菱镁矿石一步法炼镁工艺方法及设备的制作方法

文档序号:3366485阅读:1389来源:国知局
专利名称:菱镁矿石一步法炼镁工艺方法及设备的制作方法
技术领域
本发明属于菱镁矿石炼镁技术领域,特别是涉及一种菱镁矿石一步法炼镁工艺方法及 设备。
背景技术
目前,皮江法炼镁技术支撑着的镁冶炼行业80%以上的产量,但它又以能耗大、产 能小、污染严重、三废(废水、废渣、废气)排放量大而著称,与环境保护节能减排格格不入, 遭到社会和国家的抵制,要想发展镁的冶炼靠皮江法是有困难的。以菱镁矿石为原料的电解法提取金属镁,虽然可以改变一下菱镁矿石的产品方 向,但利润率相差不多,对环境的污染没有改变又加上氯气毒害,建厂投资大,占地面积大、 工艺复杂,令人望而却步。热法炼镁中的炭热法是以煅烧菱镁矿为原料、石油焦为还原剂、浙青为粘合剂,经 过细磨、混合、压团后在三相电弧炉中还原熔炼,氧化镁被碳还原,得到的Mg蒸气和CO混合 存在于气相中,迅速把气态产物冷却到200°C以下,镁蒸气和CO—同进入混合冷却器中冷 却、沉降以后,经袋滤器过滤得到镁粉,这种镁粉含50%金属镁、20%C及30%的MgO,其粒度 为0. 1 0. 6 m。再将镁粉压成团块装入蒸馏罐进行升华蒸馏,这样得到的结晶镁,再经熔 化、精炼后可获得商品镁锭。但因其工艺繁琐、工序长、能耗大、成本高等因素没有得到广泛 应用。找出一条新途境来加工菱镁矿石,产品利润高,又不污染环境,这是人们正在探索 的课题。

发明内容
本发明的目的是提供一种菱镁矿石一步法炼镁工艺方法,加料、出镁、卸渣、移动 电极等操作均实现了密封,可自动连续进行,不必停炉,内部真空度不被破坏;机械化连续 的生产程序代替了间断周期性的手工操作,提高了设备利用率和热能利用率,改善了生产 环境,减轻了工人劳动强度;实现了和谐环保生产。本发明的另一个目的是提供一种用于菱镁矿石一步法炼镁工艺方法的设备,在密 封的三相电炉内进行熔融还原反应,代替在还原罐中进行的外加热内真空的固相容器还原 反应,同时节省了大量贵重合金和能源,降低了成本;真空密闭的反应操作,彻底地净化了 操作现场的空气,彻底地改变了真空容器内还原时代,这是改变环境的基础手段。本发明的目的是通过下述技术方案来实现的。本发明的菱镁矿石一步法炼镁工艺方法,其特征在于由以菱镁矿石为原料、以焦 炭或石墨为还原剂,萤石和铝土矿石为助熔剂,三种炉料经破碎直接以颗粒状分别投炉,在 高温真空熔融状态下完成Mg0+C=Mg+C0的反应,镁蒸气先后凝成液体镁或结晶镁,趁热进 入连续精炼炉内,直接进行精炼,最终获得99. 97%金属镁锭,
1)精选菱镁矿石,除去杂质和泥沙,破碎成0. 5 IOmm的颗粒,筛除0. 5mm以下的粉粒,装入菱镁矿石回转煅烧窑内,利用还原过程中产生的一氧化碳和在预热段收集的可燃 气体,作为燃料来煅烧菱镁矿石,使其完成MgCO3=MgCHCO2分解,获得的轻烧氧化镁趁热直 接加入给料系统,被密闭地送入内热式真空还原炉内,
2)精选焦炭、铝土矿石、萤石,除去杂质和泥土,分别破碎成0.5 5 mm小粒,筛掉的小 于0.5 mm以下粉末,直接投炉,
3)按菱镁矿石400 530重量份、焦炭70 85重量份、铝土矿石6 10重量份和萤 石20 30重量份的比例计量后,分别经各自的真空隔离投料系统,加到内热式真空还原炉 的预热仓内,在真空状态下进行预热和排出CO2,排出炉料中和炉料本身吸附的水份和所含 的挥发份、空气、结晶水,然后逐次被推入熔池,开始其熔融状态下的还原反应,整个过程中 保证熔融还原腔的真空度不变,
4)产生的反应渣经密封卸渣装置卸出,卸渣过程不破坏内部真空度,每次卸渣时熔池 内渣面上下波动90 50 mm,生产100重量份镁仅有30 20重量份残渣,
5)反应产生的镁蒸气和一氧化碳经内热式真空还原炉的镁蒸气出口被抽到分离冷凝 腔内,镁蒸气和一氧化碳在高温下分离镁蒸气凝聚在冷却壁上成为液体镁并向下流动,经 下方的下泄管,流入镁液体聚积罐聚集,
6)少量镁蒸气没有和一氧化碳分开,在随后的结晶器内也被冷凝成结晶镁,一氧化碳 被真空系统继续抽出,成为煅烧窑的主要的气体燃料,同时抽出挥发份和水份,成为煅烧窑 的辅助气体燃料,
7)液体镁从镁液体聚积罐直接流入到连续精炼炉内,精炼后得到纯度为99.97%的金 属镁液体,浇铸到铸锭机上铸成商品锭,
8)剩余的微量镁粉和氧化镁的粉末再经滤袋回收装置收集起来,送内热式真空还原炉 内重新还原。本发明的工艺方法的特点是
其一,精选菱镁矿石装入回转窑内,是利用还原过程中产生的一氧化碳和在预热 段收集的其它可燃气体,作燃料来煅烧小颗粒的菱镁矿石,达到燃气的循环利用和加快 MgCO3=MgCHCO2分解反应的目的,并趁热被密闭地送入还原炉内,减排一氧化碳和节省热能。其二,各种炉料进入高温还原反应区之前,对炉料进行预热的同时,在高温下排 出炉料间和炉料本身吸附的水份和所含的挥发份、空气、结晶水等及其它气体,这不但在 还原反应前净化了炉料,对纯净反应产物和分离气体反应产物提供了基础,有效地阻止了 Mg0+C=Mg+C0的逆向反应发生,也节约了热能,起到节省焦炭和电极的作用;为直接得到液 体镁扫清了道路,创造了 一个不可缺的净化环境。从炉料投入直到镁锭铸成,均在一套设备中连续进行,各工序的操作程序均由计 算机按控制流程图远程监控,保证装料、卸渣、出镁、石墨电极上下移动各操作过程连续进 行。工艺参数控制均由计算机控制
1)菱镁矿石回转煅烧窑内的最高温度控制在1000°c 900°C,菱镁矿石回转煅烧窑 的转速控制在10 20转/分,
2)预热腔内的温度控制在1000°C以上,预热腔内的真空度控制在3600 5000Pa之间,
3)内热式真空还原炉的还原反应腔内的温度控制在1800°C以上,此还原反应腔内的真空度控制在3600 4500Pa之间,
4)镁蒸气分离冷凝器内的温度控制在1300°C以下,镁蒸气分离冷凝器内的真空度控制 在3600 2500Pa之间,
5)干式金属镁接收系统的结晶器内的温度控制在500°C 400°C,此结晶器内的真空 度控制在200 150Pa之间,
6)内热式真空还原炉的还原反应腔内的气流上升速度不能大于lm/s,这关系到反应效 果和粉尘
7)在镁蒸气分离冷凝器内的流速<3m/s,
