Mn‑Zn‑W‑O类溅射靶材及其制造方法与流程

文档序号:11236300阅读:990来源:国知局
Mn‑Zn‑W‑O类溅射靶材及其制造方法与流程

关联申请的交叉引用

本申请主张日本国专利申请2015-013577号(2015年1月27日申请)的优先权,该申请的公开内容整体并入到本文中用于参照。

本发明涉及mn-zn-w-o类溅射靶材及其制造方法,尤其涉及适合用于形成光信息记录介质的记录层的mn-zn-w-o类溅射靶材及其制造方法。



背景技术:

使ar离子等撞击由合金或烧结体构成的溅射靶材的溅射法在玻璃涂层、半导体元件制造、平板显示器制造、光信息记录介质(记录型光盘)的记录层形成等广泛的技术领域中进行。

这些之中,例如光信息记录介质的技术领域中,伴随着处理数据的增大,日益要求大容量化。在此,光信息记录介质大致区分为只读型和记录型,其中记录型可以区分为一次写入型和可擦写型这2类。作为一次写入型光盘的记录层材料,以往广泛研究了有机色素材料,但是随着近年的大容量化,无机材料也逐渐被广泛研究。

现状是,作为一次写入型光盘的无机类记录层材料,钯氧化物类材料被实用化,但是,pd是稀有金属,因此材料成本高,而作为以廉价的材料成本得到充分良好的记录特性的材料,开发了锰氧化物类材料。

作为由这样的锰氧化物类材料构成的记录层,专利文献1中提出了由材料:mn-w-zn-o构成的mn类记录层。而且,在专利文献1中,作为将上述mn类记录层成膜的具体方法,公开了在ar气体和o2气体的混合气体气氛下对mn靶材、cu靶材、w靶材和zn靶材进行共溅射(多元溅射)。通过使用专利文献1所述的技术,在不使用稀有金属pd的情况下实现了由材料:mn-w-zn-o构成的mn类记录层。

现有技术文献

专利文献

专利文献1:国际公布第2013/183277号。



技术实现要素:

发明要解决的课题

在此,作为通过溅射法形成如由前述的材料:mn-w-zn-o构成的mn类记录层那样含有多种元素的层的方法之一,可举出如专利文献1中所公开的那样,溅射由各自的元素构成的多个靶材的多元溅射法。此外,还有将含有多个元素的1片复合靶材作为单一靶材进行溅射的方法。多元溅射法中不仅装置大型化而成为成本上升的主要原因,而且存在容易产生组成偏差的缺点;因此以量产化的观点优选使用复合靶材。

作为用于制作信息记录介质的溅射靶材,上列的专利文献1提出了包含mn的氧化物、且上述mn的氧化物的部分或全部以mn的价数低于+4的氧化物状态存在的靶材,还提出了,该靶材中,以上述氧化物状态存在的mn的氧化物优选为不发生热分解的mn3o4。此外,还提出了,该靶材还可以包含除mn以外的金属或该金属的氧化物,上述金属为选自sn、zn、bi、ge、co、w、cu和al的1种以上。

然而,专利文献1中并未提及具体的mn-zn-w-o类复合溅射靶材。迄今尚未确立在成分组成中包含mn、zn、w和o的mn-zn-w-o类复合溅射靶材。

于是,本发明的目的在于提供mn-zn-w-o类溅射靶材及其制造方法。

用于解决课题的手段

本发明人为了达成前述各目的而锐意进行研究,尝试了以mn3o4粉末、zno粉末、w粉末作为原料制作mn-zn-w-o类溅射靶材。但是,根据本发明人的实验可知,所试制的mn-zn-w-o类溅射靶材中,存在耐裂性差、溅射期间会发生破裂的靶材。在锐意研究其原因时,本发明人发现,mn-zn-w-o类溅射靶材的耐裂性取决于仅由mn和o构成的锰氧化物。进一步研究的结果判明,如果如专利文献1所提出的那样在靶材中存在mn3o4晶体相,那么靶材的耐裂性反而会劣化。于是,本发明人发现,通过极力排除仅由mn和o构成的锰氧化物,可以改善靶材的耐裂性,从而完成了本发明。

