调节界面的制作方法

文档序号:11061874阅读:553来源:国知局
调节界面的制造方法与工艺

本发明涉及插在彼此相对运动的由镍制成或由镍合金制成或由钴-铬合金制成的两个部件之间的调节界面(interface d’adaptation)。该界面能够减少这些部件之间的摩擦造成的两个部件的表面磨损。本发明还涉及能够获得该界面的方法。

本发明更具体涉及插在彼此相对运动的由镍制成或由镍合金制成或由钴-铬合金制成的两个部件之间的高温摩擦调节界面。该界面使得能够降低在含氧气氛中在高温(即300℃至650℃)下两个部件之间的摩擦造成的两个部件的表面磨损。这种界面特别适于在需要特殊摩擦学性能的应用中使用的部件。



背景技术:

镍合金如Inconel 718(注册商标)因其在高温下的机械强度和对高温下氧化的耐受性而具有在航空工业中高度合意的性质。

但是,镍合金具有与显著的刮擦倾向相关联的非常差的摩擦行为,以及对刮痕效果的高敏感性,并且它们的用途特别限于需要在高温下特殊的摩擦学性能的应用。

在航空工业中,在发动机与塔架组件之间在高温下起作用的铰接接合(liaisons d’articulation)通过由球形接头(rotule)、轴和环构成的组装件来提供。构成该系统的部件可以由镍合金如Inconel 718制造。

该球形接头系统通常包含凹形部件和由轴承载的球形部件。容纳在该凹形部件中的球形部件通过在所有方向上的旋转运动来驱动;球形部件的表面与凹形部件的表面彼此永久性摩擦。

在球形接头系统的情况下和在其它类似类型的系统中,主要区分两种类型的摩擦磨损,通常为约几微米至几十毫米数量级的极低振幅摩擦造成的磨损,也称为微动磨损或在负载下的振动摩擦磨损,以及附加的 滑动磨损,其运动幅度达到几十毫米。摩擦磨损由接触并倾向于粘在一起的摩擦面上存在的细微凹凸形成。当局部施加的载荷高并且在其中摩擦表面的材料具有类似组成的情况下,该摩擦引起表面磨损和劣化,其可能达到该轴或该球形接头磨损的程度。当这些部件由镍合金制成时,这些磨损现象甚至更高。此外,环境的高温(300℃至650℃)有利于出现最终导致磨损情况的粘着磨损。

因此合意的是对经受连续摩擦的系统,对镍或镍合金或钴-铬合金制成的部件进行表面处理。

本申请人于2006年10月20日提交了一份涉及低温调节界面的专利,其公开号为FR 2 907 468。在该专利中描述的是通过物理气相沉积(PVD)法获得的基于WC-C:H的涂层结合通过热喷涂获得的铜合金涂层。这种涂层在低于250℃的温度下令人满意。另一方面,这些对界面材料可以证实在高于一定温度时不太有效或甚至无效,因为铜转化为一氧化铜,并且WC-C:H石墨化;因此,铰接快速磨损,且这种类型的界面对400至650℃的极高温度导致快速磨损。

因此,本发明提出了在镍或镍合金或钴-铬合金制成的两个摩擦表面之间的调节界面,特别适于球形接头、轴、环等等类型的部件,旨在容易和均匀方式处理由镍或镍合金或钴铬合金制成的部件,而不考虑该部件的几何学与形状,并且能够通过明智地使用摩擦学相容且相对于该部件材料在硬度方面合适的材料,能够显著降低高运行温度(即300℃至650℃)的粘着摩擦磨损以改善和保持滑动性能,并能够在运行后用手拆卸。



技术实现要素:

为此,本发明提出了插在与由镍制成或由镍合金制成或由钴-铬合金制成的第二部件相对运动的由镍制成或由镍合金制成或由钴-铬合金制成的第一部件之间的调节界面,其特征在于所述界面包含两个调节层:

-第一调节层沉积在两个部件之一上,并具有能使其随着与另一部件的摩擦产生釉质类型的层的组成;

