

本实施方式所述基于空间点误差修正的两工件自动对准方法包括以下步骤:

步骤1、第二工件的理想坐标系的建立:

第二工件安装在小工作台的夹持工具的末端,小工作台的夹持工具朝向机械臂,利用测量仪器测得第二工件夹持外侧一端的中心以及法向量,将测量仪器的测量坐标系建立在第二工件夹持外侧一端的中心;以第二工件夹持外侧一端的中心为原点,以第二工件夹持外侧一端的中心的法向量为x轴向量,y、z轴的建立满足右手定则,建立第二工件理想坐标系base1;

步骤2、工具坐标系的标定:

步骤2.1、在机械臂末端夹持带有尖端的标定件;

步骤2.2、手动控制机械臂使夹持的标定件尖端以任意四种姿态触大工作台上同一标记点,在标定件尖端标定出工具坐标系tool1;

步骤3、实际工件坐标系base2的标定:

步骤3.1、撤去标定件,在机械臂末端安装第一工件;

步骤3.2、使小工作台回归零位;

步骤3.3、手动控制机械臂移动,使第一工件夹持外侧一端的中心与第二工件夹持外侧一端的中心对准,确保第一工件、第二工件的中心线重合;

步骤3.4、移动小工作台到任意位置,重复步骤3.3;

步骤3.5、针对步骤3.3和步骤3.4所对应的机械臂末端,两次中心线重合时假设机械臂末端设有标定件,得到的标定件的尖端在工具坐标系tool1中的连线定为实际工件坐标系base2的x轴正方向;

步骤3.6、手动控制机械臂,将第一工件夹持外侧一端的中心移动到base2的x轴空间上方某点,过该点作x轴的垂线,即为base2的y轴;定义实际工件坐标系base2的y轴正方向;

步骤3.7、根据base2的xy平面及右手定则,确定出base2的z轴正方向,确定实际工件坐标系base2;

步骤4、获取修正信息并修正:

步骤4.1、将机械臂坐标系tool0的原点移至第一工件的夹持外侧一端中心处;

步骤4.2、在base2坐标系下,机械臂末端沿base2的x轴移动若干个位置(两个以上);能够得到若干个位置处对应的第一工件夹持外侧一端的中心在base2下的坐标p′;

步骤4.3、使用测量仪器分别测量出机械臂末端沿base2的x轴移动若干个位置处对应的第一工件夹持外侧一端的中心,得到第一工件夹持外侧一端的中心在base1下的坐标p,将这若干个夹持外侧一端的中心坐标拟合成一条直线,该直线方向向量即为base2的x轴在base1中的方向信息;

步骤4.4、在base2坐标系下,机械臂末端沿base2的y轴移动若干个位置(两个以上);能够得到若干个位置处对应的第一工件夹持外侧一端的中心在base2下的坐标p′;

步骤4.5、使用测量仪器分别测量出机械臂末端沿base2的y轴移动若干个位置处对应的第一工件夹持外侧一端的中心,得到第一工件夹持外侧一端的中心在base1下的坐标p,将这若干个夹持外侧一端的中心坐标拟合成一条直线,该直线方向向量即为base2的y轴在base1中的方向信息;

步骤4.6、将base2的x、y轴向量叉乘得到base2的z轴在base1中的方向信息;

根据base2的x、y、z轴在base1中的方向信息能够得到两坐标系之间的旋转矩阵r;

步骤4.7、利用旋转矩阵r和步骤4.3、4.4中所述若干个位置处对应的第一工件夹持外侧一端的中心在base1和base2下的坐标计算出base1和base2之间的平移矩阵t,取平均值;

步骤4.8、根据旋转矩阵r和平移矩阵t对两工件之间的误差进行修正,通过控制机械臂对第一工件、第二工件进行自动对准,即将计算得到的旋转矩阵r和平移矩阵t输入到机器人中,使机械臂带着第一工件与第二工件自动对准;此后就不再需要人工参与控制,均由机器人内部的控制系统根据各个坐标系之间的关系控制机械臂自动完成工件对准。再此之后,相同型号的工件对准也由机器人自动完成,无需人工参与。

具体实施方式二:

本实施方式所述两工件需要对准的面为规则的圆形、椭圆形、矩形或三角形。

其他步骤和参数与具体实施方式一相同。

具体实施方式三:

