通过dff调节制造镀锌或锌镀层退火的钢片材的方法

文档序号:3349173阅读:261来源:国知局

专利名称::通过dff调节制造镀锌或锌镀层退火的钢片材的方法
技术领域
:本发明涉及制造具有TRIP显微组织的热浸镀锌或锌镀层退火的钢片材的方法。
背景技术
:为了满足使动力驱动的陆地车辆的结构减轻的需要,已知使用TRIP钢(术语TRIP代表转变诱发塑性),该TRIP钢兼具有很高的机械强度以及很高变形水平的可能性。TRIP钢具有包含铁素体、残余奥氏体和任选的马氏体和/或贝氏体的显微组织,这允许它们获得600-lOOOMPa的拉伸强度。这类钢广泛用于生产能量吸收零件,例如结构和安全零件例如纵向部件和增强件。在送交给汽车制造商之前,通常通过热浸镀锌使钢片材涂覆有锌基涂层,以便提高抗腐蚀性。在离开锌浴之后,通常使镀锌的钢片材经受退火,这促进锌涂层与钢中的铁的合金化(所谓的镀锌层退火)。这种由锌-铁合金制成的涂层提供了比锌涂层更好的可焊性。大多数TRIP钢片材是通过向钢中添加大量的硅获得的。在室温下,硅使铁素体和奥氏体稳定化,并抑制残余奥氏体分解形成碳化物。然而,含有多于0.2重量%硅的TRIP钢片材难以镀锌,因为在恰好发生在涂覆之前的退火期间,在钢片材的表面上形成了硅氧化物。这些硅氧化物显示出对熔融锌的不良润湿性,从而使钢片材的镀覆性能劣化。使用具有低硅含量(低于0.2重量%)的TRIP钢也可以是解决上述问题的方案。然而,这具有如下的主要缺陷只有当碳含量提高时才能获得高水平的拉伸强度,即约800MPa。但是,这具有降低焊接点的机械抗性(mechanicalresistance)的效应。5另一方面,在锌镀层退火处理期间,不论TRIP钢的组成如何,合金化速率强烈降低,因为外部选择性氧化充当了对铁的扩散屏障,从而必须提高锌镀层退火的温度。由于残余奥氏体在高温下的分解,所以锌镀层退火温度的提高对TRIP效应的保持是有害的。为了保持TRIP效应,必须将大量的钼(多于0.15重量%)添加到钢中,使得可以延迟碳化物的析出。然而,这对钢片材的成本产生影响。实际上,当TRIP钢片材变形时,随着残余奥氏体在变形效应下转变成马氏体,并且TRIP钢片材的强度提高,观察到TRIP效应。
发明内容因此,本发明的目的是弥补上述缺陷并且提出对钢片材进行热浸镀锌或锌镀层退火的方法,该钢片材具有高硅含量(大于0.2重量%)和显示出高机械特性的TRIP显微组织,该方法确保了钢片材表面和没有未镀覆部分的良好润湿性,因而确保了钢片材上的锌合金涂层的良好附着性和美好的表面外观,且保留了TRIP效应。本发明的主题是制备具有TRIP显微组织的热浸镀锌或锌镀层退火的钢片材的方法,所述TRIP显^L组织包含铁素体、残余奥氏体和任选的马氏体和/或贝氏体,所述方法包括以下步骤-提供重量比组成包含如下元素的钢片材0.01<C<0.22%0.5(KMn<2.0%0.2《Si《2.0%0.005"1<2.0%Mo<l.0%Cr<1.0%P<0.02%Ti<0.20%V<0.40%Ni<1.0%N"0.20%,组成的余量是铁和来自熔炼的不可避免的杂质,-在其中气氛包含空气和燃料且空气与燃料之比为0.80-0.95的直焰炉中氧化所述钢片材,使得在钢片材的表面上形成厚度为0.05-0.2jLini的铁氧化物层,而且形成选自下组中至少一种氧化物的内部氧化物Si氧化物、Mn氧化物、Al氧化物、包含Si和Mn的复合氧化物、包含Si和Al的复合氧化物、包含Mn和Al的复合氧化物以及包含Si、Mn和Al的复合氧化物,-以0.001-0.010jum/s的还原速率还原所述氧化的钢片材,以侵_完全还原铁氧化物层,-对所述还原的钢片材进行热浸镀锌以形成锌基涂覆的钢片材,和-任选地,使所述锌基涂覆的钢片材经受合金化处理从而形成锌镀层退火的钢片材。