本发明乃是基于本发明人的前述见解的发明,用于解决前述各课题的手段如下。即,

<1>溅射靶材,其为在成分组成中含有mn、zn、w和o的mn-zn-w-o类溅射靶材,其特征在于,

来源于仅由mn和o构成的锰氧化物的峰的最大峰强度pmno与来源于w的峰的最大峰强度pw之比pmno/pw为0.027以下。

该<1>所述的mn-zn-w-o类溅射靶材中,仅由mn和o构成的锰氧化物实质上不存在,可提供耐裂性优异的mn-zn-w-o类溅射靶材。

<2>前述<1>所述的溅射靶材,其中,在前述溅射靶材的x射线衍射中,存在来源于wmno4晶体相的峰。

<3>前述<1>或<2>所述的溅射靶材,其中,前述来源于wmno4晶体相的峰的最大峰强度pwmno与前述最大峰强度pw之比pwmno/pw为0.024以上。

<4>前述<1>或<2>所述的溅射靶材,其中,相对于mn、zn和w的合计100原子%,mn:4~40原子%,zn:15~60原子%,w:5~40原子%。

<5>前述<1>或<2>所述的溅射靶材,其中,在前述成分组成中还包含选自由cu、mg、ag、ru、ni、zr、mo、sn、bi、ge、co、al、in、pd、ga、te、v、si、ta、cr、tb构成的组的单独1种或2种以上的元素。

<6>前述<5>所述的溅射靶材,其中,在前述溅射靶材的构成元素中,相对于除了o以外的合计100原子%,选自前述组的单独1种或2种以上的元素的含有率为8~70原子%。

<7>制造方法,其为制造前述<1>所述的mn-zn-w-o类溅射靶材的方法,其特征在于,包括:

对包含在成分中含有mn的粉末、在成分中含有zn的粉末和在成分中含有w的粉末的混合粉末进行12小时以上的湿式混合的混合步骤,和

该混合步骤之后,在700℃以上的温度下烧结前述混合粉末的烧结步骤。

依据该<7>所述的制造方法,可提供耐裂性优异的mn-zn-w-o类溅射靶材的制造方法。

<8>前述<7>所述的制造方法,其中,前述在成分中含有mn的粉末由锰氧化物粉末构成,前述在成分中含有zn的粉末由锌氧化物粉末构成,前述在成分中含有w的粉末由金属钨粉末构成。

<9>前述<7>或<8>所述的制造方法,其中,前述混合粉末还包含由选自cu、mg、ag、ru、ni、zr、mo、sn、bi、ge、co、al、in、pd、ga、te、v、si、ta、cr、tb的单独1种或2种以上的元素的单质或化合物构成的粉末。

发明效果

依据本发明,可以解决以往的前述各问题而达成前述目的,可提供耐裂性优异的mn-zn-w-o类溅射靶材及其制造方法。

附图说明

图1是用于说明按照本发明的一个实施方案的溅射靶材的制造方法的流程图。

图2是实施例1的溅射靶材的x射线衍射光谱。

具体实施方式

(mn-zn-w-o类溅射靶材)

本发明的mn-zn-w-o类溅射靶材是在成分组成中包含mn、zn、w和o的mn-zn-w-o类溅射靶材。以下,将本发明的mn-zn-w-o类溅射靶材简称为“靶材”,对按照本发明的靶材详细地说明。

<靶材>

按照本发明的一个实施方案的靶材在成分组成中包含mn、zn、w和o,此外,还根据需要包含其他成分组成。

在前述靶材的x射线衍射中,来源于仅由mn和o构成的锰氧化物的峰的最大峰强度pmno与来源于w的峰的最大峰强度pw之比pmno/pw为0.027以下。

<<仅由mn和o构成的锰氧化物>>

在此,仅由mn和o构成的锰氧化物是指mn3o4(氧化锰(ii、iii))和mn2o3(氧化锰(iii))等的氧化锰,不包括后述的wmno4等的包含mn和o以外的元素的锰复合氧化物。作为锰氧化物,此外还可举出mno、mno2、mno3和mn2o7等。以下,在本说明书中,将锰氧化物中仅由mn和o构成的氧化锰简称为“氧化锰”,将包含除了mn和o以外的元素的复合氧化物称为“锰复合氧化物”,以区分两者。在本实施方案中,氧化锰的晶体相在靶材中实质上不存在是重要的,该实质上的存在与否使用x射线衍射中的峰强度确定。

<<靶材的x射线衍射中的强度>>

靶材的x射线衍射光谱的获得可按照常规方法进行,例如可使用株式会社リガク制的smartlab对靶材表面进行θ-2θ扫描以获得光谱。在本实施方案中,为了确定靶材的特性,至少测定上述来源于w的峰的最大峰强度pw和来源于氧化锰的峰的最大峰强度pmno,并根据需要测定来源于其他晶体相的峰的峰强度。

