具有高强度特性的具有贝氏体组织的部件和制造方法与流程

文档序号:12968209阅读:404来源:国知局
具有高强度特性的具有贝氏体组织的部件和制造方法与流程

本发明涵盖制造具有高强度特性同时可机械加工的部件,其由如下钢获得:同时表现出使得能够进行热成形操作的良好热延展性和可淬性,因此不必进行淬火操作和回火操作以获得所宣称的特性。

本发明更具体地涉及这样的部件,不论部件的形式或复杂性如何,所述部件均表现出机械强度大于或等于1100mpa、弹性极限大于或等于700mpa、断裂延伸率a大于或等于12、以及断裂收缩率z大于30%。

在本发明的上下文中,术语“部件”意指通过热成形,例如在有或没有后续的部分或全部再加热、热或热化学处理的情况下锻造或轧制,和/或在有或没有材料的移除的情况下成形或者甚至例如通过焊接添加材料成形而获得的所有形状的条、线或复杂部件。

术语“热成形”意指通过在材料的温度下进行的使得钢的晶体组织主要为奥氏体的操作来改变产品的初始形式的用于热成形钢的任何方法。

对温室气体减排的高需求,加上汽车安全要求和燃料价格增加,导致机动陆地车辆制造商寻求表现出高机械强度的材料。这使得可以减小这些部件的重量同时保持或提高机械强度性能。

用于获得非常好的机械特征的传统钢解决方案早已存在。其包括较大量或较小量的合金元素连同在大于ac1的温度下的奥氏体化类型热处理,然后在油型、聚合物型或甚至水型流体中淬火,并且通常在低于ar3的温度下淬火。与这些钢和获得所需特性必要的处理相关的一些缺点可能具有经济性质(合金的成本、热处理的成本)、环境性质(再奥氏体化所消耗的能量,通过淬火分散、淬火浴处理)、或几何性质(复杂部件的形成)。在这种情况下,使得在热成形之后立即获得相对高的强度的钢正在变得越来越重要。随着时间的推移,已经提出了提供各种水平的机械强度的几种钢,例如具有多种碳含量的铁素体-珠光体组织的微合金钢,以获得几种水平的强度。这些微合金铁素体-珠光体钢在近几十年来已经被广泛使用,并且经常用于所有种类的机械部件以在没有紧跟着热成形的热处理的情况下获得复杂部件。虽然高效,但是在设计人员需要超过700mpa的弹性极限和1100mpa的机械强度的机械特性时,这些钢材现在已经达到其极限,这往往导致其回到上述传统解决方案。

此外,根据部件的厚度和形状,特别是由于影响显微组织的冷却速率的非均匀性,可能难以确保满意的特性均匀性。

为了满足越来越轻的车辆的要求,因此在保持具有铁素体-珠光体基体的微合金钢的经济和环境优点的同时,需要在热成形操作之后立即获得的越来越强的钢。然而,在碳钢领域中,已知机械强度增加通常伴随着延展性的损失和可加工性的损失。此外,机动陆地车辆制造商正在规定越来越复杂的部件,其需要表现出高水平的机械强度、疲劳强度、韧性、可成形性和可加工性的钢。

如在专利ep0787812中可见,其描述了用于制造锻造部件的方法,其中以重量计,化学组成包含:0.1%≤c≤0.4%;1%≤mn≤1.8%;1.2%≤si≤1.7%;0%≤ni≤1%;0%≤cr≤1.2%;0%≤mo≤0.3%;0%≤v≤0.3%;cu≤0.35%,任选地0.005%至0.06%的铝,任选地含量为0.0005%至0.01%的硼,任选地0.005%至0.03%的钛,任选地0.005%至0.06%的铌,任选地0.005%至0.1%的硫,任选地最高至0.006%的钙,任选地最高至0.03%的碲,任选地最高至0.05%的硒,任选地最高至0.05%的铋,任选地最高至0.1%的铅,余量为铁和由生产方法产生的杂质。该方法涉及使部件经历热回火处理,包括以大于0.5℃/秒的冷却速率vr从钢为完全奥氏体的温度冷却至ms+100d℃至ms-20℃之间的温度tm,接着将部件保持在tm至tf之间持续至少2分钟以获得包含至少15%,并且优选至少30%的在tm至tf之间形成的贝氏体的组织,其中tf≥tm-100℃,并且优选tf≥tm-60℃。该技术需要对生产率不利的几个加工步骤。

