由大小均一的金属微珠组成的图形阵列的制作方法

文档序号:3036239阅读:210来源:国知局
专利名称:由大小均一的金属微珠组成的图形阵列的制作方法
技术领域
本发明涉及在衬底上形成金属微珠图形阵列的方法,具体是涉及间隔精确的有规阵列的制备方法。
背景技术
在电子仪器和远程通讯工业中,迫切需要在元件间,常常是在很小的元件间建立电连接。在晶片上形成半导体如集成电路,然后将晶片切割成可单独安装在衬底上的切片。衬底上一般有很细的电路线。在衬底和切片之间必须有电和热的接触。随着电子器具如计算机、录音机、电视机、电话和其它器具变得越来越小,越来越薄和越来越便携化,对用于提供半导体与衬底之间或者可挠曲电路与刚性印刷电路之间电连接的半导体和元件,其尺寸要求就越来越高。
一种在二个电气元件之间如可挠曲电路和印刷电路之间产生导电性的方法是使用Z轴粘接剂。Z轴粘接剂(如美国专利2,822,509和4,606,962)一般是均匀分散在粘接剂薄膜中的导电颗粒。当Z轴粘接剂用于连接位于两个绝缘衬底上的导电元件阵列时,由导电颗粒在导电元件之间产生电接触。因为小型化的要求越来越多,颗粒之间的间隔和此间隔的精度变得越来越重要。
Z轴粘接剂的制法可以是将导电金属颗粒无规地分散在粘接剂中。将导电金属颗粒无规地分散在粘接剂而制成的Z轴粘接剂,在各个颗粒之间可能有任意大小的距离,包括相互接触的颗粒。为了在电气元件之间提供所需的电连接密度,必须在粘接剂中加入足够多的颗粒,以确保产生所需的Z轴导电性。一般加入的颗粒需要过量,使得颗粒间的最大无规距离不超过电连接所需的距离。而且,无规地加入导电颗粒会使颗粒结块,造成电子元件的短路。因此,能提供定位的导电颗粒非常重要。
因此,需要一种制造由分布在衬底上大小均一的金属微珠构成的,具有前所未有的间隔和精度的图形阵列的方法。需要一种制造由很细小、大小均一的微珠构成的,其间隔具有前所未有精度的有规图形阵列的方法。这种阵列例如可用在Z轴粘接剂中。
发明的概述本发明提供一种在衬底上形成金属微珠阵列的方法。本发明也提供一种具有非连续金属涂层的衬底如聚合物衬底,所述的金属涂层是金属微珠紧密排列构成的图形阵列,所述的金属微珠有球形部分和平坦部分。
本发明的方法包括如下步骤在衬底上形成分隔成许多金属区域的金属层;如有必要,使金属层与有效量的助熔剂接触;将金属层加热至足够高的温度,使得金属熔融,使得该金属层珠化成分离的微珠。金属层可以淀积在衬底上,在淀积时即被分隔,因此不需要特别的分隔步骤,也可以先淀积成连续的层,然后进行分隔。各金属区域不一定需是分离的,仅需分隔成足以珠化的程度。仅当有氧化物层存在时,才需要助熔剂。
本发明的微珠可以有宽的直径范围。平均直径一般约0.2—100微米,最好约1—50微米。提供微珠的面积密度也可以有很宽的范围。平均密度一般为约600—6,000,000珠/厘米2,较好为40,000—6,000,000珠/厘米2,更好为80,000—6,000,000珠/厘米2,最好为160,000—6,000,000珠/厘米2。其它组份也可加入到微珠和衬底上。例如,粘接剂层可以涂在微珠上,形成Z轴粘接剂。
本文将“有规的”定义为具有确定的或可重复的图形的间隔。
本文定义的“分离的”是指互不接触的不同元件,这样每个球、珠或区域就与相邻的金属元件不接触。
附图的简述

图1是涂有分隔成许多区域的金属层的聚合物的透视图,它是本发明方法的一部分;图2是显示本发明衬底上微珠阵列的电子显微照片。
图3是显示本发明微珠阵列的电子显微照片。
