基板处理装置及基板处理方法与流程

文档序号:13426322
基板处理装置及基板处理方法与流程

本发明涉及一种基板处理装置,更特别地,涉及使用一个或多个气体喷射器用于在基板上形成薄膜的基板处理装置。另外,本发明涉及一种利用本发明的基板处理装置在形成有超微图案的基板上形成均匀和致密薄膜的基板处理方法。



背景技术:

通常,为了制造太阳能电池(Solar Cell)、半导体元件、平板显示设备等,需要在基板表面上应形成规定的薄膜层、薄膜电路图案、或光学图案。为此,执行半导体制造工艺,并且半导体制造工艺的实例包括将具有特定材料的薄膜沉积于基板上的薄膜沉积工序,通过使用感光材料选择性暴露薄膜的感光工序,去除选择性暴露部分的薄膜以形成图案的蚀刻工序等。

这样的半导体制造工艺在基板处理装置内执行,这种基板处理装置基于为相应工序的最佳环境而设计,并且近来,大量使用用于执行基于等离子的沉积或蚀刻处理的基板处理装置。

基于等离子的基板处理装置的实例包括:通过使用等离子形成薄膜的PECVD(Plasma Enhanced Chemical Vapor Deposition:等离子增强的化学气相沉积)装置,以及用于对薄膜蚀刻和形成图案的等离子蚀刻装置等。

在现有的半导体制造工艺和装置中,由于在图案内部和图案上剩余的源气体不能够从形成有复杂和高纵横比图案的基板上吹扫,因此均匀的薄膜不能够形成在图案内部和图案上,并且由于这种原因,在图案之间或图案的内部和图案顶部之间的台阶覆盖(Step coverage)不均匀,从而导致工艺生产性的降低。



技术实现要素:

所要解决的技术问题

本发明在于提供一种基板处理装置及基板处理方法,适合于在基板上形成的超微图案上形成均匀和致密的薄膜。

解决上述技术问题的方案

本发明涉及的基板处理装置包括:腔室;基座,设置于所述腔室的底部中,至少一个基板安置于基座上;腔室盖,设置于所述基座上部;第一源气体喷射器,设置于所述腔室盖中,用于喷射源气体;第二源气体喷射器,设置于所述腔室盖中,用于喷射源气体;以及第一吹扫气体喷射器,设置于所述腔室盖中,用于喷射吹扫气体,所述第一吹扫气体喷射器设置于所述第一源气体喷射器和第二源气体喷射器之间。

本发明涉及的基板处理装置,所述源气体可包括含硅(Si)气体、含钛(Ti)前体、锆(Zr)、铝(Al)、铪(Hf)、以及钽(Ta)中的任意一种。

本发明涉及的基板处理装置,设置于所述腔室盖中的所述第一源气体喷射器、所述第二源气体喷射器、所述第一吹扫气体喷射器以所述腔室盖的中心部为基准朝向外周部的方向设置成放射状。

本发明涉及的基板处理装置,设置于所述腔室盖中的所述第一源气体喷射器和所述第一吹扫气体喷射器之间的中心部位置处的间隔短于所述第一源气体喷射器和所述第一吹扫气体喷射器之间的外周部位置处的间隔。