-测定条件-

x射线衍射的测定条件可根据靶材而适宜决定,例如可从以下的条件范围内选择:

x射线源:cu-kα射线

输出设定:20~100kv,10~100ma

测定角度范围:2θ=5°~80°

扫描速度:1°~4°(2θ/分钟),连续扫描

发散狭缝:0.5°~2°

散射狭缝:0.5°~2°

入射狭缝:0.1mm~0.5mm。

-峰强度-

w的衍射峰在40.26°±0.3°、58.27°±0.3°等的范围内被检出。将这些范围内检出的衍射峰中的最大值作为来源于w的峰的最大峰强度pw(单位:cps,下同),并作为本实施方案的基准强度。这是因为,按照本实施方案的靶材的x射线衍射光谱中,来源于w的峰的最大峰强度pw多为靶材中各成分的峰的最大峰强度中的最大强度。接下来,对来源于氧化锰的峰的最大峰强度pmno进行说明。例如mn3o4的衍射峰在28.88°±0.3°、59.84°±0.3°等的范围内被检出,mn2o3的情况下,在32.98°±0.3°、55.24°±0.3°等的范围内被检出。在这些范围内检出的衍射峰中,在氧化锰的衍射峰被显著检出时,将来源于氧化锰的峰的峰强度的最大值作为最大峰强度pmno,在氧化锰的衍射峰埋没于x射线衍射光谱的背景中时(例如背景强度的1.1倍以下),视为衍射峰未检出,将峰强度pmno记作0(零)。

如果pmno/pw之比为0.027以下,则氧化锰的晶体相在靶材中实质上不存在,靶材的耐裂性优异。因氧化锰的晶体相在靶材中实质上不存在而靶材的耐裂性优异的理由,换言之,因氧化锰的晶体相在靶材中显著存在而靶材的耐裂性劣化的理论上的理由,现在尚不明确,但本发明人认为这是因为,如果烧结不充分,那么烧结密度低,机械特性劣化。

如以上所示,按照本实施方案,可提供耐裂性优异的mn-zn-w-o类靶材。另外,按照本实施方案的靶材尤其适合用于形成光信息记录介质的记录层,但用途并不受任何限定。

需说明的是,作为pmno/pw之比,只要在前述的范围内就不受特别限制,优选为0.027以下,更优选为0.01以下,最优选为0(即,未检出氧化锰的衍射峰)。

<<wmno4晶体相>>

在此,按照本实施方案的靶材的x射线衍射中,为了更确实地提高靶材的耐裂性,优选存在wmno4晶体相。这是因为,如果烧结进展,那么锰不再是氧化锰的形态,而是变成wmno4的形态。wmno4晶体相的存在可通过来源于wmno4晶体相的峰的存在来确定,在本实施方案中,优选存在来源于wmno4晶体相的峰。需说明的是,来源于wmno4晶体相的峰存在,是指检出相对于x射线衍射光谱的背景显著的峰。

-来源于wmno4晶体相的峰的峰强度pwmno-

来源于wmno4晶体相的衍射峰在29.80°±0.3°、30.23°±0.3°等的范围内被检出,将这些峰中为最大强度的峰的强度作为最大峰强度pwmno时,若pwmno/pw之比为0.02以上,则可进一步提高靶材的耐裂性,从而优选。进而,更优选pwmno/pw之比为0.03以上,最优选为0.04以上。

<<成分比>>

在此,作为按照本实施方案的靶材的成分比,不受特别限制,可根据目的适宜选择,相对于mn、zn和w的合计100原子%,优选mn:4~40原子%,zn:15~60原子%,w:5~40原子%。

<<其他成分>>

此外,按照本实施方案的靶材优选在成分组成中还包含选自由cu、mg、ag、ru、ni、zr、mo、sn、bi、ge、co、al、in、pd、ga、te、v、si、ta、cr、tb构成的组的单独1种或2种以上的元素。例如,在将按照本实施方案的靶材用于形成信息记录介质的记录层时,通过在成分组成中进一步包含这些元素,可以改变透射率、反射率和记录灵敏度,制成多层结构的记录层,是有用的。

-其他成分的成分比-

就选自上述组的单独1种或2种以上的元素的含有率而言,在溅射靶材的构成元素中,相对于除了o(氧)以外的合计100原子%,可为8~70原子%。

需说明的是,按照本实施方案的靶材的形状不受任何限定,可以为圆盘状、圆筒状、四边形板状、长方形板状、正方形板状等任意的形状,可以根据靶材的用途适宜选择。另外,对于靶材的宽度和纵深的大小(圆形的情况下为直径),可以在mm级~m级左右的范围内根据靶材的用途适宜选择。在圆形的情况下,通常为直径50mm~300mm左右。对于厚度也是一样,可以根据用途适宜选择,通常为1mm~20mm左右。