图4是显示本发明微珠阵列的电子显微照片。
图5是显示本发明微珠阵列顶视图的显微照片。
发明的详述本发明提供了金属微珠的图形阵列以及制造这种金属微珠图形阵列的方法。本发明方法能提供以精确有规阵列分布在衬底上的大小相同的金属微珠,这些微珠的中心至中心间隔非常紧密。全文用“微珠”或“微球”描述本发明阵列中各个独立的球状金属元件。本发明的金属微球或微珠不可能是完全球形的,而有一个平坦部分。微珠的形状从几乎整个球形到球的较小部分如半球不等。
微珠的平坦部分在某些用途中可能有好处。此平坦部分可有助于将微珠安置在另一个衬底上,此时该平坦部分作为安置的底部,且便于为两个衬底之间提供电连接。如果将微珠阵列转移到另一衬底如粘接剂层上,其平坦部分仍可是暴露的,同样有助于产生电连接。
本发明方法可制成一种大小相同的微珠或多种大小的微珠。本发明阵列包括两个基本部分,衬底和由衬底支承的金属微珠。本发明阵列的制造方法是一种在衬底上形成金属微珠的新颖方法。
图1显示了本发明金属微珠阵列的前体,该整个前体表示为10。阵列的前体包括衬底12和金属层14。金属层14中有垂直槽16和水平槽18,这些槽子将金属层14分成许多个金属区域20。
图2这张电子显微照片显示了本发明的一种金属微珠阵列。整个阵列表示为20,它包括衬底21和分布在上面的许多金属微珠22。衬底21上显示了垂直槽23和水平槽24。这些槽子是本发明方法的结果。微珠22一般有球形部分25和与衬底21接触的平坦部分(未标出)。
图3显示了本发明的又一种金属微珠阵列。整个阵列表示为30。这张电子显微照片所示的阵列30包括衬底31和微珠32,垂直槽33和水平槽34。这些槽子是本发明方法和结果。金属微珠32有球形部分35和平坦部分(未标出)。微珠32比图2所示的微珠22更接近球形。
图4这张电子显微照片显示了本发明的另一种金属微珠阵列。该整个阵列表示为40。它包括衬底41、金属微珠42、垂直槽43和水平槽44。微珠42有球形部分45和与衬底41接触的平坦部分(未标出)。图4也表明,这些微珠并非完整的球形,有的微珠还有缺陷,包括是更接近于钟形的微珠。
图5这张显微照片显示了本发明一种金属微珠阵列的顶视图,整个阵列表示为50。它包括衬底51、微珠52、第一类槽53和第二类槽54。槽53和54是菱形的。微珠的球形不能从图5的显微照片的顶视图看出,但该图显示了微珠52的球状横截面。衬底本发明的衬底可以使用多种不同的材料。许多聚合物和非聚合物的材料都适用于作衬底。适用于本发明的衬底应根据其最终用途进行选择。衬底可以是可挠曲的或不可挠曲的;透明或不透明的;可由各种材料制成;可有各种厚度和侧向尺寸;可有适于特殊最终用途的其它性质。在许多情况下,衬底可仅用作微珠的载体,或者可用作在其上面形成微珠的装置。本发明的微珠可在与衬底分开情况下使用,也可与衬底粘接后使用。
在与衬底分开情况下使用微珠,首先必须将微珠与衬底在结构上分离,加以收集。可以用机械方法将微珠从衬底上刮下或刷下进行之。分离下来的微珠是可以相互自由移动的。可将这些微珠分散在一种液体,最好在一种粘接剂中,然后涂在第二衬底上。结果产生了一种其中无规分散着大小相同的微珠的粘接剂膜涂层。本发明的一个用途就是其中无规分散着大小和形状非常接近的微珠的Z轴粘接剂。
或者,微珠可在第一衬底上制成,然后将其转移到第二衬底(如粘合剂层)上。衬底可根据微珠所用金属的润湿特性进行选择。选用的衬底应不完全为形成金属微珠的所用的液态金属润湿。另外,应选择的衬底不可因工艺过程中其所经受的温度而劣化。本行业中技术人员应该认识到,用作衬底的聚合物在经过加热步骤后必须完好无损,仍能起衬底的作用。