本发明涉及的基板处理装置,可以进一步包括:第二吹扫气体喷射器以及第三吹扫气体喷射器,设置于所述腔室盖中以喷射吹扫气体。

本发明涉及的基板处理装置,第二吹扫气体喷射器或第三吹扫气体喷射器的气体喷射区域宽于所述第一吹扫气体喷射器的气体喷射区域。

本发明涉及的基板处理装置,第二吹扫气体喷射器或第三吹扫气体喷射器的气体喷射流量大于所述第一吹扫气体喷射器的气体喷射流量。

本发明涉及的基板处理装置,可以进一步包括:多个反应气体喷射器,设置于所述腔室盖中以喷射反应气体。

本发明涉及的基板处理装置,所述反应气体可包括含氮气体或含氧气体。

本发明涉及的基板处理装置的所述反应气体喷射器可以包含等离子电极。

本发明涉及的一种基板处理方法包括如下:第一步骤,将至少一个基板装载于腔室中设置的基板支撑部上;第二步骤,通过设置在所述基板上部的第一源气体喷射器喷射源气体;第三步骤,通过设置在所述基板上部的第一吹扫气体喷射器喷射吹扫气体;第四步骤,通过设置在所述基板上部的第二源气体喷射器喷射源气体,其中,所述基板依次执行所述第二步骤、所述第三步骤、所述第四步骤的工序。

根据本发明涉及的基板处理方法,所述源气体包括含硅(Si)气体、含钛(Ti)前体、锆(Zr)、铝(Al)、铪(Hf)、以及钽(Ta)中的任意一种。

本发明涉及的基板处理方法可以进一步包括:第五步骤,通过所述腔室盖中设置的多个反应气体喷射器喷射反应气体。

本发明涉及的基板处理方法,所述反应气体可包括含氮气体或含氧气体。

本发明涉及的基板处理方法,所述反应气体喷射器产生等离子或喷射自由基气体。

本发明涉及的基板处理方法进一步包括:通过设置于所述腔室盖中的第二吹扫气体喷射器和第三吹扫气体喷射器喷射吹扫气体的步骤。

本发明涉及的基板处理方法,第二吹扫气体喷射器或第三吹扫气体喷射器的气体喷射区域可宽于所述第一吹扫气体喷射器的气体喷射区域。

本发明涉及的基板处理方法,第二吹扫气体喷射器或第三吹扫气体喷射器的气体喷射流量可大于所述第一吹扫气体喷射器的气体喷射流量。

技术效果

由于本发明的基板处理装置包括多个源气体喷射器或多个反应气体喷射器,因此均匀薄膜可以在图案内部和图案上部形成,其中此图案在基板上形成、复杂、并且纵横比很高。

此外,由于本发明的基板处理装置包括多个吹扫气体喷射器,因此图案内部和图案上部残留的源气体可以从基板上适当地吹扫(去除),其中此基板上形成有复杂和高纵横比的图案,因此,均匀薄膜可形成于图案内部和图案上部。

此外,由于本发明的基板处理装置包括多个源气体喷射器或多个反应气体喷射器,因此源气体充分吸附到基板表面上,或者源气体和反应气体的反应在基板表面上充分地执行,从而提高了沉积的薄膜质量。

此外,在本发明的基板处理装置中,等离子电极可形成于气体喷射器中,或者通过气体喷射器喷射激活的自由基气体,薄膜可形成于基板表面上,或者可以在基板表面上形成的薄膜上进行表面处理,因此,沉积的薄膜质量得到了提高。

此外,在本发明的基板处理装置中,通过使用用于沉积的气体喷射器或构成等离子电极的一部分或全部的气体喷射器,在基板上沉积薄膜的过程或者可重复地执行沉积之后基于等离子的沉积表面处理,从而提高在基板上沉积的薄膜质量。

此外,在本发明的基板处理装置中,可使用用于沉积的气体喷射器或构成等离子电极的一部分或全部的气体喷射器,并且通过重复地执行在基板上沉积薄膜的过程或者通过喷射由等离子激活的气体执行后沉积表面处理,在基板上沉积的薄膜质量得到了提高。

此外,在本发明的基板处理装置中,等离子电极可形成在与用于沉积的气体喷射器相分离的气体喷射器中,或激活的自由基气体可通过气体喷射器喷射,通过将杂质添加至喷射的气体中,杂质可注入到在沉积过程或表面处理过程中在基板上形成的薄膜中,从而提高了沉积的薄膜质量。

