一种超声波激发铝-盐混合熔体制备铝或铝合金粉的方法与流程

文档序号:18945370发布日期:2019-10-23 01:32阅读:526来源:国知局
一种超声波激发铝-盐混合熔体制备铝或铝合金粉的方法与流程

本发明涉及金属粉末的制备领域,具体地说是以熔融的盐和铝合金或铝为材料,采用超声波激发该混合熔体制备球形铝合金粉或铝粉的方法。



背景技术:

铝及其合金粉末大量应用于粉末冶金、注射成型、金属3d打印、助燃剂、染料等领域。在粉末冶金和3d打印领域,粉末要求具有很高的球形度和极低的含氧量。粉末球形度越高,含氧量越低,最终粉末冶金制品和3d打印部件的致密度和性能越高。目前金属粉末的制备方法主要涵盖机械破碎和球磨方法、电解还原法、雾化法、旋转电极法、等离子雾化法以及超声雾化法等。

目前的这些方法中,气雾化法是最常用的金属制粉方法,包括气雾化和水雾化法,但是水雾化法不能用于像铝合金和镁合金这种活泼的金属制粉。雾化领域的气雾化法制备的金属粉末具有较好的球形度,但是雾化法无法避免卫星球的现象,导致一个球形粉末周围因团聚粘着多个小球。由于铝合金的活泼特性,为避免氧化,在雾化法的生产过程中需要采用高纯的惰性氩气或氮气作为雾化气体,极大的增加了制备成本,而且金属粉末的氧化问题依然不能很好的解决。

利用超声作用雾化制粉通常可以改善粉末的球形度,目前的超声法一般可以归纳为两大类,第一类是超声辅助雾化法;第二类是超声振动雾化法。第一类包括超声辅助气雾化法和超声等离子雾化等。第二类超声振动雾化法,通常是将金属液铺展在超声波振动工具头表面,利用超声振动产生的界面波作用将金属液破碎成液滴进行雾化制粉,另外,也有采用超声驻波雾化的方法。相对于普通的气雾化法,上述超声雾化法所制备的金属粉末在球形度方面有改善。但是,上述超声制粉法,都需要高真空和消耗惰性气体来避免金属氧化,尤其对于铝合金等活泼金属粉末的制备,需要付出更大的成本来保证粉末的低含氧量。



技术实现要素:

针对上述为问题,本发明提供了一种超声波激发铝-盐混合熔体制备球形铝合金粉的方法。该方法采用超声波效应将液态铝合金以细小的球形液滴分散在熔盐中,随后通过冷却含有铝合金液滴的熔盐以得到球形铝合金粉。强烈的超声作用可以保证制备出微米级的球形铝合金细小粉末。

本发明解决其技术问题所采取的技术方案是:

一种超声波激发铝-盐混合熔体制备铝或铝合金粉的方法,包括如下步骤,

①配料:按质量百分比分别称量所需的水溶性盐,将所称取的水溶性盐混合均匀后烘干,得到混合盐,然后按照质量百分比称取待制备材料,所述的待制备材料为铝或铝合金;

②熔炼:首先将步骤①中所得的混合盐放入坩埚内,并加热到熔化,然后将步骤①中称取的铝或铝合金加入到坩埚内继续加热至全部熔化,然后保温,直至得到上层为熔盐下层为熔融的铝或铝合金的盐-铝混合熔体;

③超声波处理:将超声波装置的工具头插入到步骤②中的盐-铝混合熔体内,并使工具头的端面与盐-铝熔体的界面保持一定的距离,开启超声波装置,对盐-铝混合熔体进行超声波处理;

④冷却凝固:超声波处理结束后,取出上层熔盐,经冷却凝固后得到凝固熔盐;

⑤溶解分离:采用纯水反复清洗步骤④中得到的凝固熔盐,将其中的混合盐全部溶解后,过滤,干燥,得到铝或铝合金粉。

进一步地,步骤①所采用的水溶性盐为硝酸钠、硝酸钾、碳酸钠、碳酸氢钠、氯化钠、氯化钾、氯化钙、硫酸钠、硫酸钾中的一种或几种。

进一步地,所述的铝合金为熔点低于1000℃的铝合金。

进一步地,步骤①中所制得的混合盐的熔点低于待制备材料的熔点。

进一步地,所述混合盐与待制备材料的质量比为1-5。

进一步地,步骤②中的保温温度比待制备材料的熔点温度高50-200℃。

进一步地,在步骤④中,超声波处理结束后,将上层熔盐浇注在旋转的冷却盘上进行冷却凝固,得到凝固熔盐。

本发明的有益效果是:

1.惰性熔盐与液态的铝、铝合金之间互不相溶解,互相不反应,且熔盐密度比铝和铝合金小,因此,熔化时熔盐会与熔融状态下的铝或铝合金分层,熔盐在上层,铝或铝合金熔体在下层,熔盐对铝或铝合金起到保护和精炼作用,避免了铝或铝合金熔体的氧化,并能对铝或铝合金起到精炼作用。另外,通过超声波激发产生的铝或铝合金微液滴分布在熔盐内部,也受到了熔盐的保护和精炼。因此,本发明的整个制备过程中,铝或铝合金一直处于熔盐的保护下,不与空气接触,从而避免了氧化,同时盐对铝或铝合金的精炼作用还进一步降低了所制备铝或铝合金粉的含氧量。与目前的铝或铝合金粉制备手段相比,整个过程无需抽高真空设备和使用大量惰性气体,不但保证了粉末的含氧量,而且大大的降低了制备成本。

2.熔盐和铝熔体、铝合金熔体为不互溶体系,两不互溶熔体之间有很大的界面张力,为了使体系能量最低,两不互溶熔体会倾向于减少两熔体相间的界面。因此,本发明的方法中,铝或铝合金熔体在超声作用下被破碎成液滴并分散在熔盐内部,为了减小液滴与熔盐的界面以降低体系能量,液滴会自发的以球状存在,从而凝固成微球,获得球形度高的粉末。

3.本发明的方法,在持续的超声波震荡下,铝或铝合金微球在超声声流作用下可以很好的分布在盐中而不团聚,从而避免所制备的铝或铝合金粉出现普通雾化制粉法中常出现卫星球的情况。

附图说明

图1为本发明的制备过程示意图;

图2为实施例一中所得纯铝粉的微观示意图;

图3为实施例二中所得al-7si合金粉的微观示意图;

图4为实施例三中所得al-8bi合金粉的微观示意图;

图中:1-超声波装置,2-盐-铝熔体界面,3-坩埚。

具体实施方式

下面结合实施实例对本发明作进一步说明,但并不能限定本发明的保护范围。

实施例1:球形纯铝粉的制备

本方法的步骤如下:

①配料:按重量比称取20份nacl,40份cacl2,40份kcl组成混合盐,并在混料机内混合均匀,然后采用烘干箱在105℃下将混合盐烘干3小时。称取100份纯度为99.99%的纯铝备用。

②熔炼:首先将步骤①中的混合盐放入氧化铝坩埚3内,并采用坩埚电阻炉将混合盐加热到850℃,使混合盐呈熔融状态。然后将步骤①中的纯铝加入到坩埚3内继续加热至纯铝全部熔化,然后在800℃下保温30min,得到上层为熔盐下层为熔融纯铝的盐-铝混合熔体。

③超声波处理:将超声波装置1的输出功率设置为300w,并将超声波装置1的工具头插入到步骤②中的盐-铝混合熔体,如图1所示,使工具头端面与盐-铝熔体界面2的距离m为30mm。开启超声波处理,对盐-铝混合熔体处理5分钟。

④冷却凝固:将上层熔盐浇注在以300转/分钟速度旋转的纯铜冷却盘上冷却凝固,并收集冷却凝固后的熔盐。

⑤溶解分离:采用纯水反复清洗步骤④中收集的凝固熔盐,将盐全部溶解后,采用1000目筛网过滤铝粉,然后室温下自然干燥得到纯铝粉。

如图2所示,通过本方法得到的球形纯铝粉,其平均粒径为52.6微米,活性铝含量大于99.5%。

实施例2:球形al-7si合金粉的制备

本方法的步骤如下:

①配料:按重量比称取30份nacl和70份kcl组成混合盐,并在混料机内混合均匀,然后采用烘干箱在105℃下将混合盐烘干3小时。称取20份含硅(si)质量分数为7%的al-7si合金。