8)在此结晶器内的流速彡3m/s。一种用于所述的菱镁矿石一步法炼镁工艺方法的设备,其特征在于由炉料贮 存输送系统,与此炉料贮存输送系统相连接的真空隔离密封投料系统,与此真空隔离密封 投料系统相连接的内热式真空还原炉,设在此内热式真空还原炉炉顶上的电极移动密封装 置,与此内热式真空还原炉的蒸气出口相连接的干式金属镁接收系统,分别与此干式金属 镁接收系统相连接的连续精炼熔铸设备、滤袋回收装置,与此滤袋回收装置相连接的燃气 循环利用系统,与此内热式真空还原炉的出渣口相连接的卸渣密封装置,与所述的真空隔 离密封投料系统相连接的菱镁矿石煅烧装置,与此菱镁矿石煅烧装置相连接的菱镁矿石破 碎筛分提升设备,分别与所述的炉料贮存输送系统、菱镁矿石破碎筛分提升设备、菱镁矿石 煅烧装置、真空隔离密封投料系统、内热式真空还原炉、电极移动密封装置、干式金属镁接 收系统、连续精炼熔铸设备、滤袋回收装置、燃气循环利用系统、卸渣密封装置相连接的计 算机控制系统组成以内热式真空还原炉为中心的连贯一体的真空还原提炼金属镁的设备, 与此计算机控制系统相连接的传感器和执行机构包括设在菱镁矿石回转煅烧窑的头部、 中部、尾部的温度传感器,设在真空隔离投料系统01-02中的料位探头及各阀门开关,设在 真空隔离仓中的测真空度的传感器、电动真空节流阀,设在内热式真空还原炉的预热腔上 盖中的一个温度传感器及测真空度的传感器、电动真空节流阀,设在内热式真空炉旁边的 炉内温度控制台、设在内热式真空炉上的测真空度的传感器、调节电动真空节流阀,设在内 热式真空炉下部的料位传感器,设在内热式真空还原炉的镁蒸气出口管上的气体流速传感 器,设在干式金属镁接收系统的镁蒸气分离冷凝器上的温度传感器、测真空度的传感器,设 在燃气循环利用系统内的温度传感器,设在干式金属镁接收系统的镁液体聚集罐中的温度 传感器、测真空度的传感器、料位传感器,设在连续精炼熔铸设备上的温度传感器、料位传 感器,设在卸渣密封装置的集渣包内的料位传感器、温度传感器、测真空度的传感器。回转煅烧窖的头、中、尾各安置一个温度传感器监视温度,用此调节火焰大小。-窖 内温度;真空隔离投料系统各段均装料满探头和无料探头,监视料位,控制各阀门开或关; 真空隔离仓除安置上述料位探头外,还安装有测真空度的传感器,调节电动真空节流阀的 流量,控制真空隔离仓内的真空度;预热腔上盖安装一个温度传感器监视温度;各预热仓 上段安装有测真空度的传感器,调节电动真空节流阀的流量,控制各预热仓内的真空度,保 持和还原反应腔的真空度平衡;内热式真空炉由旁边的控制台按温度传感器监视温度的指 令完成电极的升降、电流大小调节,控制炉内温度;炉上装有测真空度的传感器,调节电动 真空节流阀的流量,控制各预热仓内的真空度;部装有料位传感器监控炉内熔池液面高度, 指挥炉料推进速度和卸渣多少;镁蒸气出口管上安装气体流速传感器,借此监视炉内气流上升速度,控制粉尘上升;镁蒸气分离冷凝器上装有温度传感器,监测温度来调节冷却剂循 环系统的冷却速度,控制镁蒸气凝聚成液体速度,装有测真空度的传感器,用此调节镁蒸气 分离冷凝腔的真空度,控制镁蒸气凝聚成液体速度,装有气体流速传感器,借此监视镁蒸气 分离冷凝腔的气流流动速度,控制气体在镁蒸气分离冷凝腔内滞留时间,这也是镁蒸气能 充分凝成液体的关键因素之一;结晶器内装有温度传感器,监测温度来调节冷却剂循环系 统的冷却速度,控制镁蒸气凝聚成结晶镁速度,装有测真空度的传感器,用此调节镁蒸气分 离冷凝腔的真空度,控制镁蒸气凝聚成结晶镁速度;冷却剂循环系统内装有温度传感器,监 测温度来调节冷却剂循环系统的冷却速度;镁液体聚集罐装有温度传感器,监测温度来调 节冷却剂循环系统的冷却速度,装有测真空度的传感器,调节电动真空节流阀的流量,控制 镁液体聚集罐内的真空度;使其内保持一定的真空度,装有料位传感器监控镁液体聚集罐 液面高度,指挥柱塞抬起放镁液体;连续精炼炉上要装有温度传感器,监测温度来调节加 热棒的加热速度,装有料位传感器监控连续精炼炉液面高度,指挥柱塞抬起放出精镁液体 铸锭;集渣包内装有料位传感器监控装有料位传感器监控集渣包内液面高度,指挥柱塞抬 起和放下,和放出集渣包内反应渣,要装有温度传感器,监测温度来适时放掉集渣包内反应 渣,装有测真空度的传感器,开闭电动真空阀,控制集渣包内的真空度;使其内保持一定的 真空度,适时抬起柱塞连通还原反应腔,让反应渣顺利进入集渣包。上述各传感器测得数据,均由计算机程序控制图集中处理后,指令各执行机构完 成控制。所述的内热式真空还原炉由钢结构外壳,设在此钢结构外壳内的用耐火砖砌筑 长圆形密封的内热式三相还原炉的炉体,设在此炉体内的中间隔墙,此中间隔墙把炉体分 为两部分,一部分为预热腔,另一部分为还原反应腔,此预热腔的上盖中有三个投料孔法兰 座,此预热腔的下侧面有三个炉料推进器安装孔座,此还原反应腔的上顶炉盖上设有一个 镁蒸气出口法兰座和电极插入孔法兰座,此还原反应腔的下侧面有一个密封卸渣装置。在 这里石墨电极从上盖的电极插入孔法兰座和电极移动密封装置插入,在熔池内起弧加热熔 融,把炉料加热到1850度以上,还原产物镁蒸气和一氧化碳及粉尘溢出渣面后,由于抽气 速度控制得当,粉尘在还原反应腔内不断下降回到渣中,重新被熔融、还原、造渣,只有镁蒸 气和一氧化碳经镁蒸气出口法兰座,被抽入镁蒸气分离腔。还原反应腔由耐火砖砌筑,容积 可以扩大,它代替了耐热合金钢还原罐,不但降低了成本又延长了寿命,为连续生产奠定基 础。熔融状态解决了炉料必须要细磨、制球才能解决的问题。一套新的、不用水冷却的干式金属镁接收器让镁蒸气在高温下和一氧化碳等气 体分离并冷凝成液体或结晶镁。所述的干式金属镁接收系统中设有干式金属镁接收器,此干式金属镁接收器包 括反应气体入口,与此反应气体入口相连接的冷却壁,分别与此冷却壁相连接的一组冷凝 管、冷却剂槽、柱塞,与此柱塞相连接的柱塞密封件,设在冷凝管之间的镁蒸气分离腔,与此 冷却壁相连接的连接段及法兰,与此连接段及法兰相连接的结晶器,此结晶器包括冷却筒, 与此冷却筒相连接的抽真空管路与此抽真空管路相连接的结晶器,与此结晶器相连接的结 晶器冷却剂循环系统,与所述的冷却壁的下侧相连接的镁液体下泄口,与此镁液体下泄口 相连接的镁液体聚积罐,设在此镁液体聚积罐侧底部的镁液体出口管,与此镁液体聚积罐 相连接的分离腔冷却剂循环系统,所述的干式镁蒸气冷却剂循环系统包括加料膨胀筒,与此加料膨胀筒相连接的上汇 集管,分别与此上汇集管相连接的镁蒸气分离腔溢流管、下降冷却管,此镁蒸气分离腔溢流 管与所述的冷凝管、冷却剂槽、镁液体聚积罐依次连接,与此镁液体聚积罐相连接的镁蒸气 分离腔回流管,与此镁蒸气分离腔回流管相连接的下汇集管,与所述的镁蒸气分离腔溢流 管相连接的冷却筒溢流管,与此冷却筒溢流管相连接的结晶器冷却筒,与此结晶器冷却筒 相连接的冷却筒回流管。用熔盐作为冷却剂。所述的连续精炼炉包括精炼炉炉体,设在此精炼炉炉体内的精炼炉内胆,穿过此 精炼炉炉体、进入精炼炉内胆内的液体粗镁流入管,设在此精炼炉内胆内的四个搅拌器,分 别与此四个搅拌器相连接的四个搅拌式加热器,设在此精炼炉内胆内中心部位的结晶镁投 入管,与此结晶镁投入管相连接的螺旋排渣管,设在此精炼炉内胆内一侧的隔离板,设在此 精炼炉炉体底部的精镁流出管与此精镁流出管的入口相配合的精炼炉柱塞,与此精镁流出 管的出口端相连接的覆盖剂料斗。连续精炼炉结构特点