为了获得根据本发明的具有TRIP显微组织的热浸镀锌或锌镀层退火的钢片材,提供了包含以下元素的钢片材-含量为0.01-0.22重量%的碳。该元素对于获得良好的机械性能是必要的,但其不能以过大量存在以便不损害可焊性。为了促进淬硬性并获得足够的屈服强度Re以及为了形成稳定的残余奥氏体,碳含量必须不小于0.01重量%。从在高温下形成的奥氏体显微组织发生贝氏体转变,并且形成铁素体/贝氏体层片。由于与奥氏体相比,碳在铁素体中的溶解度非常低,因此奥氏体中的碳在层片之间排出。由于硅和锰,因而存在极少的碳化物析出。因此,层片间奥氏体逐渐富集碳而无任何碳化物析出。这种富集使奥氏体稳定化,换言之,在冷却到室温时,不发生该奥氏体的马氏体转变。-含量为0.50-2.0重量%的锰。锰促进淬硬性,使得能够获得高的屈服强度Rs。锰促进奥氏体的形成,有助于降低马氏体转变开始温度Ms并使奥氏体稳定化。然而,必须避免钢具有过高锰含量以便抑制偏析,这可在钢片材的热处理期间得到验证。此外,过量添加锰导致部锰氧化物层,且锌基涂层的附着性将不足。-含量为0.2-2.0重量%的珪。优选地,硅含量高于0.5重量%。硅改善钢的屈服强度Re。该元素使铁素体和残余奥氏体在室温下稳定。在冷却时,硅抑制渗碳体从奥氏体的析出,显著延緩碳化物的生长。这源自于硅在渗碳体中的溶解度很低且硅提高奥氏体中碳的活性。因此,形成的任何渗碳体核将被富硅的奥氏体区域所包围,且将会被排出到析出物-基质界面。该富硅奥氏体还较富集碳,并且由于渗碳体和相邻的奥氏体区域之间的降低的碳梯度所致的减少的扩散,渗碳体的生长减緩。因此,这种硅添加有助于使足够量的残余奥氏体稳定从而获得TRIP效应。在用以改善钢片材润湿性的退火步骤期间,内部硅氧化物以及包含硅和锰的复合氧化物形成并且分散在片材表面下方。然而,过量添加硅导致形成厚的内部硅氧化物层以及可能的包含硅和/或锰和/或铝的复合氧化物,该复合氧化物引起脆性并且锌基涂层的附着性将不足。-含量为0.005-2.0重量%的铝。与硅相似,铝使铁素体稳定且随钢片材冷却而增加铁素体的形成。它在渗碳体中不太可溶且在此方使残余奥氏体稳定。然而,需要最小量的铝以便使钢脱氧。-含量小于1.0的钼。钼促进马氏体的形成且提高耐腐蚀性。然而,过量的钼可能促成焊接区域中的冷裂现象且降低钢的韧性。当希望热浸镀锌层退火的钢片材时,常规方法要求添加Mo以便防止碳化物在镀锌之后的再加热期间析出。这里,得益于硅和锰的内部氧化,可以在比不包含内部氧化物的常规镀锌钢片材的温度更低的温度下进行镀锌钢片材的合金化处理。因此,可以降低钼含量且少于0.01重量%,因为它对于延迟贝氏体转变不是必需的,在常规镀锌钢片材的合金化处理期间正是如此。-含量不超过i.o重量y。的铬。必须限制铬含量以便在对钢进行镀锌时避免表面外观问题。-含量小于0.02重量%、且优选小于0.015重量%的磷。磷与硅8結合通过抑制碳化物的析出而提高残余奥氏体的稳定性。-含量不超过0.20重量%的钛。钛改善屈服强度Re,但必须将其含量限制到0.20重量%以便避免劣化韧性。-含量不超过0.40重量%的钒。钒通过晶粒细化改善屈服强度Re,且改善钢的可焊性。然而,高于0.40重量时,钢的韧性劣化且具有在焊接区域中出现裂紋的风险。-含量不超过1.0重量%的镍。镍增加屈服强度FU。由于其高成本,因此通常将其含量限制在1.0重量%。-含量不超过0.20重量%的铌。铌促进碳氮化物的析出,由此提高屈服强度l。然而,高于0.20重量%时,使可焊性和热成形性劣化。组成的余量由铁和通常预期发现的其它元素以及来自钢熔炼的杂质(其比例不会对所需性能产生影响)组成。