-第二调节层沉积在第二部件上,能通过充当与第一层的摩擦形成的氧化物的催化剂以便与第一层协作。

该界面的第一釉质层改善了该部件在摩擦下的滑动。由第二层提供的催化剂功能能够稳定通过摩擦形成的氧化物,并由此确保在延长的高温范围内的润滑功能。在材料领域,“釉质(glaze layer)”层如已知那样是指保护性氧化物层。当两种金属在高温下彼此滑动时形成该层。

该界面可能具有独立或组合采用的下列任选特征的至少一种。

所述第一调节层是钴合金层,其钴含量为至少40%。

所述第一调节层是钴、铬、钼和硅的合金。

在该调节层的钴、铬、钼和硅的合金中,钴含量为51%±1%,钼含量为28%±1%,铬含量为17%±1%,硅含量为4%±1%。

所述第一层在经历摩擦之前在525℃的最低温度和650℃的最高温度下预氧化。

所述第一层具有低于所述第一部件的硬度,所述第一层包括微孔形貌,使得所述第一层具有经由孔隙压实机制调节弹塑性性能的作用。

所述第一层具有2%至30%的微孔的整体密度。

所述第一层在磨削后具有50微米至200微米的厚度。

所述第一层具有作为杨氏模量的80GPa的弹性变形。

该第二调节层通过该部件表面处的热化学碳扩散处理来制造。

处理的表面由Inconel 718制得。

所述第二调节层具有大于850HV的表面硬度。

所述第二调节层具有10至15微米的扩散深度(处理厚度),并在该材料深度的前5微米中具有大于800HV的硬度。

本发明还涉及在由镍制成或由镍合金或钴-铬合金制成的所述部件上沉积该第一调节层的方法。该沉积方法是热喷涂涂层沉积法,包含以下步骤:

-以使得该部件与该第一调节层之间的粘附力承受至少等于35MPa的拉伸应力的方式对该部件的表面施以预处理,

-由将熔融状态的金属粒子喷涂到部件表面上的一连串过程形成该 沉积层,所述层是薄层的叠层,各薄层具有15微米的最小厚度。

对该涂层进行磨削以获得最终尺寸。

在氧组成的气氛下在525℃的温度下进行喷涂后氧化22小时。

该第一层具有400HV至500HV的平均硬度。

本发明还涉及在由镍制成或由镍合金或钴-铬合金制成的部件上沉积第二调节层的方法。该沉积方法由在所述部件表面处的热化学碳扩散处理方法组成。

本发明还涉及包含所述调节界面的铰接装置,所述界面插在构成该装置的具有小的运动长度的第一部件与具有大的运动长度的第二部件之间,该界面的第一调节层应用于小的运动长度。该界面的第二调节层应用于大的运动长度。

附图说明

通过参照附图阅读借助非限制性实施例给出的本发明的界面的以下描述,本发明的其它目的、优点和特征将显而易见,其中:

-图1示意性描述彼此相对运动的两个部件;

-图2示意性描述了插在两个部件之间的调节界面的实施方案;

-图3显示了对用于该界面的各种类型材料随时间改变的磨损深度和摩擦系数的曲线;

-图4是显示对用于该界面的各种类型材料在磨损试验结束时的表面破坏的一系列照片。

具体实施方式

图1示意性显示了彼此相对运动的两个部件1、2。运动的幅度可以为几毫米至几十毫米不等。运动学构造类似于球形接头类型的机械系统。通常,区分具有小的运动长度的第一部件1和具有大的运动长度的第二部件2。小的运动长度由总是位于接触表面中的点来限定,大的运动长度由周期性位于该接触表面中的点来限定。

对于本说明书的其余部分,具有小的运动长度的部件1和具有大的 运动长度的部件2分别称为销1和槽2。如图1中通过箭头所示,应用载荷在销朝向槽的方向上施加。销1抵靠槽2的接触表面的曲率随施加的载荷的压力而改变。

根据本发明,为了提高由镍制成或由镍合金制成或由钴-铬合金制成的这些部件的摩擦耐受性并改善滑动性能,在彼此相对运动的两个部件之间插入处理界面。该界面有利地为两个部件的摩擦调节界面。