然而,已知专利申请ep1201774,其中该发明的目的为提供如下锻造方法,进行该锻造方法以通过改变经历细铁素体-珠光体组织的冲击载荷的产品的金相组织来改善可加工性,而不采用淬火和回火方法,以获得超过通过淬火和回火方法获得的弹性极限。获得的拉伸强度(rm)小于用淬火和回火方法获得的拉伸强度。该方法还具有需要使制造方法更复杂的大量处理步骤的缺点。此外,化学组成的特定元素的缺少可导致使用因对可焊接性、可加工性或者甚至韧性的不利影响而不适合涉及锻造部件的应用的化学组成。

本发明的目的为解决上述问题。其旨在提供用于热成形部件的钢,其具有高强度特性,同时表现出机械强度和使得能够执行热成形操作的变形能力。本发明更具体地涉及机械强度大于或等于1100mpa(即,硬度大于或等于300hv)、弹性极限大于或等于700mpa、断裂延伸率大于或等于12%,并且断裂收缩率大于30%的钢。本发明还旨在提供能够以稳健的方式生产,即,作为制造参数的函数的特性没有大变化,并且能够用可商购获得的工具机械加工而在实施期间没有生产率损失的钢。

为此,本发明的目的为根据权利要求1至12的部件和用于制造根据权利要求13的部件的方法。

本发明的其他特征和优点将在通过非限制性实例给出的以下描述过程中显现。

在本发明的上下文中,以重量百分比计,化学组成必须如下:

碳含量为0.10%至0.30%。如果碳含量低于0.10重量%,则存在先共析铁素体形成和获得的机械强度不足的风险。高于0.30%,因为可在热影响区(haz)或融化区中形成低韧性的显微组织,可焊接性变得越来越低。在该范围内,可焊接性令人满意,机械特性稳定并且与本发明的目的一致。根据一个优选的实施方案,碳含量为0.15%至0.27%,并且优选0.17%至0.25%。

锰含量为1.6%至2.1%,并且优选为1.7%至2.0%。这是固溶体中置换的硬化元素;其使奥氏体稳定并降低转变温度ac3。因此,锰有助于机械强度增加。1.6重量%的最小含量对获得期望机械特性是必需的。然而,高于2.1%,其伽马相形成(gammagenic)特征导致在最终冷却期间发生的贝氏体转变动力学显著减缓,并且贝氏体的比例将不足以实现大于或等于700mpa的屈服强度。由此增加了令人满意的机械强度,而不增加降低贝氏体比例的风险,并因此既不降低焊接的合金的弹性极限也不增加可淬性(这对根据本发明的钢的可焊接性不利)。

铬含量必须为0.5%至1.7%,并且优选为1.0%至1.5%。该元素使得能够控制在冷却期间由初始完全奥氏体组织形成铁素体,原因是大量铁素体降低根据本发明的钢所需的机械强度。该元素还使得能够使贝氏体显微组织硬化和细化,这解释了为何需要0.5%的最小含量。然而,该元素显著减慢贝氏体转变动力学;因此,对于大于1.7%的含量,贝氏体的比例可能不足以实现大于或等于700mpa的弹性极限。优选铬含量的范围选自1.0%至1.5%以细化贝氏体显微组织。

硅含量必须为0.5%至1.0%。在该范围内,通过添加显著减慢贝氏体转变期间碳化物的析出的硅,使得可以稳定残留奥氏体。这由注意到本发明的贝氏体基本上没有碳化物的发明人所证实。这是因为硅在渗碳体中的溶解度相当低,并且该元素增加奥氏体中碳的活性。因此形成任何渗碳体之前将是si在界面处被排出的步骤。因此,奥氏体富集碳导致其在根据该第一实施方案的钢中于环境温度下稳定。其后,在低于200℃下施加外部应力,例如通过成形或者加工硬化型或疲劳型的机械应力,可导致该奥氏体的一部分转变成马氏体。该转变将导致弹性极限增加。最小硅含量必须设为0.5重量%,以获得对奥氏体的稳定效果以及延迟碳化物形成。此外,应注意,如果硅小于0.5%,则弹性极限低于700mpa的所需的最小值。此外,添加大于1.0%的量的硅将产生过量残留奥氏体,这将降低弹性极限。优选地,硅含量将为0.75%至0.9%以使上述效果最佳。