在熔融锌浴中进行热浸镀锌并任选地热处理以形成所述锌镀层退火钢片材之前,首先使具有上述组成的钢片材经受氧化随后緩慢还原。目的是形成具有受控厚度的铁氧化物外层的氧化的钢片材,所述铁氧化物外层将保护钢免于发生硅、铝和锰的选择性外部氧化,同时在热浸镀锌之前对钢片材进行退火。在允许于钢片材的表面上形成铁氧化物层的条件下,在其中气氛包含空气和燃料且空气与燃料之比为0.80-0.95的直焰炉中进行钢片材的所述氧化,所述铁氧化物层具有0.05-0.2mm的厚度且不含硅和/或铝和/或锰的表层氧化物。在这些条件下,硅、铝和锰的内部选择性氧化将在铁氧化物层下方发展,并导致深的硅、铝和锰的贫化区,这将使表层选择性氧化最小化。因而,在钢片材中形成选自下组中至少一种氧化物的内部氧化物Si氧化物,Mn氧化物,Al氧化物,包含Si和Mn的复合氧化物,包含Si和Al的复合氧化物,包含Mn和Al的复合氧化物以及包含Si、Mn和Al的复合氧化物。在随后的还原步骤期间,硅、铝和锰的内部选择性氧化在钢片材深度中继续增加,从而当实现另外的还原步骤时Si、Mn和Al的外部选择性氧化物得以避免。优选地,通过在直焰炉中将所述钢片材从环境温度加热到680-800。C之间的加热温度Tl来进行该氧化。当温度T1高于800'C时,形成于钢片材表面上的铁氧化物层将含有来自钢中的锰,从而润湿性将受损。如果温度T1低于680t:,则将不利于硅和锰的内部氧化,且钢片材的可镀锌性将不足。采用空气与燃料之比小于0.80的气氛,铁氧化物层的厚度将不足以在还原步骤期间保护钢免于发生硅、锰和铝的表层氧化,并且具有高的如下风险在还原步骤期间形成硅和/或铝和/或锰的氧化物表层,可能地与铁氧化物结合。然而,釆用高于0.95的空气与燃料之比,铁氧化物层过厚,且在均热区中需要较高的氢气含量以得到完全还原,这是成本有效的。因此,在这两种情形中润湿性都将受损。根据本发明,尽管铁氧化物层厚度薄,但硅、铝和锰的表层氧化得到避免,因为在还原步骤期间,该铁氧化物的还原动力学与还原速率为约0.02|am/s的常规方法相比得到降低。事实上,重要的是以0.001-0.010jum/s的还原速率进行铁氧化物的还原。如果还原速率低于0.Q01pm/s,则还原步骤所需的时间将不再符合工业要求。但是,如果还原速率高于0.010|am/s,则硅、铝和锰的表层氧化将不能避免。因而,硅、铝和锰的内部选择性氧化的发展将在距离钢片材表面大于0.5jum的深度处进行,而在常规方法中,在距离钢片材表面不大于0.1Mm的深度处进行内部选择性氧化。当离开直焰炉时,在允许实现铁氧化物完全还原成铁的条件下使氧化的钢片材还原。可在辐射型管式炉或在电阻炉中进行该还原步骤。根据本发明,因而在包含如下成分的气氛中热处理所述的氧化的钢片材2体积%到小于15体积%的氢气,且优选2体积%到小于5体积的%氢气,余量为氮气和不可避免的杂质。目的是减緩铁氧化物还原成铁的速率,从而有利于硅、铝和锰的深的内部选择性氧化的发展。优选地,在辐射型管式炉或在电阻炉中的气氛包含大于2体积%的氢气以便在空气进入所述炉的情形中避免气氛的污染。10将所述氧化的钢片材从加热温度Ti加热到均热温度n,然后在所述均热温度T2下将其均热并持续均热时间t2,最后从所述均热温度T2冷却到冷却温度T3,在上述气氛之一中进行所述热处理。所述均热温度T2优选为770-850X:。当钢片材处于温度T2时,形成由铁素体和奥氏体构成的双相显微组织。当T2高于850'C时,奥氏体的体积比率增长过快,并且可能在钢表面处发生硅、铝和锰的外部选择性氧化。但当T2低于770C时,形成足够体积比率的奥氏体所需的时间过长。为了获得所需的TRIP效应,在均热步骤期间必须形成充足的奥氏体以便在冷却步骤期间保持足够的残余奥氏体。