图2示意性显示了该调节界面的第一实施方案。该销1、该槽2和插在该销与该槽之间的调节界面通过层的堆叠模型化。

该界面包含两个调节层,其中第一调节层4沉积在销1上,在摩擦学性能方面与第一调节层协作的第二调节层5沉积在槽2上。

有利地,如在本说明书的其余部分中看到的那样,层4和层5具有互补的性质,以便一方面在销1和槽2之间调节硬度,并在另一方面通过发挥润滑剂作用来改善滑动。

为此,该第一调节层4包括微孔形貌。存在于层4中的微孔8使得能够捕集液体润滑剂的润滑脂。在销1和槽2之间的摩擦期间释放该润滑脂使得第一层4能够发挥润滑调节功能。

此外,该第一层4的硬度在销1与第二调节层5之间,以便在该销/第一层界面处和在该第一层/第二层界面处获得硬度梯度。该硬度梯度使得能够限制摩擦应力,并由此减少摩擦导致的磨损。

为了进行比较,图3显示了彼此摩擦的两个部件表面的行为的特性曲线。用线性往复式摩擦试验机进行滑动磨损试验。测试条件对三个试验是相同的:

-接触压力=250MPa;

-运动幅度=±3毫米;

-频率=1Hz;

-温度=450℃;

-周期数=10 000个周期。

另一方面,该界面的调节层材料在一次试验与下一次试验之间不同,并分别为:

-两个层均为Inconel 718;

-一个层是涂覆有CoCrMoSi的Inconel 718,另一个层是Inconel718;

-一个层是涂覆有CoCrMoSi并在525℃下预氧化的Inconel 718,另一个层是经历过碳扩散处理的Inconel 718。

在图3中,第一列规定了第一部件1(在该情况下为销1)的界面层的材料,第二列规定了第二部件2,即槽2的界面层的材料。第三列显示了随时间磨损的区域的深度。第四列显示了摩擦系数随循环次数的改变。

图4通过试验后两个层各自的相应表面的照片显示了这三个试验的结果。

在作为第一试验的对象的由Inconel 718制成的两个层的情况下,在500℃至650℃之间的摩擦的作用下形成保护性的混合氧化镍层,在下文中称为氧化物釉质层或釉质层。由此形成的氧化物层保护该材料对抗磨损。但是,该氧化物的稳定可能花费一至二小时,在此过程中该界面遭受磨损的破坏特征:微型焊缝和深的划痕。在图3的曲线中可以看出这一稳定阶段。在稳定阶段之前的阶段过程中,该摩擦系数大于0.6。图4显示了表面状态和在该不稳定阶段过程中形成的划痕的深度。在足够的温度下在足够长的摩擦时间(大于一小时)后,形成稳定的氧化物并且能够获得值为大约0.6的稳定的摩擦系数,磨损机制停止,但是初始破坏仍然存在。在450℃的温度下的摩擦条件下,磨损是主要的,并且该界面不再能够确保正常的滑动。

两个其它试验显示了借助于下述界面得以改善的结果。

该界面包含两个调节层:

-第一调节层4沉积在两个部件之一(例如第一部件1)上,并具有能使其随着与另一部件的摩擦产生釉质类型的层的组成;

-第二调节层5沉积在第二部件2上,能通过充当与第一层的摩擦形成的氧化物的催化剂以便与第一层协作。

还有可能在第一部件1上沉积层5,在第二部件2上沉积层4。

后者的功能能够扩展氧化物的稳定性,并能够在300℃至650℃的更 宽的高温范围内确保该润滑功能。

沉积在所述第一部件1上的第一层4具有提高的对高温下的氧化的耐受性,并能够获得稳定的釉质类型的层和稳定的摩擦系数,并且对该高温范围,特别是300℃至650℃没有磨合期。

其具有低于该第一部件1的硬度。

与所述第一层4协作并沉积在所述第二部件2上的第二调节层5提供大于所述第一层4的硬度。根据一个特定实施方案,其在该材料的深度的前五微米内具有大于800HV的表面硬度。在这种情况下,其具有10至15微米的扩散深度。根据一个实施方案,该第二调节层具有大于850HV的表面硬度。