1)四个搅拌器、四个搅拌加热器、结晶镁投入管、螺旋排渣管可以纵向移动;
2)四个搅拌器可分别绕四个加热器旋转;这样有利于精炼炉内温度均勻、成份均勻、 除渣均勻。3)可以自动承接镁液体聚积罐放出的粗镁液体,在其内进行连续精炼,并可直接 把精镁液体浇灌到铸锭上铸成商品镁锭。所述的和内热式真空还原炉连体的卸渣密封装置布置在还原炉还原反应腔的下 侧面,由集渣包,设在此集渣包顶上的集渣包盖,穿过此集渣包盖的溢流孔柱塞,与此溢流 孔柱塞的上端相配合的设在此集渣包盖中的溢流孔柱塞密封套,与此溢流孔柱塞的下端相 配合的、设在此集渣包底部的反应渣溢流孔,与此反应渣溢流孔相连通的卸渣通道,设在此 卸渣通道一端的设有残渣出孔的残渣孔砖,设在此集渣包侧底部的设有反应渣出孔的反应 渣孔砖,设在所述的集渣包盖中的渣液面探测杆、通气管及三通阀,设在所述的残渣出孔下 侧的残渣斗组成。所述的整套电极移动密封装置由密封罩托梁,架在此密封罩托梁上的角形隔离密 封罩、密封水套,设在此密封水套上侧备的外固定水套,平行设在此密封水套内的上密封 圈、下密封圈,设在此上密封圈和下密封圈之间的真空环,设在所述的外固定水套上侧的与 石墨电极作滑动连接的滑动套,分别与石墨电极相连接的绝缘夹紧楔、电极密封帽、石墨电 极夹具外套、电源绝缘插座,把整个隔热砖封闭起来,外固定水套和滑动套的水泠结构改变 了石墨电极夹具高温工作状态,利用真空环及时地抽出从外部渗入的空气,从而保证了石 墨电极上下移动时的密封;又借用保证石墨电极通电时的绝缘和石墨电极与滑动套之间的 密封;
菱镁矿石煅烧机组由菱镁矿石破碎筛分提升机构和与此菱镁矿石破碎筛分提升机 构相连接的菱镁矿石煅烧装置组成。由粉碎机将菱镁矿石破碎成10 0. 5mm颗粒,经提升 机投入高架的回转窑内煅烧分解。本发明的煅烧工序有以下特殊性
1)将菱镁矿石破碎成10 0.5mm小颗粒并筛出小于0. 5mm粉粒进行煅烧分解反应快;
2)煅烧菱镁矿石的热量由本套还原工序产生的废气经处理后提供,
93)煅烧得到的轻烧镁可以不经冷却趁热投入炉料预热段,排出其中气体后直接被推入 还原反应腔。有机的把所有设备连成一体,从投料到镁锭产出在一套密闭的设备中完成,生 产连续自动化加料、出镁、卸渣、移动电极等操作均实现了密封,机械化连续的生产程序代 替间断周期性手工操作,提高了设备利用率和热能利用率,改善了生产环境,减轻了工人劳 动强度;实现了和谐环保生产。本发明的优点
1)简化了工艺流程省去了煅烧、细磨、混合、压球等工艺流程,只须把精选的菱镁 矿石破碎成10 0. 5mm和浙青焦炭等破碎成0. 5 5 mm颗粒,直接投炉,就可以在真空高 温中快速完成预热、还原,减少了生产环节和操作者,减少了能耗和相应费用,降低了生产 成本。2)由于简化了工艺流程,只建一套还原、精炼设备就可生产出金属镁,减小了占 地、节省了投资。3)使用菱镁矿石为原料和浙青焦炭为还原剂,固态残渣仅有皮江法炼镁的残渣 6 5%,减排效果显著。4)焦炭为还原剂代替用硅铝或硅铁作还原剂,为社会省能源和为本企业降低成 本,增加了效益。5)本套设备实现了自动化、连续生产,开创了用菱镁矿石为原料和焦炭为还原剂 的炼镁新方法,使金属镁的提炼进入一个产量大、节能、低耗、减排环保的新时代、。6)为菱镁矿石的开发利用开辟了一条新的具有高科技附加值的生产途径。7)本套设备为内热式,集还原与预热为一体的还原设备,液体镁放出后直接入精 炼炉,精炼后获得99. 9%的纯净金属镁,节省加热能源。8)用长圆形密封的内热式三相还原炉代替内真空外常压加热的皮江式还原炉,节 省了能源、节省了高合金还原罐,提高了产量,降低了成本。9)产品是液体镁,熔盐作冷却剂代替水冷,节省大量水资源。


图1为本发明的结构示意图。图2为本发明的干式金属镁接收系统结构示意图。图3为本发明的连续精炼炉结构示意图。图4为本发明的密封卸渣装置结构示意图。图5为本发明的还原炉体结构示意图。图6为本发明的电极密封装置结构示意图。图7为本发明的镁蒸气冷却循环系统结构示意图。
具体实施例方式下面结合附图详细说明本发明的具体实施方式
。本发明的菱镁矿石一步法炼镁工艺方法,其特征在于由以菱镁矿石为原料、以焦 炭或石墨为还原剂,萤石和铝土矿石为助熔剂,三种炉料经破碎直接以颗粒状分别投炉,在 高温真空熔融状态下完成Mg0+C=Mg+C0的反应,镁蒸气先后凝成液体镁或结晶镁,趁热进入连续精炼炉内,直接进行精炼,最终获得99. 97%金属镁锭,
1)精选菱镁矿石,除去杂质和泥沙,破碎成0.5 IOmm的颗粒,筛除0. 5mm以下的粉 粒,装入菱镁矿石回转煅烧窑内,利用还原过程中产生的一氧化碳和在预热段收集的可燃 气体,作为燃料来煅烧菱镁矿石,使其完成MgCO3=MgCHCO2分解,获得的轻烧氧化镁趁热直 接加入给料系统,被密闭地送入内热式真空还原炉内,
2)精选焦炭、铝土矿石、萤石,除去杂质和泥土,分别破碎成0.5 5 mm小粒,筛掉的小 于0.5 mm以下粉末,直接投炉,
3)按菱镁矿石400 530重量份、焦炭70 85重量份、铝土矿石6 10重量份和萤 石20 30重量份的比例计量后,分别经各自的真空隔离投料系统,加到内热式真空还原炉 的预热仓内,在真空状态下进行预热和排出CO2,排出炉料中和炉料本身吸附的水份和所含 的挥发份、空气、结晶水,然后逐次被推入熔池,开始其熔融状态下的还原反应,整个过程中 保证熔融还原腔的真空度不变,
4)产生的反应渣经密封卸渣装置卸出,卸渣过程不破坏内部真空度,每次卸渣时熔池 内渣面上下波动90 50 mm,生产100重量份镁仅有30 20重量份残渣,
5)反应产生的镁蒸气和一氧化碳经内热式真空还原炉的镁蒸气出口被抽到分离冷凝 腔内,镁蒸气和一氧化碳在高温下分离镁蒸气凝聚在冷却壁上成为液体镁并向下流动,经 下方的下泄管,流入镁液体聚积罐聚集,
6)少量镁蒸气没有和一氧化碳分开,在随后的结晶器内也被冷凝成结晶镁,一氧化碳 被真空系统继续抽出,成为煅烧窑的主要的气体燃料,同时抽出挥发份和水份,成为煅烧窑 的辅助气体燃料,
7)液体镁从镁液体聚积罐直接流入到连续精炼炉内,精炼后得到纯度为99.97%的金 属镁液体,浇铸到铸锭机上铸成商品锭,
8)剩余的微量镁粉和氧化镁的粉末再经滤袋回收装置收集起来,送内热式真空还原炉 内重新还原。从炉料投入直到镁锭产成,均在一套设备中连续进行,各工序的操作程序均由计 算机按控制流程图远程监控,保证装料、卸渣、出镁、石墨电极上下移动各操作过程连续进 行。冶炼工艺参数控制均由计算机控制
1)回转煅烧窑内的最高温度控制在1000°c 900°C,回转煅烧窑的转速控制在10 20转/分,