进行均热并持续时间t2,该时间t2优选为20-180s。如果时间t2长于180s,则奥氏体晶粒粗化且形成之后的钢的屈服强度Re将是有限的。此外,钢的淬硬性是低的。然而,如果将钢片材均热持续小于20s的时间t2,则形成的奥氏体比例将不足,且在冷却时将不形成充足的残余奥氏体和贝氏体。最后在与熔融锌浴的温度接近的冷却温度T3下将还原的钢片材冷却,以便避免所述浴的冷却或再加热。因而,T3为460-510'C。因此,可以获得具有均匀显微组织的锌基涂层。当冷却钢片材时,在优选为450-500。C温度的熔融锌浴中对其进行热浸。当需要热浸镀锌的钢片材时,熔融锌浴优选含有0.14-0.3重量%的铝,余量为锌和不可避免的杂质。将铝加入浴中以1更抑制形成铁和锌的界面(interfacial)合金,所述界面合金是脆的且因而不能成形。在浸入期间,Fe2Als薄层(厚度小于0.2ym)形成在钢和锌基涂层的界面处。该层确保了锌对钢的良好附着,且因其厚度很薄而能够成形。然而,如果铝含量多于0.3重量%,则经扫拭的(wiped)涂层的表面外观因液态锌表面上的铝氧化物的过强生长而受损。当离开浴时,通过喷射气体扫拭钢片材以便调节锌基涂层的厚度。根据所需的耐腐蚀性确定该厚度,其通常为3-20pm。当需要热浸镀锌层退火时,熔融锌浴优选含有0.08-0.135重量%的溶解铝,余量为锌和不可避免的杂质,且钢中的钼含量可低于0.01重量%。将铝加入浴中以便使熔融锌脱氧,并且使得更易于控制锌基涂层的厚度。在该条件下,在钢和锌基涂层的界面处引起3相(FeZn7)的析出。当离开浴时,通过喷射气体扫拭钢片材以便调节锌基涂层的厚度。根据所需的耐腐蚀性确定该厚度,其通常为3-10)am。最后热处理所述锌基涂覆的钢片材以便通过铁从钢中扩散到涂层的锌中而获得由锌-铁合金制成的涂层。通过将所述钢片材保持在460-510'C的温度T4并持续10-30s的均热时间t4来进行该合金化处理。得益于不存在硅和锰的外部选择性氧化,该温度T4低于常规合金化温度。由于此原因,对于钢不需要大量的钼,并且可将钢中的钼含量限制在低于0.01重量%。如果温度T4低于460。C,则铁和锌的合金化是不可能的。如果温度T4高于510。C,则因不希望的碳化物析出而难以形成稳定的奥氏体,并且不能获得TRIP效应。调节时间t4使得合金中的平均铁含量为8-12重量%,具体实施例方式使用由钢制成的0.8mm厚、1.8m宽的钢片材A、B和C进行试验,在表1中给出了所述钢的组成。表l:片材A、B和C的以重量%计的钢化学组成,组成的佘量为铁和不可避免的杂质(样品A和B)。表1<table>tableseeoriginaldocumentpage12</column></row><table>目的走将很循尽反明处垤的邻诃的'/岡〉3附着性同本发明范围之外的条件下处理的钢片材进行比较,润湿性由操作者视觉对比(control)。在样品的180°弯曲测试之后还视觉对比涂层的附着性。根据本发明的实施例1在直焰炉中连续引入钢片材A,在该炉中将它与包含空气和燃料且空气与燃料之比为0.94的气氛接触,从环境温度(20。C)加热到700'C,以便形成具有0.073jim厚度的铁氧化物层。在辐射型管式炉中进行后续且连续的退火,在该炉中将其从700。C加热到850。C,然后在850。C均热40s,最后将其冷却到460°C。辐射型管式炉中的气氛包含4体积%的氢气,余量为氮气和不可避免的杂质。辐射型管式炉的长度为60m,片材速率为90m/min,气体流速为250Nm7h。在这些条件下,铁氧化物层的还原速率为0.0024ym/s。因此,在片材于辐射型管式炉中停留时间过程中铁氧化物层的还原持续进行,且在所述炉的出口,铁氧化物被完全还原。