②熔炼:首先将步骤①中的混合盐放入氧化铝坩埚3内,并采用坩埚电阻炉将混合盐加热到850℃,使混合盐呈熔融状态。然后将步骤①中的纯铝加入到坩埚3内继续加热至纯铝全部熔化,然后在780℃下保温30min,得到上层为熔盐下层为熔融纯铝的盐-铝混合熔体。

③超声波处理:将超声波装置1的输出功率设置为500w,并将超声波装置1的工具头插入到步骤②中的盐-铝混合熔体,如图1所示,使工具头端面与盐-铝熔体界面2的距离m为30mm。开启超声波处理,对盐-铝混合熔体处理5分钟。

④冷却凝固:将上层熔盐浇注在以300转/分钟速度旋转的纯铜冷却盘上冷却凝固,并收集冷却凝固后的熔盐。

⑤溶解分离:采用纯水反复清洗步骤④中收集的凝固熔盐,将盐全部溶解后,采用1000目筛网过滤铝粉,然后室温下自然干燥得到al-7si合金粉。

如图3所示,通过本方法得到的球形al-7si合金粉,其平均粒径为41.5微米,含氧量低于0.5%。

实施例3:球形al-8bi合金粉的制备

本方法的步骤如下:

①配料:按重量比称取40份nacl,40份kcl,20份cacl2组成混合盐,并在混料机内混合均匀,然后采用烘干箱在105℃下将混合盐烘干3小时。称取50份含铋(bi)质量分数为7%的al-8bi合金。

②熔炼:首先将步骤①中的混合盐放入氧化铝坩埚3内,并采用坩埚电阻炉将混合盐加热到850℃,使混合盐呈熔融状态。然后将步骤①中的纯铝加入到坩埚3内继续加热至纯铝全部熔化,然后在850℃下保温30min,得到上层为熔盐下层为熔融纯铝的盐-铝混合熔体。

③超声波处理:将超声波装置1的输出功率设置为250w,并将超声波装置1的工具头插入到步骤②中的盐-铝混合熔体,如图1所示,使工具头端面与盐-铝熔体界面2的距离m为40mm。开启超声波处理,对盐-铝混合熔体处理5分钟。

④冷却凝固:将上层熔盐浇注在以300转/分钟速度旋转的纯铜冷却盘上冷却凝固,并收集冷却凝固后的熔盐。

⑤溶解分离:采用纯水反复清洗步骤④中收集的凝固熔盐,将盐全部溶解后,采用1000目筛网过滤铝粉,然后室温下自然干燥得到al-7si合金粉。

如图3所示,通过本方法得到的球形al-8bi合金粉,其平均粒径为75微米,氧含量低于0.5%。

在这里,所述的超声波装置1是指应用于金属材料制造领域中超声波装置,从上到下依次包括换能器、变幅杆和工具头,由于所述的超声波装置属于现有技术,在此不再对其具体结构做过多赘述。

所述超声波装置1的变幅杆和工具头材质为钛合金、铌、钨、钼、不锈钢、陶瓷材料的任何一种,工具头端部的截面面积为0.5-10000mm2,优选的,所述工具头端部的截面面积为200~1500mm2

作为一种具体实施方式,实施例1、2、3中均选用ti6al4v材质的变幅杆和工具头,且工具头端部截面积为300mm2

本发明方法适应于铝及铝合金球形粉末的制备。制备铝或不同成分的铝合金粉末时要选用不同的混合盐体系,选择原则是混合盐的熔点低于待制备材料的熔点,在这里所述的待制备材料是铝或铝合金。即当制备球形铝粉时,所述混合盐的熔点要低于铝的熔点,当制备某一成分的铝合金时,所述混合盐的熔点要低于该成分铝合金的熔点。混合盐的熔点可通过调整混合盐中水溶性盐的种类和配比实现。

在这里,通过调整混合盐中水溶性盐的种类和配比来实现熔点的调整,对于本领域的技术人员来说属于现有技术,在此不再赘述。

对于铝和不同成分的铝合金,本发明可以通过调整超声波装置1的输入功率和改变超声波装置1的工具头与盐-铝熔体界面2的距离以获得铝或铝合金球形粉末。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1