2)预热腔内的温度控制在1000°C以上,预热腔内的真空度控制在3600 5000Pa
之间,
3)还原反应腔内的温度控制在1800°C以上,还原反应腔内的真空度控制在3600 4500Pa 之间,
4)镁蒸气分离冷凝器内的温度控制在1300°C以下,镁蒸气分离冷凝器内的真空度控制 在3600 2500Pa之间,
5)结晶器内的温度控制在500°C 400°C,结晶器内结晶器内的真空度控制在200 150Pa之间,
6)还原反应腔内的气流上升速度不能大于lm/s,这关系到反应效果和粉尘,7)镁蒸气分离冷凝器内的流速≤3m/s,
8)结晶器内的流速≤3m/s。如图1所示,一种用于所述的菱镁矿石一步法炼镁工艺方法的设备,其特征在 于由炉料贮存输送系统01-01,与此炉料贮存输送系统01-01相连接的真空隔离密封投料 系统01-02,与此真空隔离密封投料系统相连接的内热式真空还原炉01-03,设在此内热式 真空还原炉01-03炉顶上的电极移动密封装置01-04,与此内热式真空还原炉01-03的蒸气 出口相连接的干式金属镁接收系统01-05,分别与此干式金属镁接收系统01-05相连接的 连续精炼熔铸设备01-06、滤袋回收装置01-07,与此滤袋回收装置01-07相连接的燃气循 环利用系统01-08,与此内热式真空还原炉01-03的出渣口相连接的卸渣密封装置01-09, 与所述的真空隔离密封投料系统01-02相连接的菱镁矿石煅烧装置01-11,与此菱镁矿石 煅烧装置01-11相连接的菱镁矿石破碎筛分提升设备01-10,分别与所述的炉料贮存输送 系统01-01、菱镁矿石破碎筛分提升设备01-10、菱镁矿石煅烧装置01-11、真空隔离密封投 料系统01-02、内热式真空还原炉01-03、电极移动密封装置01-04、干式金属镁接收系统 01-05、连续精炼熔铸设备01-06、滤袋回收装置01-07、燃气循环利用系统01-08、卸渣密 封装置01-09相连接的计算机控制系统组成以内热式真空还原炉01-03为中心的连贯一 体的真空还原提炼金属镁的设备,与此计算机控制系统相连接的传感器和执行机构包括 设在菱镁矿石回转煅烧窑01-11的头部、中部、尾部的温度传感器,设在真空隔离投料系统 01-02中的料位探头及各阀门开关,设在真空隔离仓中的测真空度的传感器、电动真空节 流阀,设在内热式真空还原炉01-03的预热腔上盖中的一个温度传感器及测真空度的传感 器、电动真空节流阀,设在内热式真空炉01-03旁边的炉内温度控制台、设在内热式真空炉 01-03上的测真空度的传感器、调节电动真空节流阀,设在内热式真空炉01-03下部的料位 传感器,设在内热式真空还原炉01-03的镁蒸气出口管上的气体流速传感器,设在干式金 属镁接收系统01-05的镁蒸气分离冷凝器上的温度传感器、测真空度的传感器,设在燃气 循环利用系统01-08内的温度传感器,设在干式金属镁接收系统01-05的镁液体聚集罐中 的温度传感器、测真空度的传感器、料位传感器,设在连续精炼熔铸设备01-06上的温度传 感器、料位传感器,设在卸渣密封装置01-09的集渣包内的料位传感器、温度传感器、测真 空度的传感器。如图5所示,所述的内热式真空还原炉01-03由钢结构外壳,设在此钢结构 外壳内的用耐火砖砌筑长圆形密封的内热式三相还原炉的炉体05-01,设在此炉体内的中 间隔墙05-02,此中间隔墙05-02把炉体分为两部分,一部分为预热腔05-04,另一部分为还 原反应腔05-03,此预热腔05-04的上盖中有三个投料孔法兰座05-08,此预热腔05-04的 下侧面有三个炉料推进器安装孔座05-09,此还原反应腔05-03的上顶炉盖上设有一个镁 蒸气出口法兰座05-06和电极插入孔法兰座05-07,此还原反应腔05-03的下侧面有一个密 封卸渣装置01-09,在这里石墨电极从上盖的电极插入孔法兰座05-07和电极移动密封装 置01-04插入,在熔池内起弧加热熔融把炉料加热到1850度以上,还原产物镁蒸气和一氧 化碳及粉尘溢出渣面后,由于抽气速度控制得当,粉尘在还原反应腔05-03内不断下降回 到渣中,重新被熔融、还原、造渣,只有镁蒸气和一氧化碳经镁蒸气出口法兰座05-06,被抽 入镁蒸气分离腔02-07。还原反应腔05-03由耐火砖砌筑,容积可以扩大,它代替了耐热合 金钢还原罐,不但降低了成本又延长了寿命,为连续生产奠定基础。熔融状态解决了炉料必须要细磨、制球才能解决的问题。一套新的、不用水冷却的干式金属镁接收器让镁蒸气在高温下和一氧化碳等气体 分离并冷凝成液体或结晶镁。如图2所示,所述的干式金属镁接收系统01-05中设有干式金属镁接收器,此 干式金属镁接收器包括反应气体入口 02-01,与此反应气体入口 02-01相连接的冷却壁 02-02,分别与此冷却壁相连接的一组冷凝管02-03、冷却剂槽02-04、柱塞02-05,与此柱 塞02-05相连接的柱塞密封件02-06,设在冷凝管之间的镁蒸气分离腔02-07,与此冷却壁 相连接的连接段及法兰02-08,与此连接段及法兰02-08相连接的结晶器,此结晶器包括冷 却筒02-09,与此冷却筒02-09相连接的抽真空管路02-10与此抽真空管路02-10相连接 的结晶器02-11,与此结晶器02-11相连接的结晶器冷却剂循环系统02-12,与所述的冷却 壁的下侧相连接的镁液体下泄口 02-13,与此镁液体下泄口 02-13相连接的镁液体聚积罐
02-14,设在此镁液体聚积罐02-14侧底部的镁液体出口管02-15,与此镁液体聚积罐02-14 相连接的分离腔冷却剂循环系统02-16,
如图7所示,所述的干式镁蒸气冷却剂循环系统02-12和02-16包括加料膨胀筒 07-01,与此加料膨胀筒07-01相连接的上汇集管07-03,分别与此上汇集管07-03相连接 的镁蒸气分离腔溢流管07-02、下降冷却管07-04,此镁蒸气分离腔溢流管07-02与所述的 冷凝管02-03、冷却剂槽02-04、镁液体聚积罐02-14依次连接,与此镁液体聚积罐02-14 相连接的镁蒸气分离腔回流管07-05,与此镁蒸气分离腔回流管07-05相连接的下汇集管 07-06,与所述的镁蒸气分离腔溢流管07-02相连接的冷却筒溢流管07-07,与此冷却筒溢 流管07-07相连接的结晶器冷却筒07-08,与此结晶器冷却筒07-08相连接的冷却筒回流管 07-09,
如图3所示,所述的连续精炼炉01-06包括精炼炉炉体03-02,设在此精炼炉炉体