没有形成Al、Si和Mn的外部选择性氧化物,相反,在直焰炉中停留的过程中,Al、Si和Mn的内部选择性氧化物在钢片材的深度中更多形成。在冷却后,在熔融锌基浴中对钢片材A进行热浸镀锌,所述浴包含0.2重量%铝,余量为锌和不可避免的杂质。所述浴的温度为460。C。在用氮气扫拭并冷却锌基涂层之后,该锌基涂层的厚度为7"m。据观察,润湿性是理想的,因为锌涂层是连续的且外观表面非常好,而且附着性良好。此外,发明人观察到钢的显微組织是包含铁素体、残余奥氏体和马氏体的TRIP显微组织。对比例1在直焰炉中连续引入钢片材B,在该炉中将它与包含空气和燃料且空气与燃料之比为0.94的气氛接触,从环境温度(20°C)加热到700°C,以便形成具有0.073lam厚度的铁氧化物层。在辐射型管式炉中进行后续且连续的退火,在该炉中将其从700。C加热到850°C,然后在850TC均热40s,最后将其冷却到460'C。辐射型管式炉中的气氛包含5体积%的氢气,余量为氮气和不可避免的杂质。辐射型管式炉的长度为60m,片材速率为90m/min,气体流速为400Nm7h。在这些条件下,铁氧化物层的还原速率为0.014lam/s。因此,在辐射型管式炉的最初10m内,铁氧化物层被完全还原,并且在辐射型管式炉的最后50m中,Al、Mn和Si的外部选择性氧化物层形成于钢片材上。在冷却后,在熔融锌基浴中对钢片材B进行热浸镀锌,所述浴包含0.2重量%铝,余量为锌和不可避免的杂质。所述浴的温度为460°C。在用氮气扫拭并冷却锌基涂层之后,锌基涂层的厚度为7"m。发明人观察到,钢的显微组织是包含铁素体、残余奥氏体和马氏体的TRIP显微组织。然而,发明人观察到润湿性不是理想的,因为锌涂层不是连续的,外观表面相当差且附着性不良。对比例2在直焰炉中连续引入钢片材C,在该炉中将它与包含空气和燃料且空气与燃料之比为0.94的气氛接触,从环境温度(2(TC)加热到700°C,以便形成具有0.073jam厚度的铁氧化物层。在辐射型管式炉中进行后续且连续的退火,在该炉中将其在700'C均热20s,最后将其冷却到460'C。辐射型管式炉中的气氛包含5体积%的氢气,余量为氮气和不可避免的杂质。辐射型管式炉的长度为60m,片材速率为180m/min,气体流速为100NmVh,铁氧化物层的还原速率为0.0006|am/s。在这些条件下,发明人观察到,在辐射型管式炉中铁氧化物层未得到还原。在冷却后,在熔融锌基浴中对钢片材C进行热浸镀锌,所述浴包含0.2重量%铝,余量为锌和不可避免的杂质。所述浴的温度为460。C。在用氮气扫拭并冷却锌基涂层之后,锌基涂层的厚度为7|am。据观察,未获得TRIP显微组织。此外,润湿性不是理想的,因为锌涂层不是连续的,且附着性不良。1权利要求1.制备具有TRIP显微组织的热浸镀锌或锌镀层退火的钢片材的方法,所述TRIP显微组织包含铁素体、残余奥氏体和任选的马氏体和/或贝氏体,所述方法包括以下步骤-提供重量比组成包含如下元素的钢片材0.01≤C≤0.22%0.50≤Mn≤2.0%0.2≤Si≤2.0%0.005≤Al≤2.0%Mo≤1.0%Cr≤1.0%P≤0.02%Ti≤0.20%V≤0.40%Ni≤1.0%Nb≤0.20%,组成的余量是铁和来自熔炼的不可避免的杂质,-在其中气氛包含空气和燃料且空气与燃料之比为0.80-0.95的直焰炉中氧化所述钢片材,使得在钢片材的表面上形成厚度为0.05-0.2μm的铁氧化物层,而且形成选自下组中至少一种氧化物的内部氧化物Si氧化物、Mn氧化物、Al氧化物、包含Si和Mn的复合氧化物、Si和Al的复合氧化物、包含Mn和Al的复合氧化物以及包含Si、Mn和Al的复合氧化物,-以0.001-0.010μm/s的还原速率还原所述氧化的钢片材,以便使内部氧化物在钢片材深度中继续生长,并且实现铁氧化物层的完全还原,-对所述还原的钢片材进行热浸镀锌以形成涂覆锌的钢片材,和-任选地,使所述热浸涂覆的钢片材经受合金化处理从而形成锌镀层退火的钢片材。