<靶材的制造方法>

接下来,使用图1说明按照前述的本发明的一个实施方案的靶材的制造方法。按照本发明的一个实施方案的靶材的制造方法包括混合步骤(s10)和烧结步骤(s20),此外包括根据需要适宜选择的其他步骤。

<<混合步骤(s10)>>

前述混合步骤(s10)是对包含在成分中含有mn的粉末、在成分中含有zn的粉末和在成分中含有w的粉末的混合粉末进行12小时以上的湿式混合的步骤。

作为前述湿式混合的方法,不受特别限制,可根据目的适宜选择,例如可举出使用以往公知的球磨机装置的湿式混合方法等。以下说明本步骤中混合的前述混合粉末和混合条件。

前述混合粉末包含在成分中含有mn的粉末、在成分中含有zn的粉末和在成分中含有w的粉末,根据需要包含其他粉末。

-在成分中含有mn的粉末-

作为前述在成分中含有mn的粉末,可根据目的适宜选择,例如可举出由mn的单质构成的粉末、锰化合物粉末、锰氧化物(例如mn3o4、mn2o3等)粉末等。这些可单独使用1种或并用2种以上。

这些之中,优选锰氧化物粉末,更优选mn3o4粉末。这是由于烧结温度和熔点的关系。

需说明的是,作为前述在成分中含有mn的粉末的平均粒径,可根据目的适宜选择。另外,作为前述mn3o4粉末的平均粒径,可以为市售的3μm~7μm左右。

-在成分中含有zn的粉末-

作为前述在成分中含有zn的粉末,可根据目的适宜选择,例如可举出由zn的单质构成的粉末、锌化合物粉末、锌氧化物粉末等。这些可单独使用1种或并用2种以上。

这些之中,锌氧化物粉末是优选的,zno粉末是更优选的。这是由于烧结温度和熔点的关系。

需说明的是,作为前述在成分中含有zn的粉末的平均粒径,可根据目的适宜选择。另外,作为前述zno粉末的平均粒径,可以为市售的1μm~3μm左右。

-在成分中含有w的粉末-

作为前述在成分中含有w的粉末,可根据目的适宜选择,例如可举出由w的单质构成的粉末、钨化合物粉末、钨氧化物粉末等。这些可单独使用1种或并用2种以上。

这些之中,由w的单质构成的金属钨粉末是优选的。这是由于带来导电性。

需说明的是,作为前述在成分中含有w的粉末的平均粒径,可根据目的适宜选择。另外,作为前述w粉末的平均粒径,可以为市售的2μm~5μm左右。

-其他粉末-

作为前述其他粉末,可根据目的适宜选择,例如可举出由选自cu、mg、ag、ru、ni、zr、mo、sn、bi、ge、co、al、in、pd、ga、te、v、si、ta、cr、tb的单独1种或2种以上的元素的单质或化合物构成的粉末等。在此,根据所制造的靶材的期望的目的,可以在前述混合粉末中包含这样的粉末。

-混合时间-

在此,对前述混合粉末进行12小时以上的湿式混合在本实施方案中是重要的。通过使混合时间为12小时以上,可以充分地使混合粉末混合,因此促进烧结中的氧化锰的固相反应,可以抑制烧结后的氧化锰晶体相的残留。另外,上述范围中,使混合时间为16小时以上是优选的,20小时以上是更优选的,24小时以上是最优选的。虽然混合24小时的话混合的效果便饱和,但是混合24小时以上也可以。需说明的是,并非旨在限制上限,考虑到工业上的生产率,可以将混合时间的上限设定为168小时。

<<烧结步骤(s20)>>

前述烧结步骤(s20)是在前述混合步骤之后进行的步骤,是在700℃以上的温度下烧结前述混合粉末的烧结步骤。

-烧结-

作为前述烧结,不受特别限制,可根据目的适宜选择,例如可举出在惰性气体气氛中的热压、热等静压法(hip法:hotisostaticpressing)等。

在此,在700℃以上的温度下烧结前述混合粉末在本实施方案中是重要的。通过使烧结温度为700℃以上,可以抑制烧结后锰氧化物晶体相的残留。

需说明的是,烧结时间不受特别限定,可适宜选择,可以设为通常进行的1小时~6小时左右的烧结时间。

对于经以上步骤制造的mn-zn-w-o类溅射靶材,在该溅射靶材的x射线衍射中,来源于仅由mn和o构成的锰氧化物的峰的最大峰强度pmno与来源于w的峰的最大峰强度pw之比pmno/pw为0.027以下。因此,可制造耐裂性优异的靶材。