03-02内的精炼炉内胆03-03,穿过此精炼炉炉体03-02、进入精炼炉内胆03-03内的液体 粗镁流入管03-01,设在此精炼炉内胆03-03内的四个搅拌器03-04,分别与此四个搅拌器 03-04相连接的四个搅拌式加热器03-05,设在此精炼炉内胆03-03内中心部位的结晶镁投 入管03-06,与此结晶镁投入管03-06相连接的螺旋排渣管03-07,设在此精炼炉内胆03-03 内一侧的隔离板03-08,设在此精炼炉炉体03-02底部的精镁流出管03-10与此精镁流出管 03-10的入口相配合的精炼炉柱塞03-09,与此精镁流出管03-10的出口端相连接的覆盖剂 料斗03-11,
结构特点四个搅拌器03-04、四个搅拌加热器03-05、结晶镁投入管03-06、螺旋排渣 管03-07可以纵向移动;四个搅拌器03-04可分别绕四个加热器03-05旋转;这样有利于 精炼炉内温度均勻、成份均勻、除渣均勻;可以自动承接镁液体聚积罐02-14放出的粗镁液 体,在其内进行连续精炼,并可直接把精镁液体浇灌到铸锭上铸成商品镁锭。如图4所示,所述的和内热式真空还原炉01-03连体的卸渣密封装置01-09布置 在还原炉还原反应腔05-03的下侧面,由集渣包04-05,设在此集渣包04-05顶上的集渣包 盖04-09,穿过此集渣包盖04-09的溢流孔柱塞04-08,与此溢流孔柱塞04-08的上端相配 合的设在此集渣包盖04-09中的溢流孔柱塞密封套04-10,与此溢流孔柱塞04-08的下端相 配合的、设在此集渣包04-05底部的反应渣溢流孔04-02,与此反应渣溢流孔04-02相连通 的卸渣通道04-01,设在此卸渣通道04-01 —端的设有残渣出孔04-03的残渣孔砖04-06,设在此集渣包侧底部的设有反应渣出孔04-04的反应渣孔砖04-07,设在所述的集渣包盖
04-09中的渣液面探测杆04-12、通气管及三通阀04-11,设在所述的残渣出孔04-03下侧的 残渣斗04-13组成。如图6所示,所述的整套电极移动密封装置01-04由密封罩托梁06-01,架在此密 封罩托梁06-01上的角形隔离密封罩06-02、密封水套06-03,设在此密封水套06-03上侧 备的外固定水套06-05,平行设在此密封水套06-03内的上密封圈06-06、下密封圈06-04, 设在此上密封圈06-06、下密封圈06-04之间的真空环06-07,设在所述的外固定水套06-05 上侧的与石墨电极06-12作滑动连接的滑动套06-08,分别与石墨电极06-12相连接的绝缘 夹紧楔06-11、电极密封帽06-13、石墨电极夹具外套06-09、电源绝缘插座06-10,把整个隔 热砖封闭起来,外固定水套06-05和滑动套06-08的水泠结构改变了石墨电极夹具高温工 作状态,利用真空环06-07及时地抽出从外部渗入的空气,从而保证了石墨电极上下移动 时的密封;又借用保证石墨电极06-12通电时的绝缘和石墨电极06-12与滑动套06-08之 间的密封。本发明菱镁矿石炼镁工艺是这样实施的
1)精选菱镁矿石、焦炭、铝土矿石、萤石,除去杂质和泥土,分别破碎成菱镁矿石 0. 5 10 mm小粒筛掉0. 5 mm以下粉末,焦炭、铝土矿石、萤石为0. 5 5 mm,筛掉0. 5 mm以下 粉末(可以压团使用);
炉料按比例计量后,分别经各自的真空隔离投料系统,加到各自的预热仓或煅烧炉内, 在真空状态下进行预热,排出炉料间和炉料本身吸附的水份和所含的挥发份、空气、结晶水 等及其它气体,和分解排出CO2后逐次被推入熔池,开始其熔融状态下的还原反应。2)在长圆形密封的内热式三相还原炉里,石墨电极从上盖的电极插入孔法兰座
05-07和电极移动密封装置01-06插入,在熔池内起弧加热炉料到1850度以上,还原产物 镁蒸气和一氧化碳及粉尘溢出渣面,由于抽气速度控制得当,粉尘在还原反应腔05-03内 不断下降回到渣中,重新被熔融、还原、造渣,只有镁蒸气和一氧化碳经镁蒸气出口法兰座 05-06,被抽入镁蒸气分离腔02-07。还原反应腔05-03由耐火砖砌筑,容积可以扩大,它代 替了耐热合金钢还原罐,不但降低了成本又延长了寿命,为连续生产奠定基础。熔融状态解 决了炉料必须要细磨、制球才能解决的问题。3)叁个预热仓是安装在长圆形密封的内热式三相还原炉05-01 —侧的预热腔内 的筒仓。热量来源于中间隔墙05-02和下面的进料口传过来热量把炉料预热;产生的水蒸 汽、挥发物、二氧化碳经真空管被抽出,预热仓虽然短小、时间也少,但温高,又处于真空状 态下,产物二氧化碳排除的快,有20-25分钟也是足够。4)还原反应产生的CO气体是主要的,以CO气体为主的气体和镁的蒸气一起被 抽入镁蒸气分离腔02-07内,由于冷凝管02-03和冷凝壁02-02的冷却作用镁蒸气分离腔 02-07内温度控制在750°C 1050°C左右,剩余真空压力3600 4700Pa,还原反应生成的 镁蒸气其冷凝条件是由镁蒸气在冷凝区的温度和压力来确定,当镁蒸气温度降到它的实际 压力与饱和蒸气压力相等的这一点上时,镁蒸气便开始冷凝。因此选定温度控制在750°C 1050°C左右,剩余真空压力3600 4700Pa时,镁的气相和液相能平衡,剩余真空压力略低 一点,镁蒸气只能冷凝成液态。液滴附着冷凝管02-03和冷凝壁02-02,一起向下流经液体 镁下泄管02-13后流入镁液体聚集罐02-14内存贮待放出。
经镁蒸气分离腔02-07的分离作用后,可能有微量地镁蒸气没有来得及冷凝成液 体而被抽离镁蒸气分离腔02-07,或小部分镁蒸气被CO气体氧化成MgO,这些都在低温中直 接凝成粉末被抽出,故在真空系统中间设置一个滤袋过滤器来收集镁粉和氧化镁粉微粒, 送回炉内重新还原。CO气体和其它气体被真空系统继续抽走去利用或排掉。5)在镁蒸气分离腔02-07内必须有温度和真空监测点随时监测温度和真空度,适 时地调整风量和抽气量。保证内部的合适的真空度和温度。在正常工作状况下,镁液经下泄管缓慢地流入镁液体聚集罐02-14之内,由于镁 液体聚集罐02-14有碱熔液的保温作用,会始终保持750V 800°C。镁液体始终在750°C以上的温度,当内胆之内的镁液体已满,探头发出指示后,旋 转手轮带动活塞杆和柱塞02-05下降,堵塞下泄管02-13,隔断镁蒸气分离腔02-07和镁液 体聚集罐02-14的通路,不但镁液不能流通,空气也不能通过,这时转动三通真空阀,让氩 气经过通气管,进入镁液体聚集罐02-14内,使罐内压力略高于大气压,由于氩气充满罐内 的空间,这时打开出镁孔后镁液体就自然流出,当有氩气冒出时镁液已放完,就可以堵住 镁液体出口管02-15同时要转动三通真空阀,接通真空系统,抽出镁液体聚集罐02-14内气 体,待真空度达标后才能转动手轮带动活塞杆和柱塞02-05升起,打开下泄管让镁液继续 流下。经镁液体出口管02-15放出的镁液体直接流到连续精炼炉01-06内完成精炼,中 间不更换炉胆和坩埚、镁液不倒换,可以防止镁液氧化、燃烧和污染,镁液不降温又可节省 能源。