该第一层4具有能够在所述界面中降低接触压力和两个部件之间的摩擦所生成的剪切应力的弹塑性变形能力。

包括微孔形貌的第一层4使得所述第一层能够经由孔隙压实机制调整该弹塑性性能。

根据一个实施方案,该第一调节层具有2%至30%的微孔的整体密度,由于该微孔在局部应力的作用下被压实并使接触压力场均匀化而赋予所述界面塑性变形能力。

该调节层可能具有可变的厚度。从尺寸、重量和功效的观点来看,在磨削如下文中将看到的那样制得的涂层之后,当该厚度为50微米至200微米时其证明是最佳的。

该第一调节层具有作为杨氏模量的80GPa(Giga-pascals)的塑性变形性。该性质赋予所述界面更好的弹性变形性。

根据一个实施方案,该第一调节层是钴合金层,其钴含量为至少40%。

根据另一实施方案,该第一调节层是钴、钼、铬和硅的合金。根据一个特定实施方案,其试验结果显示在图4中,钴含量为51% ± 1%,钼含量为28% ± 1%,铬含量为17% ± 1%,硅含量为4% ± 1%。

图3显示避免了磨损,但是摩擦系数μ为大约0.6。此外,在试验结束时,在图4中可以看到在16微米的深度中CoCrMoSi涂层磨损的结果。由此,用该材料对(机械结合不会被闭锁)避免了磨损,但是由于 摩擦系数超过0.5,滑动条件仍然有待改善。

根据另一实施方案,在525℃至650℃的温度下对该第一层施以预氧化。在同一实施方案中,对该第二调节层施以碳原子扩散,所述碳原子扩散是通过热化学扩散处理如外层硬化或渗碳氮化获得的。作为说明,KOLSTERISING(BODYCOTE公司的注册商标)渗碳工艺允许碳在镍合金表面处均匀扩散。THERMI-SP(Thermi-Lyon公司的注册商标)产生氮碳共渗,并等效于前述方法以获得目标性能。

在这种情况下,除了不存在磨损之外,如图3所示,摩擦系数为大约0.45,在高温下恒定且低。从磨损的观点来看(如图4显示极为有限),这由此获得了最佳解决方案,并且以令人满意的摩擦系数提供了滑动功能。

在某些实施方案中,所述第一调节层具有大于150微米的厚度。

可以提供硬度系数大于所述第二部件的硬度调节层,其插在所述第二部件与所述第二调节层之间,所述层旨在在所述第二部件与所述相应的第二调节层之间引入硬度梯度。

根据特定实施方案,所述硬度第二调节层具有5微米至15微米的厚度。

下面描述能够获得该界面的调节层4和5的方法。

该第一调节层4通过热喷涂法沉积,该方法能够以相对高的沉积速率沉积相对厚的沉积物。

该沉积包括以下步骤:

-以使得该基底与该第一调节层之间的粘附力承受至少等于20MPa的拉伸应力的方式对该基底的表面施以预处理,

-由将熔融状态的金属粒子喷涂到基底表面上的一连串过程形成该层,所述层是薄层的叠层,各薄层具有15微米的最小厚度。

对该涂层进行磨削以获得最终尺寸。

预处理是能够粗糙化该表面以允许固体机械连接的操作。其可以是例如喷砂预处理。

根据其中预氧化该第一层的实施方案,在由氧气(空气)组成的气 氛中在525℃的温度下进行喷涂后氧化22小时。

通过在两个喷涂过程之间改变沉积速率获得微孔密度的逐渐改变。

沉积条件必须能够获得具有400HV至500HV的平均硬度的第一调节层4。

在弯曲试验后,在调节层4中不应出现裂纹。

在该部件的表面处通过热化学碳扩散处理方法获得第二调节层5,以便形成硬且润滑的薄层。

本发明提出的界面特别适于由彼此相对运动的两个部件构成的铰接装置,分别对应于螺母和在其中容纳螺母的凹部。该凹部对应于具有大的运动长度的槽,该螺母对应于具有小的运动长度的销。该界面的第一调节层4应用于小的运动长度,该第二调节层5应用于大的运动长度。如上所见,反之亦可。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1