铌含量必须为0.065%至0.15%。这是与碳和/或氮形成硬化析出物的微合金元素。其还使得能够协同微合金元素例如存在于本发明中的硼和钼延迟贝氏体转变。铌含量必须仍然限制在0.15%,以不仅避免可为开裂起始(crackinitiation)位点的大析出物的形成,而且避免涉及与氮化物的可能晶粒间析出相关的高温下延展性损失的问题。此外,铌含量必须大于或等于0.065%,其在与钛结合时使得能够对最终机械特性具有稳定效果,即,对冷却速率的敏感性降低。实际上,与钛混合的碳氮化物可在相对高的温度下形成并保持稳定,因而防止晶粒在高温下异常生长,或者甚至使得奥氏体晶粒的充分基本细化成为可能。优选地,最大nb含量在0.065%至0.110%的范围内以使上述效果最佳。

钛含量必须为使得0.010%<ti<0.1%。0.1%的最大含量可以容许,高于最大含量,钛将增加价格并产生对耐疲劳性和可加工性不利的析出物。0.010%的最小含量对控制奥氏体晶粒的尺寸以及保护硼免于氮气是必需的。优选地,钛含量的范围选自0.020%至0.03%。

硼含量必须为10ppm(0.0010%)至50ppm(0.0050%)。该元素使得能够控制在冷却期间由初始完全奥氏体组织形成铁素体,因为高水平下的该铁素体降低本发明涵盖的机械强度和弹性极限。这是淬火元素。10ppm的最小含量对防止自然冷却期间铁素体形成是必需的,并因此其对被本发明涵盖的类型的部件通常小于2℃/秒。然而,高于50ppm的硼将引起可能对延展性不利的铁硼化物的形成。优选硼含量的范围选自20ppm至30ppm以使上述效果最佳。

氮含量必须为10ppm(0.0010%)至130ppm(0.0130%)。10ppm的最小含量对形成上述碳氮化物是必需的。然而,高于130ppm的氮可引起贝氏体铁素体的过度硬化,以及最终部件的回弹性可能降低。优选地,碳含量的范围选自50ppm至120ppm以使上述效果最佳。

铝含量必须小于或等于0.050%,并且优选小于或等于0.040%,或者甚至小于或等于0.020%。优选地,al含量为使得0.003%≤al≤0.015%。其为残留元素,希望限制其含量。认为高铝含量增加耐火材料的腐蚀并引起喷嘴在钢铸造期间的堵塞。此外,铝负偏析,并且其可导致宏观偏析。在过量下,铝可降低热延展性并增加连铸期间缺陷的风险。没有完全监测铸造条件的情况下,显微型和宏观型偏析缺陷最终导致锻造部件上的偏析。该带状组织包含具有多种硬度的交替贝氏体带,这可能对材料的可成形性不利。

钼含量必须小于或等于1.0%,优选小于或等于0.5%。优选地,钼含量的范围选自0.03%至0.15%。其存在通过与硼和铌协同有利于贝氏体的形成。其因此确保在晶界处没有先共析铁素体。高于1.0%的含量,其有利于不希望的马氏体的出现。

镍含量必须小于或等于1.0%。容许1.0%的最大含量,高于1.0%,镍将增加所提出的解决方案的价格,这可从经济角度降低其可行性。优选镍含量的范围选自0%至0.55%。

钒含量必须小于或等于0.3%。容许0.3%的最大含量,高于0.3%,钒将增加解决方案的价格并影响回弹性。优选地,在本发明中,钒含量的范围选自0%至0.2%。

硫含量可根据期望的可加工性处于多种水平。通常存在少量硫,因为其为无法降低至绝对零的值的残留元素,但是其还可主动添加。当期望的疲劳特性非常高时,期望低含量的s。通常,目标为0.015%至0.04%,应理解为可以添加至0.1%以改善可加工性。或者,还可以添加与硫组合的选自碲、硒、铅和铋中的一种或更多种元素,每种元素的量小于或等于0.1%。

磷含量必须小于或等于0.050%,并且优选小于或等于0.025%。这是在固溶体中硬化但是显著降低可焊接性和热延展性的元素,特别是由于其在晶界处偏析的倾向及其与锰共偏析的倾向。出于这些原因,其含量必须限制成0.025%以获得好的可焊接性。