此外,由于本发明的基板处理装置包括多个源气体喷射器或多个反应气体喷射器,因此源气体充分地吸附到基板表面上,或者源气体和反应气体的反应在基板表面上充分地进行,因此,在通过旋转气体喷射器或基板支架而形成的原子层的沉积中,可通过一次旋转来实现原子层的沉积,并且可以补偿由于旋转速度的增加引起的气体供给或反应的持续时间的不充足,从而提高沉积的薄膜质量且增加薄膜的沉积速度。

此外,由于本发明的基板处理装置包括多个源气体喷射器、多个反应气体喷射器、或自由基气体喷射器或具有一个或多个等离子电极的气体喷射器,因此可以通过所述多个源气体喷射器喷射金属前体或含硅气体,或所述多个反应气体喷射器可喷射含氧气体或含氮气体,从而提高沉积的薄膜质量。

附图说明

图1是根据本发明一实施例的基板处理装置的概略剖视图。

图2是图1的基座上放置多个基板的概略剖视图。

图3是图1的腔室盖和多个气体喷射器的概略剖视图。

图4是图1所示的气体喷射器的垂直概略剖视图。

图5是根据本发明第二实施例的腔室盖和多个气体喷射器的概略剖视图。

图6是根据本发明第三实施例的腔室盖和多个气体喷射器的概略剖视图;

图7是图6的腔室盖和多个气体喷射器的概略剖视图。

图8是根据本发明第四实施例的腔室盖和多个气体喷射器的概略剖视图。

图9是根据本发明第五实施例的腔室盖和多个气体喷射器的概略剖视图。

具体实施方式

以下,将对本发明的实施例进行详细说明。但是,本发明可以实现为不同的形式且不应限于下面所公开的实施例,提供这些实施例使得本发明的公开彻底和完整,并且将对本领域技术人员充分地传达本发明的范围。

参照图1,根据本发明一实施例的基板处理装置1可具有沿图4的A-A'线截取的横截面,基座(盘)3可设置在腔室2的底部,一个或多个基板100可安置在基座3上。腔室盖4可位于基座3上,即,腔室2的顶部,并且多个吹扫气体喷射口、多个反应气体喷射口、以及多个源气体喷射口可设置于腔室盖4中,由此可实现多个气体喷射器5通过喷射口插入的结构。基板出入口21可设置于腔室2的一个侧表面,基板100通过基板出入口21进出,并且排气口(未图示)可设置在腔室2的一个侧表面和底部。

参照图2,在图1所示的本发明的基板处理装置1中,多个基板100可设置于基座3上。如图1所示,六个基板100可按照同心圆设置在一个基座3上。如果多个基板100按照相等间隔或预定间隔设置,则基座3可单独地根据基板100的数目设置为多个。此外,所述基座3可相对于基座3的中心旋转。因此,设置在所述基座3上的多个基板100可相对于所述基座3的中心或所述旋转中心而转动。

参照图3,一个或多个气体流入口51可设置在气体喷射器5中,并且多个喷射孔52可设置在气体喷射器5中。气体可以通过气体喷射器5的顶部方向、侧面方向、以及对角线方向上的气体流入口51而注入。在气体喷射器5中具有中空区域,因此,能够使气体均匀喷射的空间53可设置在喷射孔52和气体流入口51之间。因此,在气体通过喷射孔52喷射之前流入气体流入口51中的气体充满空间53后可通过喷射孔52喷射。

参照图4,所述多个气体喷射器5可相对于所述腔室盖4的中心径向设置,或者可相对于模糊中心而设置。在一个或多个所述气体喷射器5中,多个喷射孔52可以在所述腔室盖4的中心的径向上设置为一排(row)或多排(row)。或者一个或多个所述气体喷射器5可以是喷头型气体喷射器5,其中多个喷射孔52朝向设置在所述腔室盖4中所述基座3上的基板100形成。

所述多个气体喷射器5可以嵌入到腔室盖4中,或者,也可以在腔室盖4中形成开口部,并且各气体喷射器5可分别插入至所述开口部中,或者,可以在腔室盖4中形成凹部,并且各气体喷射器5可分别插入到所述凹部中。