<<其他步骤>>

作为前述其他步骤,不受特别限制,可根据目的适宜选择,例如可举出混合粉末的成型步骤等。

-成型步骤-

需说明的是,前述成型步骤在本发明中不是必需的,有时为了将靶材的形状成型而进行。

以下,使用实施例对本发明进一步详细地说明,但本发明不受以下实施例的任何限定,可以在不脱离本发明宗旨的范围内施加各种变更。

实施例

如下,作为按照本发明的靶材制作了实施例1,作为对照用的靶材制作了比较例1、2,评价了耐裂性。

(实施例1)

作为原料粉末,准备了以下的粉末。

纯度:99.9%以上,平均粒径:5μm,mn3o4粉末

纯度:99.9%以上,平均粒径:1.4μm,zno粉末

纯度:99.9%以上,平均粒径:3μm,w粉末

称量上述mn3o4粉末、zno粉末和w粉末,使各金属元素的比例为mn:w:zn=20:30:50(原子%)。将称量的各原料粉末、各原料粉末的合计重量的3倍量的氧化锆球(直径5mm)和醇放入塑料容器中,用球磨机装置进行24小时的湿式混合。在将混合粉末干燥后,过孔径500μm的筛。接着,在烧结温度:900℃、烧结时间:2小时、压力:200kgf/cm2、惰性气体气氛中进行热压,制作了实施例1的靶材。

(比较例1)

实施例1中,代替混合时间为24小时,使混合时间为2小时,除此以外,与实施例1一样地制作了比较例1的靶材。

(比较例2)

实施例1中,代替烧结温度为900℃,使烧结温度为600℃,除此以外,与实施例1一样地制作了比较例2的靶材。

<评价>

对于以上的实施例1和比较例1、2中制作的靶材,进行了(a)成分评价和(b)耐裂性评价。各评价如下进行。

(a)成分评价

对于实施例1和比较例1、2的靶材,通过x射线衍射法进行靶材中的成分评价。x射线衍射时,使用株式会社リガク制的smartlab,进行θ-2θ扫描,得到了x射线衍射光谱。将实施例1的x射线衍射光谱作为代表例示于图2。需说明的是,强度以任意单位(a.u.)表示。将w的峰的最大峰强度标记为pw,将锰氧化物的峰的最大峰强度标记为pmno,将wmno4晶体相的峰的最大峰强度标记为pwmno,将此时的峰强度比示于表1。需说明的是,在峰埋没于背景中时,将峰强度记作0。试验条件如下。

x射线源:cu-kα射线

输出设定:30kv,15ma

测定角度范围:2θ=15°~70°

扫描速度:2°(2θ/分钟),连续扫描

发散狭缝:1°

散射狭缝:1°

入射狭缝:0.3mm。

(b)耐裂性评价

将实施例1和比较例1、2的靶材用in焊料焊接于无氧铜制的垫板上。将焊接后的靶材安装于溅射装置中。接下来,将溅射装置内真空排气至1×10-4pa以下,导入ar气体和o2气体,使装置内压力为0.3pa。氧分压([o2]/[ar+o2])为70%。用dc电源施加5w/cm2的电力,进行30分钟溅射,之后从溅射装置取出靶材,目视观察各靶材是否发生了破裂。按照下述的评价基准评价了靶材的耐裂性。

○:未观察到破裂

×:观察到破裂

结果示于表1。

[表1]

根据以上结果,确认了以下内容。

实施例1中不发生破裂,另一方面,比较例1、2中发生了破裂。在此,实施例1中观测到来源于w、zno和wmno4的峰,但未检出mn3o4的峰,因此可知,不存在来源于原料粉末的mn3o4晶体相。另外,也未检出来源于其他氧化锰晶体相的峰。比较例1、2中,检出mn3o4的峰,因此可知残留了mn3o4晶体相。认为比较例1、2中发生破裂的原因是,由于混合或烧结条件不充分,所以mn3o4晶体相超出属于本发明条件的pmno/pw的阈值0.027而残留。

工业实用性

依据本发明,可提供尤其适合用于形成光信息记录介质的记录层的、耐裂性优异的mn-zn-w-o类溅射靶材及其制造方法。

符号说明

s10・・・混合步骤

s20・・・烧结步骤

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1