铜含量必须小于或等于0.5%。容许0.5%的最大量,因为高于该含量铜可降低产品的成形能力。

组成的余量包含铁和由生产方法产生的不可避免的杂质,例如砷或锡。

在优选的实施方案中,根据本发明的化学组成还可单独或组合满足以下条件:

0.1≤s1≤0.4

以及

0.5≤s2≤1.8

0.7≤s3≤1.6

0.3≤s4≤1.5

其中

s1=nb+v+mo+ti+al

s2=c+n+cr/2+(s1)/6+(si+mn-4*s)/10+ni/20

s3=s2+1/3xvr600

s4=s3-vr400

其中元素的含量以重量百分比表示,并且冷却速率vr400和vr600以℃/秒表示。vr400表示在420℃至380℃的温度范围内的冷却速率。vr600表示在620℃至580℃的温度范围内的冷却速率。

如将在下述测试中描述的,指标s1与机械特性作为一般冷却变化的函数的稳健性以及作为具体地vr600变化的函数的稳健性相关。至于该指标的值的范围,因此使得能够确保钢等级对制造条件非常低的敏感性。在一个优选的实施方案中,0.200≤s1≤0.4,这使得能够进一步改善稳健性。

然而,指标s2至s4与获得对于根据本发明的等级大于70%的主要贝氏体组织相关,由此使得能够确保实现目标机械特性。

根据本发明,以表面比例计,最终冷却后钢的显微组织可包含:

-70%至100%含量的贝氏体。在本发明的上下文中,术语“贝氏体”意指在表面上包含小于5%的碳化物的贝氏体,其中板条间(inter-lath)相为奥氏体;

-小于或等于30%的含量的残留奥氏体;

-小于5%的含量的铁素体。特别地,如果铁素体含量大于5%,则根据本发明的钢将表现出小于目标1100mpa的机械强度。

根据本发明的钢可通过下述方法来制造:

-以具有矩形、正方形或圆形截面的小钢坯或大型钢坯的形式或以锭的形式提供具有根据本发明的组成的钢,然后

-将该钢轧制成半成品的形式、条或线的形式,然后

-使半成品处于1100℃至1300℃之间的再加热温度(trech)以获得经再加热的半成品,然后

-对经再加热的半成品进行热成形,热成形结束时的温度大于或等于850℃以获得热成形部件,然后

-将所述热成形部件冷却直至其达到620℃至580℃之间的温度,冷却速率vr600为0.10℃/秒至10℃/秒,然后

-将所述部件冷却至420℃至380℃之间的温度,冷却速率vr400小于4℃/秒,然后

-将部件以小于或等于0.3℃/秒的速率冷却至380℃至300℃之间的温度,然后

-将部件以小于或等于4℃/秒的速率冷却至环境温度,然后

-任选地使所述热成形部件在300℃至450℃之间的回火温度下经历热回火处理30分钟至120分钟的时间然后冷却至环境温度,然后

-执行所述部件的机械加工。

在一个优选的实施方案中,执行热回火处理以确保在冷却后获得非常好的特性。

为了更好地说明本发明,对三个等级执行测试。

测试

测试中使用的钢的化学组成示出于表1中。这些等级的再加热温度为1250℃。热成形结束时的温度为1220℃。冷却速率vr600和vr400示出于表2中。将部件以0.15℃/秒从380℃冷却至环境温度,然后进行机械加工。用于执行测试的条件和用于表征的测量结果汇总于表2中。

将这些测试的结果绘制在4幅图上。图1示出等级a和b的作为冷却速率vr600的函数的机械拉伸强度rm的变化。图2示出等级a和b的作为冷却速率vr600的函数的弹性极限re的变化。

应注意,根据本发明的等级表现出在冷却条件变化时其机械特性的高度稳定性。因此,该等级响应于处理条件变化比根据先前技术的等级稳健得多。

此外,图3示出等级a、b和c的机械拉伸强度rm的δ作为指标s1的函数。类似地,图4示出等级a、b和c的弹性极限re的δ作为指标s1的函数。

应注意,对冷却条件的敏感性随s1的值增加而降低。

本发明将特别有利地用于制造用于在机动陆地车辆中应用的热成形部件,并且特别是热锻造部件。其还可应用于制造船用部件或建筑领域,特别是用于制造模板用螺杆。

通常,可实施本发明以制造需要待实现的目标特性的所有类型的部件。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1