参照图4,由根据本发明一实施例的具有腔室盖4和多个气体喷射器5的基板处理装置1所执行的工序顺序可对应于薄膜沉积装置以及薄膜沉积方法,这种薄膜沉积方法使用由第一源气体喷射器S1→第一吹扫气体喷射器P1→第二源气体喷射器S2→第二吹扫气体喷射器P2→反应气体喷射器R→第三吹扫气体喷射器P3构成的沉积周期。根据本发明一实施例的沉积周期的顺序可以与上述方法相同,也可按照与之相反的沉积周期的顺序执行工序。

参照图4,在本发明第一实施例的气体喷射装置(为用于实现基板处理过程之装置)中,可设置多个源气体喷射器S1、S2,并且基板100可通过一个循环或一次旋转经过多个源气体喷射器S1、S2。另外,源气体喷射器S1、S2和吹扫气体喷射器P1、P2、P3之间的间隔可小于反应气体喷射器R和吹扫气体喷射器P1、P2、P3之间的间隔。此外,提供的第一源气体和第二源气体可包括相同的气体。另外,第一源气体和第二源气体可以在流量或流速上不相同。

参照图4,本发明第一实施例的基板处理工艺的源气体(Source gas)可包括金属前体(Metal Precursor),反应气体(Reactant gas)可包括氮化气体或氧化气体,并且吹扫气体(Purge gas)可包括非反应性气体。详细而言,源气体可包括含钛(Ti)前体,并且反应气体可包括含氮(N)气体。详细而言,源气体可包括含锆(Zr)(或铝(Al)、铪(Hf)、钽(Ta)等)前体,并且反应气体可包括含氧(O)气体。

参照图4,本发明第一实施例的基板处理工艺的源气体可包括含硅(Si)气体(包括有机硅烷、氨基硅烷),反应气体可包括氮化气体或氧化气体,并且吹扫气体可包括非反应性气体,详细而言,源气体可包括含硅(Si)气体,并且反应气体可包括含氮(Nitrogen,N)气体或含氧(oxygen,O)气体。

参照图4,在本发明的工序中,从源气体喷射器S1喷射的源气体(Source gas)可包括金属前体(含钛(Ti)前体)。详细而言,源气体(Source gas)可包括含锆(Zr)(或铝(Al)、铪(Hf)、钽(Ta)、...)等前体。可以执行从源气体喷射器S1喷射的所述源气体喷射至所述多个基板上的第一阶源气体过程。所述源气体喷射器S1可喷射所述源气体,所述吹扫气体喷射器P1可喷射所述吹扫气体。从所述吹扫气体喷射器P1喷射的吹扫气体可去除(吹扫)从所述源气体喷射器S1喷射的部分所述源气体。在这种情况下,在最接近所述吹扫气体喷射器P1且由此暴露于大量吹扫气体的所述基板图案的顶部,因受到所述吹扫气体的影响,最大限度地去除(吹扫)薄膜,并且在远离所述吹扫气体喷射器P1的基板图案的底部和一侧表面,相比较于图案的顶部,薄膜可以被相对较少的去除。随后,通过所述源气体喷射器S2可再一次喷射所述源气体,并且可以在所述基板上执行第二阶源气体喷射过程。所述源气体(Source gas)可包括金属前体(含钛(Ti)的前体)。详细而言,源气体(Source gas)可包括含锆(Zr)(或铝(Al)、铪(Hf)、钽(Ta)等)前体。

在所述源气体喷射至其上形成有超微图案的所述基板上的情况下,当薄膜均匀地沉积在所述图案的顶部和底部以及所述图案的顶部和底部之间的一侧表面上时,台阶覆盖(Step coverage)得到改善。当所述基板的图案的顶部、底部、以及侧表面的薄膜高度均匀时,薄膜可完全沉积至所述基板的底部,因此,均匀的薄膜可沉积于所述晶片图案之间,由此半导体元件能够正常地运行。