本实施方式所述旋转矩阵其中,分别表示base2在base1中x、y、z轴的方向信息。

其他步骤和参数与具体实施方式一或二相同。

具体实施方式四:

本实施方式所述平移矩阵t=p′-p×r。

其他步骤和参数与具体实施方式一至三之一相同。

具体实施方式五:

本实施方式步骤4.2所述的机械臂末端沿base2的x轴移动若干个位置为四个位置。

其他步骤和参数与具体实施方式一至四之一相同。

具体实施方式六:

本实施方式步骤4.4所述的机械臂末端沿base2的y轴移动若干个位置为四个位置。

其他步骤和参数与具体实施方式一至五之一相同。

具体实施方式七:

本实施方式所述测量仪器为三坐标扫描仪或激光跟踪仪。

其他步骤和参数与具体实施方式一至六之一相同。

具体实施方式八:

本实施方式所述的第一工件、第二工件均为法兰。

其他步骤和参数与具体实施方式一至七之一相同。

具体实施方式九:

本实施方式所述的第一工件、第二工件均为圆管。

其他步骤和参数与具体实施方式一至七之一相同。

具体实施方式十:

本实施方式所述的第一工件、第二工件分别为法兰和圆管。

其他步骤和参数与具体实施方式一至七之一相同。

实施例

实施例1

基于空间点误差修正的两工件自动对准方法,所述的两工件均为法兰,包括以下步骤:

步骤1、第二法兰的理想坐标系的建立:

第二法兰b安装在小工作台d的夹持工具的末端,如图3所示;小工作台的夹持工具朝向机械臂,利用测量仪器测得第二法兰小端面圆周的中心以及法向量,将测量仪器的测量坐标系建立在第二法兰小端面圆周的中心;以第二法兰小端面圆周的中心为原点,以第二法兰小端面圆周的中心的法向量为x轴向量,y、z轴的建立满足右手定则,建立第二法兰理想坐标系base1;如图4所示;

步骤2、工具坐标系的标定:

步骤2.1、在机械臂末端夹持带有尖端的标定件;

步骤2.2、手动控制机械臂使夹持的标定件尖端以任意四种姿态触大工作台c上同一标记点,在标定件尖端标定出工具坐标系tool1;tool1是机器人控制系统内自动标定生成的;

步骤3、实际工件坐标系base2的标定:

步骤3.1、撤去标定件,在机械臂末端安装第一法兰a;

步骤3.2、使小工作台回归零位;

步骤3.3、手动控制机械臂移动,使第一法兰和第二法兰小端面圆周的中心对准,确保第一法兰、第二法兰的中心线重合;

步骤3.4、移动小工作台到任意位置,重复步骤3.3;

步骤3.5、针对步骤3.3和步骤3.4所对应的机械臂末端,两次中心线重合时假设机械臂末端带有标定件,得到的标定件的尖端在工具坐标系tool1中的连线定为实际工件坐标系base2的x轴正方向;实际上机械臂末端夹持的是第一法兰,并无标定件,但是在机械臂的对应的机器人控制系统中,机器人控制系统是基于标定件的尖端在工具坐标系tool1下进行运动,也就是将机械臂末端假设为带有标定件时标定件的尖端所在位置连线;

步骤3.6、手动控制机械臂,将第一法兰小端面圆周的中心移动到base2的x轴空间上方某点,过该点作x轴的垂线,即为base2的y轴;定义实际工件坐标系base2的y轴正方向;

步骤3.7、根据base2的xy平面及右手定则,确定出base2的z轴正方向,确定实际工件坐标系base2;

步骤4、获取修正信息并修正:

步骤4.1、将机械臂坐标系tool0的原点移至第一法兰的小端面圆周中心处;

步骤4.2、在base2坐标系下,机械臂末端沿base2的x轴移动若干个位置;能够得到若干个位置处对应的第一法兰小端面圆周的中心在base2下的坐标p′;手动输入数据将机械臂坐标系tool0的原点移至第一法兰的小端面圆周中心处,已经将移动机械臂末端上夹持第一法兰的夹持件的影响消除,机械臂末端沿x轴移动若干个位置就是第一法兰小端面圆周的中心所在位置;

步骤4.3、使用测量仪器分别测量出机械臂末端沿base2的x轴移动若干个位置处对应的第一法兰小端面圆周的中心,得到第一法兰小端面圆周的中心在base1下的坐标p,将这若干个小端面圆周的中心坐标拟合成一条直线,该直线方向向量即为base2的x轴在base1中的方向信息;