液体放在衬底上时液体所表现的润湿性至少部分取决于液体与衬底之间的表面张力。一般来说,此表面张力越大,金属液滴与衬底之间的润湿内角越大。如果表面张力足够大,液体会形成不连续的小滴。润湿是指液体在给定表面上形成液膜的倾向,相反,非润湿是指液体在表面上形成不连续小液滴的倾向。
为形成本发明所需的微珠,金属熔化时需足以在衬底表面上形成不连续的金属液滴。当满足所述条件时,它被称为对特定衬底表面不润湿的液态金属。根据所需的微珠形状,可以选择给定衬底与金属间的润湿度,以控制微珠的形状。金属对衬底表面的润湿度越小,微珠越接近球形。
选用于本发明的衬底还应能承受工艺过程中熔融金属层所必需的温度。金属、玻璃、陶瓷和聚合物衬底都是可用于本发明的衬底例子。
可用作本发明衬底的聚合物例子包括聚酰亚胺;聚苯氧;氟化烯烃的聚合物如聚四氟乙烯;硅氧烷聚合物;纤维素聚合物;聚氨酯;工程塑料如聚苯乙烯、苯乙烯/丙烯腈共聚物、含聚合苯乙烯、丙烯腈和丁二烯的共聚物(常称为ABS聚合物)、苯乙烯/丁二烯共聚物、橡胶改性的苯乙烯聚合物、苯乙烯/马来酸酐共聚物和类似的单亚乙烯基芳族碳环单体的聚合物;聚碳酸酯,包括由光气和双酚A和/或酚酞制成的聚碳酸酯;聚酯如聚对苯二甲酸乙二醇酯;丙烯酸树脂如聚甲基丙烯酸甲酯;聚酰胺如尼龙;聚烯烃如聚乙烯和聚丙烯;聚卤乙烯如聚氯乙烯、1,1-二氯乙烯均聚物和共聚物;聚砜;聚芳基砜;以及全氟化乙烯-丙烯共聚物。
另外,还可以使用金属衬底,如用铝(它一般是受熔融金属润湿的),其上面涂以至少一非润湿性的薄层氧化铝,或其它的非润湿性涂层。一般来说,由于选用的液态金属润湿而不适用的衬底可涂以非润湿性涂层,以提供合适的淀积表面。
衬底的厚度对本发明的实施来说不是特别重要的,它取决于由该复合材料预定的最终用途所支配的性质。这些最终用途所决定的性质包括透明性、挠曲性、拉伸强度、耐腐蚀性等。但在某些情况下,在最终用途中衬底不与微珠一起使用,因此可仅根据制造工艺特征进行选择。金属微珠金属微珠可以采用许多种金属。用于形成本发明金属微珠的优选金属的例子包括锡、铅、铋、锌、铟、铝、合金(包括这些金属与熔点更高的金属如铜、银、金、镍、钴、铁形成的合金)及其混合物。
象衬底一样,微珠用的金属也根据最终用途进行选择。金属也还要根据上述的衬底润湿特性进行选择。助熔剂视情况需要,本发明中有时还使用助熔剂。助熔剂的作用是渗透金属层上形成的金属氧化物层,并消除所有这些氧化物层,使得当金属层熔化时,金属能在衬底上形成不连续的金属微珠。
如果工艺条件(如在真空条件下)使金属层上不会形成氧化物层,可以不需要助熔剂。
合适助熔剂的例子包括有机酸如苹果酸或乙酸;氯化物如氯化锌;磷酸;稀盐酸;其它挥发性酸;以及其它已知的助熔剂。助熔剂根据本发明中所用的特定金属和金属氧化物进行选择。
为消除所有的氧化物层,需使用足够浓度的助熔剂,使金属层熔化时形成微珠,但助熔剂的作用不太强以致溶解、腐蚀或分解所用的衬底或其它部件。助熔剂的挥发性要尽量好,以便在它完成其作用后即挥发逸去。如果助熔剂能从系统中蒸发掉,就不会有以后分解复合材料部件的危险。最好将助熔剂以细雾状形式施加在金属层上。工艺参数本发明的金属微珠可按如下方法制成,在衬底上形成充分分隔为许多金属区域(便于珠化)的金属层,如有必要,使金属层与有效量的助熔剂接触;将金属层加热至足以使金属熔化并使金属层珠化成不连续的微珠的温度。