参照图4,可执行在所述腔室内部设置的基板支撑部上装载至少一个基板的第一阶段过程。随后,可执行所述基板100上设置的第一源气体喷射器S1喷射源气体的第二阶段过程。接着,可执行所述基板100上设置的吹扫气体喷射器P1喷射吹扫气体的第三阶段过程。然后,可执行所述基板100上设置的第二源气体喷射器S2喷射源气体的第四阶段过程。所述第二阶段过程、所述第三阶段过程、以及所述第四阶段过程可在所述基板上按顺序执行。通过按顺序执行所述过程,均匀膜可均匀地沉积在晶片图案的顶部、一侧表面、以及底部。本过程中的源气体可以是含钛(Ti)的气体。从所述第一源气体喷射器喷射的源气体的流量可以与从所述第二源气体喷射器中喷射的源气体的流量相同或不相同。

参照图4,设置在所述腔室盖4中的包括多个气体喷射器5在内的所述第一源气体喷射器S1、所述第二源气体喷射器S2、以及所述第一吹扫气体喷射器P1可以设置成从所述腔室盖4,即圆形腔室盖4的中心的一个点沿径向延伸的放射状。假设腔室盖4中设置的一个点具有从设置在腔室盖4的第一源气体喷射器S1和第一吹扫气体喷射器P1的各中心径向扩展的径向形状,这个点为中心部,则当腔室盖4的外周部,即,边缘附近称为外周部时,所述第一源气体喷射器和第一吹扫气体喷射器P1之间的中心部位置处的距离可短于外周部位置处的距离。相反,与边缘附近即,外周部之间的距离可相比较于与中心部的距离更长。此外,所述气体喷射器5之间距离短(接近)可称为所述气体喷射器5之间的距离窄,并且所述气体喷射器5之间距离长(远离)可称为所述气体喷射器5之间的距离宽。

参照图5,由本发明一实施例的包括腔室盖4和多个气体喷射器5的基板处理装置1所执行的工序顺序可对应于薄膜沉积装置和薄膜沉积方法,这种薄膜沉积方法使用由第一源气体喷射器S1→第一吹扫气体喷射器P1→第二源气体喷射器S2→第二吹扫气体喷射器P2→反应气体喷射器R→第三吹扫气体喷射器P3构成的沉积周期。在这种薄膜沉积装置中,第二吹扫气体喷射器P2或第三吹扫气体喷射器P3的气体喷射区域可相比较于第一源气体喷射器S1和第二源气体喷射器S2之间的第一吹扫气体喷射器P1更宽,在这种薄膜沉积装置中,第二吹扫气体喷射器P2或第三吹扫气体喷射器P3的气体喷射流量可相比较于第一源气体喷射器S1和第二源气体喷射器S2之间的第一吹扫气体喷射器P1的更高,在这种薄膜沉积装置中,第二吹扫气体喷射器P2或第三吹扫气体喷射器P3的气体喷射孔的数目可相比较于第一源气体喷射器S1和第二源气体喷射器S2之间的第一吹扫气体喷射器P1更多。反应气体喷射器R的气体喷射区域可相比较于第一源气体喷射器S1或第二源气体喷射器S2的更宽,并且反应气体喷射器R的气体喷射流量可相比较于第一源气体喷射器S1或第二源气体喷射器S2更高,反应气体喷射器R的气体喷射孔的数目可相比较于第一源气体喷射器S1或第二源气体喷射器S2更多。另外,第一吹扫气体喷射器P1可更靠近于第一吹扫气体喷射器P1和第二吹扫气体喷射器P2之间设置的第二源气体喷射器S2,并且可更靠近于第一吹扫气体喷射器P1和第三吹扫气体喷射器P3之间设置的第一源气体喷射器S1。