步骤4.4、在base2坐标系下,机械臂末端沿base2的y轴移动若干个位置,若干个位置在base2下的坐标已知;能够得到若干个位置处对应的第一法兰小端面圆周的中心在base2下的坐标p′;

步骤4.5、使用测量仪器分别测量出机械臂末端沿base2的y轴移动若干个位置处对应的第一法兰小端面圆周的中心,得到第一法兰小端面圆周的中心在base1下的坐标p,将这若干个小端面圆周的中心坐标拟合成一条直线,该直线方向向量即为base2的y轴在base1中的方向信息;

步骤4.6、将base2的x、y轴向量叉乘得到base2的z轴在base1中的方向信息;

根据base2的x、y、z轴在base1中的方向信息能够得到两坐标系之间的旋转矩阵r;

步骤4.7、利用旋转矩阵r和步骤4.3、4.4中所述若干个位置处对应的第一法兰小端面圆周的中心在base1和base2下的坐标计算出base1和base2之间的平移矩阵t,取平均值;

步骤4.8、根据旋转矩阵r和平移矩阵t对两法兰之间的误差进行修正,通过控制机械臂对第一法兰、第二法兰进行自动对准。第一法兰和第二法兰对准后,如图5所示。

本实施例是对连个法兰小端面进行对准,如果要对两个法兰的法兰盘端面进行对准的话,将第一法兰小端面圆周中心和第二法兰小端面圆周中心分别对应替换为第一法兰大端面圆周中心(第一法兰法兰盘端面圆周中心)和第二法兰大端面圆周中心(第二法兰法兰盘端面圆周中心),然后按照上述方案进行即可实现两个法兰的法兰盘端面进行对准。

实施例2

基于空间点误差修正的两工件自动对准方法,所述的两工件分别为法兰、圆管,包括以下步骤:

步骤1、圆管的理想坐标系的建立:

圆管安装在小工作台的夹持工具的末端,小工作台的夹持工具朝向机械臂,利用测量仪器测得圆管夹持外侧一端圆周的中心以及法向量,将测量仪器的测量坐标系建立在圆管的夹持外侧一端圆周的中心;以圆管夹持外侧一端圆周的中心为原点,以圆管夹持外侧一端圆周的中心的法向量为x轴向量,y、z轴的建立满足右手定则,建立圆管理想坐标系base1;

步骤2、工具坐标系的标定:

步骤2.1、在机械臂末端夹持带有尖端的标定件;

步骤2.2、手动控制机械臂使夹持的标定件尖端以任意四种姿态触大工作台上同一标记点,在标定件尖端标定出工具坐标系tool1;

步骤3、实际工件坐标系base2的标定:

步骤3.1、撤去标定件,在机械臂末端安装法兰;

步骤3.2、使小工作台回归零位;

步骤3.3、手动控制机械臂移动,使法兰和圆管夹持外侧一端圆周的中心对准,确保法兰、圆管的中心线重合;

步骤3.4、移动小工作台到任意位置,重复步骤3.3;

步骤3.5、针对步骤3.3和步骤3.4所对应的机械臂末端,两次中心线重合时假设机械臂末端带有标定件,得到的标定件的尖端在工具坐标系tool1中的连线定为实际工件坐标系base2的x轴正方向;

步骤3.6、手动控制机械臂,将法兰小端面圆周的中心移动到base2的x轴空间上方某点,过该点作x轴的垂线,即为base2的y轴;定义实际工件坐标系base2的y轴正方向;

步骤3.7、根据base2的xy平面及右手定则,确定出base2的z轴正方向,确定实际工件坐标系base2;

步骤4、获取修正信息并修正:

步骤4.1、将机械臂坐标系tool0的原点移至法兰的小端面圆周中心处;

步骤4.2、在base2坐标系下,机械臂末端沿base2的x轴移动若干个位置;能够得到若干个位置处对应的法兰小端面圆周的中心在base2下的坐标p′;

步骤4.3、使用测量仪器分别测量出机械臂末端沿base2的x轴移动若干个位置处对应的法兰小端面圆周的中心,得到法兰小端面圆周的中心在base1下的坐标p,将这若干个小端面圆周的中心坐标拟合成一条直线,该直线方向向量即为base2的x轴在base1中的方向信息;