6)电极移动密封绝缘装置包括有密封罩托梁06-01、角形隔离密封罩06-02、下 密封圈06-04、外固定水套06-05、真空环06-07、上密封圈06-06、密封水套06-03、滑动套 06-08、石墨电极夹具外套06-09、电源绝缘插座06-10、绝缘夹紧楔06-11、石墨电极06-12、 电极密封帽06-13组成。整套电极移动密封绝缘装置01-04是架在密封罩托梁06-01上 并和电极插入孔法兰座05-07密封连接、角形隔离密封罩06-02和密封水套06-03焊成 一体、把整个隔热材料封闭起来,外固定水套06-05和滑动套06-08的水泠结构改变了石墨 电极夹具外套06-09高温工作状态,保护了下密封圈06-04、上密封圈06-06密封效果,滑 动套06-08在外固定水套06-05内可以自由上下滑动完成石墨电极加热的功能,利用真空 环06-07及时地抽出从外部渗入的空气,从而保证了石墨电极上下移动时的密封;在更换 石墨电极06-12之后又借用三块绝缘夹紧楔06-11把石墨电极06-12固定在滑动套06-08 内腔、三块绝缘夹紧楔06-11之间的空隙用电极密封帽06-13来封闭,保证石墨电极06-12 通电时的绝缘和与滑动套06-08之间的密封;石墨电极06-12的绝缘与滑动套06-08内腔 之间的绝缘用三块绝缘夹紧楔06-11连接绝缘,用电源绝缘插座06-10保证了连接和绝缘。 石墨电极06-12上下的移动由电极升降机构来完成。7)还原反应的另一个产物一残渣是经熔融还原产生的反应渣是经还原反应腔 05-03的下侧底面的卸残通道04-01、从残渣出口 04-03流出,把残渣出口 04-03烘烤红热 后,堵住残渣出口 04-03待停炉时再打开使用,这时反应渣又从溢出口 04-02流入集渣包 04-05内,当渣液面上升到渣液面探测杆04-12时,用柱塞04-08将反应渣溢流口 04-02堵 住,转动三通阀04-11让通气管和大气相通,这时再打开反应渣出口 04-04,就会有反应渣流出,空气不会进到熔融还原腔05-03内,实现了卸渣过程保证不破坏内部真空度,每次卸 渣熔池内渣面上下波动90 100 mm,生产一吨镁仅有近260公斤残渣产生。事故停炉时可 以从残渣出口 04-03放出炉内残渣。但渣液面最高时不能高于矿石推料槽下底平面。在卸渣结束后用耐火胶泥把反应渣出口 04-04堵住,转动三通阀04-11连通真空 系统把集渣包04-05内的空气抽净,当真空度达标后抬起柱塞04-08把反应渣溢流口 04-02 打开,恢复向集渣包04-05放渣。粒状菱镁矿石为原料、粒状焦炭为还原剂、粒状铝土矿石为助熔剂,只须破碎后直 接连续投入内热式三相还原炉内,在一套设备里相继完成菱镁矿石煅烧分解、还原剂的预 热和排出水份及挥发份、在高温、真空、熔融状态下镁蒸气的还原析出、镁蒸气和一氧化炭 的分离,最终连续获得金属镁液体,实现了自动化连续生产,各工序的操作程序均由计算机 按控制流程图远程监控,(投料系统各开关、电极的移动、保温罐液面高度、密封卸渣的集渣 包渣面高度等)。简化了生产程序,降低了生产成本,减少了设备投资。
实施例1、砌筑炉体首先在炉外壳内砌筑炉体05-01、中间隔墙05-02、推料槽、集渣包 04-05 ;在炉外对应位置放好残渣斗,同时在炉盖内砌筑炉盖衬要先砌筑电极插入孔的隔热 耐火材料、镁蒸气出口内衬、投料口内衬、并用耐火砖把它们挤死,两者自然干燥,要充分干 后才能合在一起,接口处要密封后压紧再经慢火烘烤24小时以上,才能通电烘炉到1200度 左右,停电安装。2、依次安装配套设置
1)安装三个炉料推进器及密封罩,把密封罩固定在炉料推进器安装孔座05-09上。2)安装炉内轻烧镁、还原剂和助熔剂的预热仓,三者都是从投料孔法兰座05-08 插入并固定在法兰上,上面用连接段,和真空隔离投料系统相连接。3)真空隔离投料系统架在支架上,最上面有叁个备料斗。4)在电极插入孔法兰座05-07上面固定电极移动密封装置01-04,在炉的侧面 竖立电极升降的立柱,并用密封罩托梁06-01把立柱连接固定起来,把角形隔离密封罩 06-02托起,再将石墨电极一段一段连接起来通过电极移动密封装置01-04插入还原反应 腔05-03内,石墨电极夹具外套06-09经升降支臂和升降滑道连接,并带动滑动套06-08 — 起沿升降滑道升降。5)镁蒸气分离腔02-07前端与镁蒸气出口法兰座05-06对接,后端是结晶器冷却 筒02-09并与更换结晶器装置相连,再经滤袋回收装置01-07及真空系统相接,下面的液体 镁下泄口 02-13与镁液体聚积罐02-14相接,两者架一个支架上,镁液体出口管02-15对正 在连续精炼炉的液体粗镁流入管03-01。铸锭机尾部布置在连续精炼炉01-06下前方与连 续精炼炉01-06成直角,中心线对准精镁流出管03-10。6)把各处的料位探头、温度探头、真空度探头和控制中心的计算机接好,达到随时 可操作程度。各工序的操作程序均由计算机按控制流程图远程监控,(投料系统各开关、电 极的移动、镁液体聚积罐02-14和连续精炼炉01-06液面高度、密封卸渣的集渣包04-05渣 面高度等)。7)安置煅烧回转窖和连接燃气管道,用提升机将小颗粒菱镁矿石装入回转窖内,煅烧得到的轻烧镁趁热加入还原炉。3、工艺程序如下
1)准备无泥土和杂质的菱镁矿石10吨,破碎成10 0.5 IM的颗粒,并筛出小于0. 5 mm 的颗粒及粉末,
2)准备无泥土和杂质的浙青焦和铝土矿石,焦碳1.8吨、铝土矿石和萤石0. 8吨,分别 破碎成0. 5 5 mm的颗粒,并筛出小于0. 5 mm的颗粒及粉末,(筛出的粉末仍可经压团使用)
3)按菱镁矿石4.0 5. 3吨、浙青焦0. 7 0. 85吨、铝土矿石和萤石0. 2 0. 3吨的比 例计量后,分别经各自的真空隔离投料系统,(菱镁矿石先加入煅烧窖煅烧)加到预热仓内, 在真空状态下进行预热(抽出的水份及挥发份,成为煅烧窖的辅助气体燃料)和(排出C02)。 后逐次被推入熔池,整个过程中没有空气混入,保证了还原反应腔(05-03)的真空度不变。 促使其熔融状态下的还原反应能顺利进行。4)被推入熔融还原反应腔05-03的炉料落到熔融的熔液中,经三相石墨电极 06—12的不断加热,渐渐地开始熔融还原反应,不断析出镁的蒸气和一氧化碳,也有一定 量的粉尘产生。由于熔融还原反应腔05-03有足够地空间,抽气速度控制的得当,粉尘在还 原反应腔05-03内不断落下又回到熔池内,析出镁的蒸气和一氧化碳被抽入镁蒸气分离腔 02-07内,石墨电极06-12的夹持和上下移动的密封是通过特制的电极移动密封装置01-04 来实现的。