本发明方法首先是将金属层淀积在一衬底上。一种优选的淀积方法是真空淀积。在真空室中先形成金属蒸汽,然后令其在聚合物衬底上淀积成连续的金属层。可以用一种金属淀积好几层,也可以淀积几层不同的金属。
在真空中形成金属蒸汽的一种优选方法是通过蒸发,蒸发方法有好几种。真空阴极喷镀也是合适的,虽然其淀积速率一般较慢。
一种优选的蒸发方法是用电子束加热金属。一般是将金属放在水冷的小金属坩埚中,产生电子束,并用磁场将其聚焦于坩埚中的金属上。所用的电子束一般为用10000伏加速的约0.1—1安培电子流,它聚焦于金属上0.5平方厘米面积内。购自Airco Temescal公司的电子束电源是合适设备的一个例子。其它蒸发金属的方法还有电阻加热和感应加热。
金属蒸汽生成后,让金属蒸汽通过真空室,淀积在位于上方的衬底上。衬底可以是一条移动的材幅(web),它以足以淀积所需厚度的金属层的速度通过真空室中的金属蒸汽。金属层的厚度相对于分隔后的金属区域宽度来说应足够大,以防止在一给定区域内形成多个金属珠。所需的最小比率取决于所用的衬底和金属,但一般来说,金属层的厚度应至少是金属区域宽度的约2%。
视所用衬底的情况,还可用其它将金属层淀积在衬底上的方法,这些方法包括所需金属箔或薄膜的层压;熔融金属喷镀;金属的电解和/或电镀。
在金属层熔融成所需微珠之前,衬底上的金属层应是已分隔成所需图形的许多金属区域。这些金属区域可在一连续金属层上用分隔操作来形成,或金属提供在衬底上时已分隔为许多金属区域。有许多产生所需区域的方法。金属层可用各种方法进行分隔,如激光雕刻法、光刻法、蚀刻法、机械雕刻法、碎裂法或其它方法。另一种形成金属区域方法是可通过掩膜蒸汽淀积金属或在预先压印出图形的衬底上蒸汽淀积金属,这样淀积层就被淀积的阴影或视线所分隔。衬底可预先压印出不同深度的图形,以便在不同深度分隔的衬底上产生微珠。不论先淀积成连续金属层然后再进行分隔,还是直接淀积为许多分隔的金属区域,金属区域都必须是充分分隔的,以便珠化,但珠化无需这些区域是分离的。
金属区域可以是相同大小的或可以有一种尺寸、两种尺寸或多种不同尺寸,以便形成相同或不同尺寸的微珠。金属区域的面积和厚度决定了微珠的尺寸,而金属与衬底间的润湿关系则决定了微珠的形状。金属层可分隔成各种形状的区域,包括正方形、三角形、菱形或其它形成所需微珠需要的形状。对于正方形金属区域,如假定所形成的微珠是完全球形的,它的直径等于(6ts2/π)1/3,式中t表示镀层的厚度,s是正方形的宽度。例如,为产生直径为2微米的微珠,当正方形的宽度为4微米时,最初镀层的厚度应为0.26微米。
在聚合物衬底上淀积金属层后,金属层的裸露表面一般会氧化。金属层的裸露表面是指不与衬底接触的金属层表面。若就将淀积涂层好的衬底暴露于有氧气的环境中,金属层的裸露表面就会发生氧化。有氧化层形成,一般就需用助熔剂。
可以按照各种图形来提供所需的微珠间隔、微珠尺寸和微珠的相对位置。例如,金属层可用二组相互交叉的平行线分割成菱形,而菱形也可两分为三角形。菱形可形成较大的微珠,而三角形(半菱形)形成较小的微珠。
微珠的间隔取决于金属区域的尺寸。本发明方法产生的微珠具有极精确和极细微的中心至中心间隔,如中心至中心间隔为4微米或6,000,000微珠/平方厘米。对Z轴粘接剂有用的微珠密度一般为40,000—1,000,000微珠/平方厘米。本发明方法的优点之一在于能提供在细微尺度上间隔很精确的微珠。
金属层在熔融前的厚度一般是0.2—10微米,更多情况下为0.2—2微米。