步骤4.4、在base2坐标系下,机械臂末端沿base2的y轴移动若干个位置;能够得到若干个位置处对应的法兰小端面圆周的中心在base2下的坐标p′;

步骤4.5、使用测量仪器分别测量出机械臂末端沿base2的y轴移动若干个位置处对应的法兰小端面圆周的中心,得到法兰小端面圆周的中心在base1下的坐标p,将这若干个小端面圆周的中心坐标拟合成一条直线,该直线方向向量即为base2的y轴在base1中的方向信息;

步骤4.6、将base2的x、y轴向量叉乘得到base2的z轴在base1中的方向信息;

根据base2的x、y、z轴在base1中的方向信息能够得到两坐标系之间的旋转矩阵r;

步骤4.7、利用旋转矩阵r和步骤4.3、4.4中所述若干个位置处对应的法兰小端面圆周的中心在base1和base2下的坐标计算出base1和base2之间的平移矩阵t,取平均值;

步骤4.8、根据旋转矩阵r和平移矩阵t对两法兰之间的误差进行修正,通过控制机械臂对法兰、圆管进行自动对准。

实施例3

基于空间点误差修正的两工件自动对准方法,所述的两工件分别为法兰、圆管,包括以下步骤:

步骤1、法兰的理想坐标系的建立:

法兰安装在小工作台的夹持工具的末端,小工作台的夹持工具朝向机械臂,利用测量仪器测得法兰小端面圆周的中心以及法向量,将测量仪器的测量坐标系建立在法兰小端面圆周的中心;以法兰小端面圆周的中心为原点,以法兰小端面圆周的中心的法向量为x轴向量,y、z轴的建立满足右手定则,建立法兰理想坐标系base1;

步骤2、工具坐标系的标定:

步骤2.1、在机械臂末端夹持带有尖端的标定件;

步骤2.2、手动控制机械臂使夹持的标定件尖端以任意四种姿态触大工作台上同一标记点,在标定件尖端标定出工具坐标系tool1;

步骤3、实际工件坐标系base2的标定:

步骤3.1、撤去标定件,在机械臂末端安装圆管;

步骤3.2、使小工作台回归零位;

步骤3.3、手动控制机械臂移动,使圆管和法兰小端面圆周的中心对准,确保圆管、法兰的中心线重合;

步骤3.4、移动小工作台到任意位置,重复步骤3.3;

步骤3.5、针对步骤3.3和步骤3.4所对应的机械臂末端,两次中心线重合时假设机械臂末端带有标定件,得到的标定件的尖端在工具坐标系tool1中的连线定为实际工件坐标系base2的x轴正方向;

步骤3.6、手动控制机械臂,将圆管夹持外侧一端圆周的中心移动到base2的x轴空间上方某点,过该点作x轴的垂线,即为base2的y轴;定义实际工件坐标系base2的y轴正方向;

步骤3.7、根据base2的xy平面及右手定则,确定出base2的z轴正方向,确定实际工件坐标系base2;

步骤4、获取修正信息并修正:

步骤4.1、将机械臂坐标系tool0的原点移至圆管的小端面圆周中心处;

步骤4.2、在base2坐标系下,移动机械臂末端沿base2的x轴移动若干个位置;能够得到若干个位置处对应的圆管夹持外侧一端圆周的中心在base2下的坐标p′;

步骤4.3、使用测量仪器分别测量出机械臂末端沿base2的x轴移动若干个位置处对应的圆管夹持外侧一端圆周的中心,得到圆管夹持外侧一端圆周的中心在base1下的坐标p,将这若干个圆管夹持外侧一端圆周的中心坐标拟合成一条直线,该直线方向向量即为base2的x轴在base1中的方向信息;

步骤4.4、在base2坐标系下,移动机械臂末端沿base2的y轴移动若干个位置;能够得到若干个位置处对应的圆管夹持外侧一端圆周的中心在base2下的坐标p′;

步骤4.5、使用测量仪器分别测量出机械臂末端沿base2的y轴移动若干个位置处对应的圆管夹持外侧一端圆周的中心,得到圆管夹持外侧一端圆周的中心在base1下的坐标p,将这若干圆管夹持外侧一端圆周的中心坐标拟合成一条直线,该直线方向向量即为base2的y轴在base1中的方向信息;

步骤4.6、将x、y轴向量叉乘得到base2的z轴在base1中的方向信息;