参照图5,通过使用本发明一实施例的基板处理装置1沉积其上形成有图案的基板的步骤可以是如下的步骤:第一源气体喷射器S1→吹扫图案顶部气体(小吹扫)→第二源气体喷射器S2→吹扫图案的顶部和内部(大吹扫)→反应气体喷射器R→吹扫图案的顶部和内部。详细而言,这种步骤可以是如下的步骤:将含钛(Ti)气体喷射于图案的内部和顶部→吹扫图案顶部气体或图案中的钛(Ti)气体没有充分除去→将含钛(Ti)气体喷射到图案的内部和顶部→吹扫图案的顶部和内部→将含氮(N)气体喷射到图案的内部和顶部→吹扫图案顶部和内部。

参照图6,本发明一实施例的基板处理装置1可执行薄膜沉积方法,这种薄膜沉积方法使用由第一源气体喷射器S1→第一吹扫气体喷射器P1→第二源气体喷射器S2→第二吹扫气体喷射器P2→第一反应气体喷射器R1→第三吹扫气体喷射器P3→第二反应气体喷射器R2→第四吹扫气体喷射器P4构成的沉积周期。

参照图6,在用于实现根据本发明一实施例的基板处理装置1的设备中,可设置多个反应气体喷射器R1、R2,并且基板100可通过一个循环或一次性旋转穿过这些反应气体喷射器R1、R2。另外,第一反应气体喷射器R1和第二反应气体喷射器R2之间的间隔可相比较于第一反应气体喷射器R1和第二吹扫气体(Purge Gas)喷射器P2之间的间隔更小(更短)。或者,第一反应气体喷射器R1和第二反应气体喷射器R2之间的间隔可相比较于第二反应气体喷射器R2和第四吹扫气体(Purge Gas)喷射器P4之间的间隔更小(更短)。

此外,第一反应气体喷射器R1和第二反应气体喷射器R2可包括相同的气体。另外,第一反应气体喷射器R1和第二反应气体喷射器R2的流量或流速可以不同。

参照图6,提供至用于实现本发明一实施例的基板处理装置1的设备的源气体可包括金属前体(含钛(Ti)前体),并且反应气体可包括氮化气体或氧化气体(含氮(N)气体)。详细而言,源气体可包括含锆(Zr)(或铝(Al)、铪(Hf)、钽(Ta)、...等)前体,并且反应气体可包括含氧(O)气体。

参照图6,提供至用于实现本发明一实施例的基板处理装置1的设备的源气体可包括含硅(Si)气体(包括有机硅烷、氨基硅烷),反应气体可包括氮化气体或氧化气体,吹扫气体可包括非反应性气体。详细而言,源气体可包括含硅(Si)气体,反应气体可包括含氮(N)气体或含氧(O)气体。

参照图7,射频(RF)电源/视频匹配器(RF Matcher)6可连接至源气体喷射器或反应气体喷射器。通过使用视频电源/射频匹配器(RF Matcher)6,等离子可以在腔室2中设置的反应空间的一部分中产生。

参照图8,在本发明一实施例的基板处理装置1中,第一反应气体喷射器R1或第二反应气体喷射器R2可在由第一源气体喷射器S1→第一吹扫气体喷射器P1→第二源气体喷射器S2→第二吹扫气体喷射器P2→第一反应气体喷射器R1→第三吹扫气体喷射器P3→第二反应气体喷射器R2、等离子电极或喷射自由基气体→第四吹扫气体喷射器P4构成的沉积周期中提供等离子电极或喷射自由基气体。

参照图8,在本发明一实施例的基板处理装置1中,可设置多个反应气体喷射器R1、R2,在一个周期或一次性旋转中,基板100可穿过多个反应气体喷射器R1、R2,并且多个反应气体喷射器R1、R2中的某一个可喷射自由基气体,或者提供等离子电极。