5)熔融还原反应产生的反应渣是经还原反应腔05—03的下侧底面的卸残通道 04-01、从残渣出口 04-03流出,把残渣出口 04-03烘烤红热后,堵住残渣出口 04-03待停炉 时再打开使用,这时反应渣又从反应渣溢出口 04-02流入集渣包04-05内,当渣液面上升到 渣液面探测杆04-12时,用柱塞04-08将反应渣溢出口 04-02堵住,转动三通阀04-11让 通气管和大气相通,这时再打开反应渣出口 04-04,就会有反应渣流出,空气不会进到还原 反应腔05-03内,实现了卸渣过程保证不破坏内部真空度,每次卸渣熔池内渣面上下波动 90 100 mm,生产一吨镁仅有近260公斤残渣产生。事故停炉时可以从残渣出口 04-03放 出炉内残渣。但渣液面最高时不能高于矿石推料槽下底平面。在卸渣结束后用耐火胶泥把反应渣出口 04-04堵住,转动三通阀04-11连通真空 系统把集渣包04—05内的空气抽净,当真空度达标后,抬起柱塞04-08把反应渣溢出口 04-02打开,恢复向集渣包04-05放渣。6)、在镁蒸气分离腔02-07内必须有温度和真空监测点随时监测温度和真空度, 适时地调整真空度和抽气量。保证内部的合适的真空度和温度。在正常工作状况下镁液经下泄管缓慢地流入镁液体聚积罐02-14之内,由于镁 液体聚积罐02-14有熔碱液体保温功能,镁液体聚积罐02-14之内会始终保持750°C SOO0C。当镁液体聚积罐02-14之内的镁液体已满探头发出指示后,旋转手轮带动活塞杆和 下降,堵塞镁液体下泄口 02-13,隔断镁蒸气分离腔02-07和镁液体聚积罐02-14的通路,不 但镁液不能流通,空气也不能通过,这时转动三通真空阀,让氩气经过通气管,进入镁液体 聚积罐02-14内,使镁液体聚积罐02-14内压力略高于大气压,由于氩气充满镁液体聚积罐 02-14内空间,这时打开出镁孔后镁液体就自然流出,当有氩气冒出时镁液已放完,就可以 堵住出镁孔,同时要转动三通真空阀,接通真空系统,抽出保温罐内胆内气体,待真空度达 标后才能转动手轮带动柱塞02-05升起,打开镁液体下泄口 02-13让镁液继续流下。
放出镁液体时真空系统不停,继续抽出气体保证镁蒸气分离腔02-07内真空度不 变,冷凝的液体暂存在下泄口 02-13附近。7)经镁液体出口管02-15流出的镁液体流到连续精炼炉01-06内继续加热提温, 中间不更换炉胆和坩埚、镁液不倒换,可以防止镁液氧化、燃烧和污染,镁液不降温又可节 省能源。对其进行精炼,可获得纯度为99. 97%金属镁,每小时可放出液体镁440 500公 斤。8)精炼后金属镁液体,由连续精炼炉01-06直接浇到铸锭机上。9)经镁蒸气分离腔02-07的分离作用后,没有冷凝成液体的部分镁蒸气也要在随 后的结晶器02-11内凝成结晶镁,这里得到结晶镁被从结晶器02-11中压出后,可以整块从 结晶镁投入管03-06装入精炼炉内胆03-03。10)可能有微量地镁蒸气没有来得及冷凝成液体或结晶镁,而被抽离镁蒸气分离 腔02-07,或小部分镁蒸气被CO气体氧化成MgO,这些都在低温中直接凝成粉末被抽出,故 在真空系统中间设置一个滤袋回收装置来收集镁粉和氧化镁粉微粒,送回炉内重新还原。11)被抽出的气体有从还原反应腔05-03内抽来的一氧化碳;有从预热腔抽来的 水蒸汽、焦炭中的挥发份、少量的二氧化碳等,经燃气循环利用系统处理后,可送入菱镁矿 石煅烧装置01-11点燃,煅烧菱镁矿石。
权利要求
一种菱镁矿石一步法炼镁工艺方法,其特征在于以菱镁矿石为原料、以焦炭或石墨为还原剂,萤石和铝土矿石为助熔剂,三种炉料经破碎直接以颗粒状分别投炉,在高温真空熔融状态下完成MgO+C=Mg+CO的反应,镁蒸气先后凝成液体镁或结晶镁,趁热进入连续精炼炉内,直接进行精炼,最终获得99.97%金属镁锭,1)精选菱镁矿石,除去杂质和泥沙,破碎成0.5~10mm的颗粒,筛除0.5mm以下的粉粒,装入菱镁矿石回转煅烧窑内,利用还原过程中产生的一氧化碳和在预热段收集的可燃气体,作为燃料来煅烧菱镁矿石,使其完成MgCO3=MgO+CO2分解,获得的轻烧氧化镁趁热直接加入给料系统,被密闭地送入内热式真空还原炉内,2)精选焦炭、铝土矿石、萤石,除去杂质和泥土,分别破碎成0.5~5㎜小粒,筛掉的小于0.5㎜以下粉末,直接投炉,3)按菱镁矿石400~530重量份、焦炭70~85重量份、铝土矿石6~10重量份和萤石20~30重量份的比例计量后,分别经各自的真空隔离投料系统,加到内热式真空还原炉的预热仓内,在真空状态下进行预热和排出CO2,排出炉料中和炉料本身吸附的水份和所含的挥发份、空气、结晶水,然后逐次被推入熔池,开始其熔融状态下的还原反应,整个过程中保证熔融还原腔的真空度不变,4)产生的反应渣经密封卸渣装置卸出,卸渣过程不破坏内部真空度,每次卸渣时熔池内渣面上下波动90~50㎜,生产100重量份镁仅有30~20重量份残渣,5)反应产生的镁蒸气和一氧化碳经内热式真空还原炉的镁蒸气出口被抽到分离冷凝腔内,镁蒸气和一氧化碳在高温下分离镁蒸气凝聚在冷却壁上成为液体镁并向下流动,经下方的下泄管,流入镁液体聚积罐聚集,6)少量镁蒸气没有和一氧化碳分开,在随后的结晶器内也被冷凝成结晶镁,一氧化碳被真空系统继续抽出,成为煅烧窑的主要的气体燃料,同时抽出挥发份和水份,成为煅烧窑的辅助气体燃料,7)液体镁从镁液体聚积罐直接流入到连续精炼炉内,精炼后得到纯度为99.97%的金属镁液体,浇铸到铸锭机上铸成商品锭,8)剩余的微量镁粉和氧化镁的粉末再经滤袋回收装置收集起来,送内热式真空还原炉内重新还原。
2.根据权利要求1所述的菱镁矿石一步法炼镁工艺方法,其特征在于从炉料投入直到 镁锭铸成,均在一套设备中连续进行,各工序的操作程序均由计算机远程监控,保证装料、 卸渣、出镁、石墨电极上下移动各操作过程连续进行。
3.根据权利要求1所述的菱镁矿石一步法炼镁工艺方法,其特征在于冶炼工艺参数控 制均由计算机控制,1)菱镁矿石回转煅烧窑内的最高温度控制在1000°c 900°C,菱镁矿石回转煅烧窑 的转速控制在10 20转/分,2)预热腔内的温度控制在1000°C以上,预热腔内的真空度控制在3600 5000Pa之间,3)内热式真空还原炉的还原反应腔内的温度控制在1800°C以上,此还原反应腔内的真 空度控制在3600 4500Pa之间,4)镁蒸气分离冷凝器内的温度控制在1300°C以下,镁蒸气分离冷凝器内的真空度控制 在3600 2500Pa之间,5)干式金属镁接收系统的结晶器内的温度控制在500°C 400°C,此结晶器内的真空 度控制在200 150Pa之间,6)内热式真空还原炉的还原反应腔内的气流上升速度不能大于lm/s,这关系到反应效 果和粉尘7)在镁蒸气分离冷凝器内的流速<3m/s,8)在此结晶器内的流速彡3m/s。