2.根据权利要求1的方法,其中所述钢片材以重量%计包含P<0.015%。3.根据权利要求1或2的方法,其中所述钢片材以重量%计包含Mo<0.01%。4.根据权利要求1-3中任一项的方法,其中通过将钢片材从环境温度加热到加热温度Tl进行所述钢片材的氧化。5.根据权利要求4的方法,其中所述温度T1为680-800°C。6.根据权利要求1-5中任一项的方法,其中所述氧化的钢片材的还原是在炉中进行的热处理,在该炉中的气氛包含2体积%到小于l5体积%的氢气,组成的余量为氮气和不可避免的杂质。7.根据权利要求6的方法,其中该气氛包含2体积%到小于5体积的氢气。8.根据权利要求6-7中任一项的方法,其中所述热处理包括从加热温度Tl加热到均热温度T2的加热阶段、在所述均热温度T2持续均热时间t2的均热阶段、以及从所述均热温度T2冷却到冷却温度T3的冷却阶段。9.根据权利要求8的方法,其中所述均热温度T2为770-850°C。10.根据权利要求8或9的方法,其中所述均热时间t2为20-180s。11.根据权利要求8-10中任一项的方法,其中所述冷却温度T3为460-510°C。12.根据权利要求8-11中任一项的方法,其中在辐射型管式炉或电阻炉中进行所述还原。13.根据权利要求1-12中任一项的方法,其中当需要热浸镀锌的钢片材时,通过在包含如下成分的熔融浴中热浸所述还原的钢片材来进行热浸镀锌0.14-0.3重量%的铝,余量为锌和不可避免的杂质。14.根据权利要求1-12中任一项的方法,其中当需要热浸镀锌层退火的钢片材时,通过在包含如下成分的熔融浴中热浸所述还原的钢片材来进行热浸镀锌0.08-0.135重量%的铝,余量为锌和不可避免的杂质。15.根据权利要求14的方法,其中所述钢片材的钼含量小于0.01重量%。16.根据权利要求14或15的方法,其中通过在460-510。C的温度T4下加热所述锌基涂覆的钢片材持续10-30s的均热时间14来进行所述合金化处理。17.根据权利要求13-16中任一项的方法,其中所述熔融浴的温度为450-5Q0。C。全文摘要本发明涉及制备具有TRIP显微组织的热浸镀锌或锌镀层退火的钢片材的方法,所述方法包括以下步骤-提供重量比组成包含如下成分的钢片材0.01≤C≤0.22%,0.50≤Mn≤2.0%,0.2≤Si≤2.0%,0.005≤Al≤2.0%,Mo<1.0%,Cr≤1.0%,P<0.02%,Ti≤0.20%,V≤0.40%,Ni≤1.0%,Nb≤0.20%,组成的余量是铁和来自熔炼的不可避免的杂质;在其中气氛包含空气和燃料且空气与燃料之比为0.80-0.95的直焰炉中氧化所述钢片材,使得在钢片材表面上形成厚度为0.05-0.2μm的铁氧化物层,而且形成Si和/或Mn和/或Al的内部氧化物;以0.001-0.010μm/s的还原速率还原;所述氧化的钢片材,以便实现铁氧化物层的还原,对所述还原的钢片材进行热浸镀锌以形成涂覆锌的钢片材,和任选地,使所述热浸涂覆的钢片材经受合金化处理从而形成锌镀层退火的钢片材。文档编号C23C2/06GK101688284SQ200880022732公开日2010年3月31日申请日期2008年6月11日优先权日2007年6月29日发明者D·胡恩,F·贝特朗,H·圣德-雷芒德申请人:安赛乐米塔尔法国公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1