根据base2的x、y、z轴在base1中的方向信息能够得到两坐标系之间的旋转矩阵r;

步骤4.7、利用旋转矩阵r和步骤4.3、4.4中所述若干个位置处对应的圆管夹持外侧一端圆周的中心在base1和base2下的坐标计算出base1和base2之间的平移矩阵t,取平均值;

步骤4.8、根据旋转矩阵r和平移矩阵t对两法兰之间的误差进行修正,通过控制机械臂对圆管、法兰进行自动对准。

实施例4

基于空间点误差修正的两工件自动对准方法,所述的两工件均为圆管,包括以下步骤:

步骤1、第二圆管的理想坐标系的建立:

第二圆管安装在小工作台的夹持工具的末端,小工作台的夹持工具朝向机械臂,利用测量仪器测得第二圆管夹持外侧一端圆周的中心以及法向量,将测量仪器的测量坐标系建立在第二圆管夹持外侧一端圆周的中心;以第二圆管夹持外侧一端圆周的中心为原点,以第二圆管夹持外侧一端圆周的中心的法向量为x轴向量,y、z轴的建立满足右手定则,建立第二圆管理想坐标系base1;

步骤2、工具坐标系的标定:

步骤2.1、在机械臂末端夹持带有尖端的标定件;

步骤2.2、手动控制机械臂使夹持的标定件尖端以任意四种姿态触大工作台上同一标记点,在标定件尖端标定出工具坐标系tool1;

步骤3、实际工件坐标系base2的标定:

步骤3.1、撤去标定件,在机械臂末端安装第一圆管;

步骤3.2、使小工作台回归零位;

步骤3.3、手动控制机械臂移动,使第一圆管和第二圆管夹持外侧一端圆周的中心对准,确保第一圆管、第二圆管的中心线重合;

步骤3.4、移动小工作台到任意位置,重复步骤3.3;

步骤3.5、针对步骤3.3和步骤3.4所对应的机械臂末端,两次中心线重合时假设机械臂末端带有标定件,得到的标定件的尖端在工具坐标系tool1中的连线定为实际工件坐标系base2的x轴正方向;

步骤3.6、手动控制机械臂,将第一圆管夹持外侧一端圆周的中心移动到base2的x轴空间上方某点,过该点作x轴的垂线,即为base2的y轴;定义实际工件坐标系base2的y轴正方向;

步骤3.7、根据base2的xy平面及右手定则,确定出base2的z轴正方向,确定实际工件坐标系base2;

步骤4、获取修正信息并修正:

步骤4.1、将机械臂坐标系tool0的原点移至第一圆管的夹持外侧一端圆周中心处;

步骤4.2、在base2坐标系下,机械臂末端沿base2的x轴移动若干个位置;能够得到若干个位置处对应的第一圆管夹持外侧一端圆周的中心在base2下的坐标p′;

步骤4.3、使用测量仪器分别测量出机械臂末端沿base2的x轴移动若干个位置处对应的第一圆管夹持外侧一端圆周的中心,得到第一圆管夹持外侧一端圆周的中心在base1下的坐标p,将这若干个夹持外侧一端圆周的中心坐标拟合成一条直线,该直线方向向量即为base2的x轴在base1中的方向信息;

步骤4.4、在base2坐标系下,机械臂末端沿base2的y轴移动若干个位置;能够得到若干个位置处对应的第一圆管夹持外侧一端圆周的中心在base2下的坐标p′;

步骤4.5、使用测量仪器分别测量出机械臂末端沿base2的y轴移动若干个位置处对应的第一圆管夹持外侧一端圆周的中心,得到第一圆管夹持外侧一端圆周的中心在base1下的坐标p,将这若干个夹持外侧一端圆周的中心坐标拟合成一条直线,该直线方向向量即为base2的y轴在base1中的方向信息;

步骤4.6、将base2的x、y轴向量叉乘得到base2的z轴在base1中的方向信息;

根据base2的x、y、z轴在base1中的方向信息能够得到两坐标系之间的旋转矩阵r;

步骤4.7、利用旋转矩阵r和步骤4.3、4.4中所述若干个位置处对应的第一圆管夹持外侧一端圆周的中心在base1和base2下的坐标计算出base1和base2之间的平移矩阵t,取平均值;

步骤4.8、根据旋转矩阵r和平移矩阵t对两圆管之间的误差进行修正,通过控制机械臂对第一圆管、第二圆管进行自动对准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1