本发明将用如下的一些非限定性实施例作进一步描述。实施例1本发明微珠阵列的衬底用如下方法制成取25微米厚、18厘米宽和10米长的聚酰亚胺薄膜,在抽至4×10-5乇真空度的连续镀膜室中用电子束蒸发法进行单面真空镀锡。电子束源为AircoTemescal CV—14电源。该电子束源产生9.4千伏电压和0.13安培的电子束,熔化和蒸发装在室底上的200克锡。装有熔融锡的镀膜室室底的上方25厘米处有一个直径40厘米的转筒,薄膜绕在该转筒上,以0.6—16米/分的速度运动。在这些条件下,聚酰亚胺薄膜上面就镀上了0.5—0.02微米厚的锡。从锡镀层厚度为0.2微米处的薄膜上,切下一直径为3.2厘米的圆形镀锡薄膜。将该薄膜在室温下用一镍质压印模在一液压机上以28,000psi即190MPa的压力进行压印,该压印模上具有间隔为8微米,深为4微米的锯齿形平行脊。将压印模转动90度后,重复压印步骤,这样在锡层上产生了边长8微米的正方形压印图形。然后将此压印镀锡聚酰亚铵试样在含1毫升浓盐酸的150毫升烧杯上方放置5秒钟,暴露在氯化氢蒸汽中。经过在氯化氢蒸汽中的暴露,锡的表面上形成了非常浓的HCl雾滴,它就在锡的熔融步骤中起分解氧化物的助熔剂作用。然后将试样在表面温度为280℃的加热板上放置2秒钟,令锡方块一一熔化形成半球形锡珠的正方形阵列。所述的半球形液珠直径为3微米,中心至中心间隔为8微米。所得微珠阵列表示于图3。实施例2本发明另一种阵列的制备方法如下从实施例1制得的镀锡薄膜上在其锡镀层厚度测定为0.07微米的区域中切下一片镀锡聚酰亚胺薄膜。用类似于实施例1所用的方法对金属层进行压印,所不同的是压印模具有间隔为4微米的锯齿形平行脊。用类似于实施例1的方法将压印过的锡层暴露于氯化氢蒸汽中,然后将锡加热熔融。压印的锡形成了微珠的正方形阵列图形,所述的微珠近似半球形,直径约1.5微米,中心至中心间隔为4微米。所得的半球形锡珠组成的图形表示于图2。实施例3本发明的实施例3按如下方法进行取25微米厚、18厘米宽和5米长的聚酰亚胺薄膜,除膜速恒定为0.7米/分以外用与实施例1相同的方法进行单面真空镀锡。薄膜运动4米后将运动方向反向,运动2米后再反向。如此反向重复再进行10次,使得在2—4米间的薄膜区域镀上12层镀锡层,每层的厚度约为0.5微米。为产生较厚的镀锡层(6.5微米)而不引起聚酰亚胺衬底过热,这种反复运动的过程是必需的。从该薄膜上切下3厘米×3厘米试样,用类似于实施例1的方法进行压印,不同的是用能产生菱形压印图形的镍质压印模。压印图形的边缘间隔400微米。用类似于实施例1的方法进行施加助熔剂和加热后,所得微珠的直径测出为125微米,间隔为400微米。所得微珠阵列显示于图5的显微照片中。
权利要求
1.一种在衬底上形成微珠阵列的方法,其特征在于它包括如下步骤a)在衬底(12)上形成一金属层(14),所述的金属层是充分分隔为许多个金属区域(20),以便金属区域的珠化;b)将所述的金属区域(14)加热至足以使金属区域(20)熔化,并使金属区域(20)珠化成不连续的微珠(22)的温度,由此在衬底上形成不连续的微珠(22)阵列。
2.如权利要求1所述的方法,其特征在于,金属区域形成的方法是将所述的金属层淀积在所述的衬底上,然后将所述的金属层分隔成许多金属区域。
3.如权利要求1所述的方法,其特征在于,将所述的金属层淀积到所述的衬底上时,已是充分分隔的金属区域。
4.如权利要求1所述的方法,其特征在于,所述的金属区域系由相交的两组平行槽(16)和(18)所界定,这样所述的金属区域表面为平行四边形。
5.如权利要求1所述的方法,其特征在于,所述的金属区域有三个侧面。