参照图8,本发明一实施例的基板处理装置1的源气体可包括金属前体(含钛(Ti)的前体),并且反应气体可包括氮化气体或氧化气体(含氮(N)气体),详细而言,源气体可包括含锆(Zr)(或铝(Al)、铪(Hf)、钽(Ta)等)前体,并且反应气体可包括含氧(O)气体。

参照图8,本发明一实施例的基板处理装置1的源气体可包括含硅(Si)气体(包括有机硅烷、氨基硅烷),反应气体可包括氮化气体或氧化气体,吹扫气体可包括非反应性气体。详细而言,源气体可包括含硅(Si)气体,并且第一反应气体和第二反应气体的原子量可能不相同。详细而言,源气体可包括含硅(Si)气体,第一反应气体喷射器R1可产生臭氧(O3),并且第二反应气体喷射器R2可以产生氧气(O2)等离子。详细而言,源气体可包括含硅(Si)气体,第一反应气体喷射器R1可产生氧气(O2),并且第二反应气体喷射器R2可产生包括碳(C)和氢(H)的等离子。

参照图9,本发明一实施例的基板处理装置1可执行薄膜沉积方法,这种薄膜沉积方法使用由第一源气体喷射器S1→第一吹扫气体喷射器P1→第一反应气体喷射器R1→第二吹扫气体喷射器P2→第二反应气体喷射器R2→第三吹扫气体喷射器P3构成的沉积周期。

参照图9,在用于实现本发明一实施例的基板处理装置1的设备中,可设置多个反应气体喷射器R1、R2,并且基板100可通过一个循环或一次性旋转穿过多个反应气体喷射器R1、R2。此外,反应气体喷射器(第一反应气体喷射器R1和第二反应气体喷射器R2)之间的间隔可小于源气体喷射器(第一源气体喷射器S1)和吹扫气体喷射器(第一吹扫气体喷射器P1或第三吹扫气体喷射器P3)之间的间隔。另外,第一反应气体喷射器R1和第二反应气体喷射器R2可包括相同的气体。另外,第一反应气体喷射器R1和第二反应气体喷射器R2的流量或流速可不相同。

参照图9,用于实现本发明一实施例的基板处理装置1的设备的源气体可包括金属前体(含钛(Ti)的前体),并且反应气体可包括氮化气体或氧化气体(含氮(N)气体)。详细而言,源气体可包括含锆(Zr)(或铝(Al)、铪(Hf)、钽(Ta)、...等)前体,并且反应气体可包括含氧(O)气体。

参照图9,用于实现本发明一实施例的基板处理装置1的设备的源气体可包括含硅(Si)气体(包括有机硅烷、氨基硅烷),反应气体可包括氮化气体或氧化气体,吹扫气体可包括非反应性气体。详细而言,源气体可包括含硅(Si)气体,并且反应气体可包括含氮(N)或含氧(O)气体,详细而言,源气体可包括含硅(Si)气体,第一反应气体喷射器R1可产生臭氧(O3),并且第二反应气体喷射器R2可以产生氧气(O2)等离子。详细而言,源气体(Source gas)可包括含硅(Si)气体,第一反应气体喷射器R1可产生氧气(O2),并且第二反应气体喷射器R2可产生包括碳(C)和氢(H)的等离子。

根据本发明的实施例,可以通过一个循环或一次性旋转执行沉积过程和处理过程,并且重复的旋转可以执行多次。另外,可同时或按顺序沉积具有相同来源的沉积膜和具有不同来源的沉积膜。此外,相同的沉积膜可通过两次旋转来沉积,并且不同的膜可以通过三次旋转来沉积。也就是说,沉积膜可以是并非按顺序的沉积。此外,相同薄膜或不同的薄膜可以相交替沉积。

根据上述实施例具体说明的本发明的技术思想,但是所述实施例仅用于说明,并非旨在限制。另外,在本发明的技术领域内,本领域的技术人员在本发明的技术思想的范围内可以实施多种实施例。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1