4.一种用于权利要求1所述的菱镁矿石一步法炼镁工艺方法的设备,其特征在于由炉 料贮存输送系统,与此炉料贮存输送系统相连接的真空隔离密封投料系统,与此真空隔离 密封投料系统相连接的内热式真空还原炉,设在此内热式真空还原炉炉顶上的电极移动密 封装置,与此内热式真空还原炉的蒸气出口相连接的干式金属镁接收系统,分别与此干式 金属镁接收系统相连接的连续精炼熔铸设备、滤袋回收装置,与此滤袋回收装置相连接的 燃气循环利用系统,与此内热式真空还原炉的出渣口相连接的卸渣密封装置,与所述的真 空隔离密封投料系统相连接的菱镁矿石回转煅烧窑,与此菱镁矿石回转煅烧窑相连接的菱 镁矿石破碎筛分提升设备,分别与所述的炉料贮存输送系统、菱镁矿石破碎筛分提升设备、 回转煅烧窑、真空隔离密封投料系统、内热式真空还原炉、电极移动密封装置、干式金属镁 接收系统、连续精炼熔铸设备、滤袋回收装置、燃气循环利用系统、卸渣密封装置相连接的 计算机控制系统组成以内热式真空还原炉为中心的连贯一体的真空还原提炼金属镁的设 备,与此计算机控制系统相连接的传感器和执行机构包括设在菱镁矿石回转煅烧窑的头 部、中部、尾部的温度传感器,设在真空隔离投料系统01-02中的料位探头及各阀门开关, 设在真空隔离仓中的测真空度的传感器、电动真空节流阀,设在内热式真空还原炉的预热 腔上盖中的一个温度传感器及测真空度的传感器、电动真空节流阀,设在内热式真空炉旁 边的炉内温度控制台、设在内热式真空炉上的测真空度的传感器、调节电动真空节流阀,设 在内热式真空炉下部的料位传感器,设在内热式真空还原炉的镁蒸气出口管上的气体流速 传感器,设在干式金属镁接收系统的镁蒸气分离冷凝器上的温度传感器、测真空度的传感 器,设在燃气循环利用系统内的温度传感器,设在干式金属镁接收系统的镁液体聚集罐中 的温度传感器、测真空度的传感器、料位传感器,设在连续精炼熔铸设备上的温度传感器、 料位传感器,设在卸渣密封装置的集渣包内的料位传感器、温度传感器、测真空度的传感
5.根据权利要求4所述的用于菱镁矿石一步法炼镁工艺方法的设备,其特征在于所述 的内热式真空还原炉由钢结构外壳,设在此钢结构外壳内的用耐火砖砌筑的长圆形密封的 内热式三相还原炉的炉体,设在此炉体内的中间隔墙,此中间隔墙把炉体分为两部分,一部 分为预热腔,另一部分为还原反应腔,此预热腔的上盖中有三个投料孔法兰座,此预热腔的 下侧面有三个炉料推进器安装孔座,此还原反应腔的上顶炉盖上设有一个镁蒸气出口法兰 座和电极插入孔法兰座,此还原反应腔的下侧面有一个密封卸渣装置。
6.根据权利要求4所述的用于菱镁矿石一步法炼镁工艺方法的设备,其特征在于所述 的干式金属镁接收系统中设有干式金属镁接收器,此干式金属镁接收器包括反应气体入 口,与此反应气体入口相连接的冷却壁,分别与此冷却壁相连接的一组冷凝管、冷却剂槽、 柱塞,与此柱塞相连接的柱塞密封件,设在各冷凝管之间的镁蒸气分离腔,与此冷却壁相连 接的连接段及法兰,与此连接段及法兰相连接的结晶器,此结晶器包括冷却筒,与此冷却筒相连接的抽真空管路,与此抽真空管路相连接的结晶器,与此结晶器相连接的结晶器冷却 剂循环系统,与所述的冷却壁的下侧相连接的镁液体下泄口,与此镁液体下泄口相连接的 镁液体聚积罐,设在此镁液体聚积罐侧底部的镁液体出口管,与此镁液体聚积罐相连接的 分离腔冷却剂循环系统。
7.根据权利要求4所述的用于菱镁矿石一步法炼镁工艺方法的设备,其特征在于所述 的干式镁蒸气冷却剂循环系统包括冷却剂加料膨胀筒,与此冷却剂加料膨胀筒相连接的冷 却剂上汇集管,分别与此冷却剂上汇集管相连接的镁蒸气分离腔冷却剂溢流管、冷却剂下 降冷却管,此镁蒸气分离腔的冷却剂溢流管与所述的冷凝管、冷却剂槽、镁液体聚积罐依次 连接,与此镁液体聚积罐相连接的镁蒸气分离腔冷却剂回流管,与此镁蒸气分离腔冷却剂 回流管相连接的冷却剂下汇集管,与所述的镁蒸气分离腔冷却剂溢流管相连接的冷却筒冷 却剂溢流管,与此冷却筒冷却剂溢流管相连接的结晶器冷却筒,与此结晶器冷却筒相连接 的冷却筒冷却剂回流管。
8.根据权利要求4所述的用于菱镁矿石一步法炼镁工艺方法的设备,其特征在于所述 的连续精炼炉包括精炼炉炉体,设在此精炼炉炉体内的精炼炉内胆,穿过此精炼炉炉体、进 入精炼炉内胆内的液体粗镁流入管,设在此精炼炉内胆内的四个搅拌器,分别与此四个搅 拌器相连接的四个搅拌式加热器,设在此精炼炉内胆内中心部位的结晶镁投入管,与此结 晶镁投入管相连接的螺旋排渣管,设在此精炼炉内胆内一侧的隔离板,设在此精炼炉炉体 底部的精镁流出管,与此精镁流出管的入口相配合的精炼炉柱塞,与此精镁流出管的出口 端相连接的覆盖剂料斗。
9.根据权利要求4所述的用于菱镁矿石一步法炼镁工艺方法的设备,其特征在于所 述的和内热式真空还原炉连体的卸渣密封装置布置在还原炉还原反应腔的下侧面,由集渣 包,设在此集渣包顶上的集渣包盖,穿过此集渣包盖的溢流孔柱塞,与此溢流孔柱塞的上端 相配合的设在此集渔包盖中的溢流孔柱塞密封套,与此溢流孔柱塞的下端相配合的、设在 此集渣包底部的反应渣溢流孔,与此反应渣溢流孔相连通的卸渣通道,设在此卸渣通道一 端的设有残渣出孔的残渣孔砖,设在此集渣包侧底部的设有反应渣出孔的反应渣孔砖,设 在所述的集渣包盖中的渣液面探测杆、通气管及三通阀,设在所述的残渣出孔下侧的残渣 斗组成。
10.根据权利要求4所述的用于菱镁矿石一步法炼镁工艺方法的设备,其特征在于所 述的整套电极移动密封装置由密封罩托梁,架在此密封罩托梁上的角形隔离密封罩、密封 水套,设在此密封水套上侧的外固定水套,平行设在此密封水套内的上密封圈、下密封圈, 设在此上密封圈和下密封圈之间的真空环,设在所述的外固定水套上侧的与石墨电极作滑 动连接的滑动套,分别与石墨电极相连接的绝缘夹紧楔、电极密封帽、石墨电极夹具外套、 电源绝缘插座。
全文摘要
本发明属于菱镁矿石炼镁技术领域,特别是涉及一种菱镁矿石一步法炼镁工艺方法及设备。本发明的炼镁工艺是在密封的三相电炉内进行熔融还原反应,以菱镁矿石为原料、以焦炭或石墨为还原剂,萤石和铝土矿石为助熔剂,三种炉料经破碎直接以颗粒状分别投炉,在高温真空熔融状态下完成MgO+C=Mg+CO的反应,镁蒸气先后凝成液体镁或结晶镁,趁热进入连续精炼炉内,直接进行精炼,最终获得99.97%金属镁锭,生产连续、自动化。设备利用率高,热能利用率高,改善了生产环境,减轻了工人劳动强度;同时节省了大量贵重合金和能源,降低了成本;彻底地改变了真空容器内还原时代,是改变环境的基础手段。
文档编号C22B26/22GK101956083SQ20101052550
公开日2011年1月26日 申请日期2010年10月29日 优先权日2010年10月29日
发明者刘杰, 姜明, 曲冬梅, 曲智, 曲轶众, 曲轶群, 王桂珍 申请人:曲智
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1