6.如权利要求1所述的方法,其特征在于,所述的金属层厚度为0.2—10微米。
7.如权利要求1所述的方法,其特征在于,所述的金属层厚度为0.2—2微米。
8.如权利要求1所述的方法,其特征在于,它还包括使所述金属层与有效量助熔剂接触的步骤,以便于所述的金属区域珠化。
9.如权利要求1所述的方法,其特征在于,所述金属微珠的平均密度为600—6,000,000珠/平方厘米。
10.如权利要求9所述的方法,其特征在于,所述金属微珠的平均密度为40,000—6,000,000珠/平方厘米。
11.如权利要求10所述的方法,其特征在于,所述金属微珠的平均密度为80,000—6,000,000珠/平方厘米。
12.如权利要求1所述的方法,其特征在于,所述的金属微珠阵列是有规阵列。
13.如权利要求1所述的方法,其特征在于,所述的金属区域的表面积大小相同,这样形成的有规阵列中微珠的大小相同。
14.如权利要求1所述的方法,其特征在于,所述的金属区域有2种或多种的均一尺寸。
15.如权利要求1所述的方法,其特征在于,所述微珠的直径为0.2—100微米。
16.如权利要求15所述的方法,其特征在于,所述微珠的直径为1—50微米。
17.如权利要求1所述的方法,其特征在于,还包括将所述金属微珠阵列转移到另一个衬底上的步骤。
18.如权利要求17所述的方法,其特征在于,在所述的另一衬底上加有一层粘接剂层,金属微珠阵列是转移到所述粘接剂层中的。
19.一种衬底上的金属微珠阵列,其特征在于,它是排列紧密的金属微珠具有规阵列,所述金属微珠具有球形部分和平坦部分,金属微珠的平均密度为600—6,000,000珠/平方厘米。
20.如权利要求19所述的微珠阵列,其特征在于,所述微珠的平均密度为40,000—6,000,000珠/平方厘米。
21.如权利要求20所述的微珠阵列,其特征在于,所述微珠的平均密度为80,000—6,000,000珠/平方厘米。
22.如权利要求19所述的微珠阵列,其特征在于,在所述金属微珠上还涂有粘接剂层。
23.一种颗粒群,其特征在于,所述的颗粒是直径和形状有规分布的金属微珠(22),所述的形状部分是球形的(25),部分是平坦的,所述直径小于100微米。
24.如权利要求23所述的颗粒群,其特征在于,所述的微珠分散在液体中。
25.如权利要求24所述的颗粒群,其特征在于,所述液体是一粘接剂组合物。
26.如权利要求23所述的颗粒群,其特征在于,所述微珠的直径为0.2—100微米。
27.如权利要求26所述的颗粒群,其特征在于,所述微珠的直径为1—50微米。
28.如权利要求23所述的颗粒群,其特征在于,所述的微珠以可独立移动的单元存在。
29.如权利要求23所述的颗粒群,其特征在于,所述的微珠具有两种或多种选择的直径。
全文摘要
本发明提供了一种在衬底上形成金属微珠阵列的方法,更详细地说,本发明提供了一种形成的非常细小、大小均一微球或微珠的有规阵列的方法,微珠之间的间隔具有前未达到过的精度。本发明方法包括如下步骤在衬底(12)上形成分隔成许多金属区域(20)的金属层(14);将金属加热至足以使金属熔化,并让金属区域珠化成不连续微珠(62)的温度。
文档编号B23K35/02GK1132570SQ94193577
公开日1996年10月2日 申请日期1994年8月24日 优先权日1993年9月30日
发明者D·C·科斯肯梅基, C·D·卡尔霍恩 申请人:美国3M公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1