一种在反应堆用锆合金表面制备高硬耐磨复合涂层的方法与流程

文档序号:19160792发布日期:2019-11-16 01:20阅读:190来源:国知局
一种在反应堆用锆合金表面制备高硬耐磨复合涂层的方法与流程

本发明涉及金属材料表面加工处理技术领域,具体涉及一种在反应堆用锆合金表面制备高硬耐磨复合涂层的方法。



背景技术:

锆(zr)及其合金具有中子吸收截面小、耐腐蚀能力强和生物相容性优异等优点,在核工业、化工及生物医药领域均有着重要的结构应用。其中,zr-4作为一种典型的商用锆合金,已被做成锆包壳成功地应用于压水堆中,表现出了良好的抗辐照性和耐腐蚀性能。另外,zr702也是广泛商用的锆合金的典型代表。

但是,锆合金在堆内长时间的处于高温高压水腐蚀的环境,且锆包壳与冷却剂中的颗粒以及换料过程中与格架之间的摩擦作用极易导致锆合金的失效。特别是日本福岛核电事故后,核电的安全性再次摆在了所有核工作者的面前,如何进一步提高正常工况下核燃料元件的安全性和可靠性成了一个亟待解决的问题。随着表面技术的发展,可应用表面改性技术增强反应堆锆合金包壳的使用性能,其中锆合金表面涂层(包括纯金属、氧化物、氮化物、金属间化合物等)可以大大增强锆包壳的耐摩擦磨损性能,也能够有效的提升锆包壳的强度。

使用锆合金表面涂层技术主要用于增强锆包壳表面耐摩擦磨损性能及强度。通过在锆合金外表面制备上一层或者几层涂层材料以增强包壳耐磨的能力,从而改善正常工况下锆合金的使用性能。研究表明,金属cr具有抗振动、抗蠕变、耐高温和抗氧化等优点,且cr与锆合金的兼容性好,膨胀系数匹配性好;tial具有膜基结合强度高、耐腐蚀性和耐磨性好等特点。多弧离子镀技术具有镀膜速度高,膜层的致密度大,膜的附着力好等特点。因此,通过多弧离子镀在反应堆用锆合金表面制备高硬耐磨的cr/tialn复合涂层,提高锆合金包壳的耐摩擦磨损性能及强度,以满足反应堆设计对燃料性能提出的更高使用要求。然而,迄今为止,采用多弧离子镀技术在反应堆用锆合金表面制备cr/tialn复合涂层以及采用不同制备参数(基体偏压、沉积时间、沉积温度等)得到的涂层性能研究还尚未见报道。



技术实现要素:

针对现有技术中存在的上述不足,本发明提供了一种操作简单、技术可靠、经济实用的获得反应堆用锆合金表面高硬耐磨cr/tialn复合涂层的方法,进而达到增强锆包壳耐摩擦磨损性能及强度的目的。

为实现上述目的,本发明提供如下技术方案:

一种在反应堆用锆合金表面制备高硬耐磨复合涂层的方法,包括如下步骤:(1)工件预处理:将锆合金工件打磨至光亮,然后进行一次清洗并干燥,并且在涂层制备之前对工件表面进行二次清洗并干燥;(2)工件表面涂层制备:采用多弧离子镀在工件表面制备cr/tialn复合涂层,具体包括以下步骤:将上述预处理后的锆合金工件放置于多弧离子镀腔体内,将所述腔体抽至真空,所述真空的压力为3×10-3pa;通入氩气,使得腔体内气压达到约1pa,打开离子源并采用离子源对工件表面和靶材进行清洗;调整多弧离子镀参数,依次进行cr涂层和tialn涂层的制备。

在本发明的一种优选方案中,所述锆合金为zr-4或zr702。

在本发明的一种优选方案中,预处理之前的锆合金工件为轧制退火态,轧制变形量40-60%,退火温度为550-650℃。

在本发明的一种优选方案中,所述步骤(1)中工件的一次清洗为:采用无水乙醇清洗;工件的二次清洗为:工件先后采用无水乙醇和丙酮在超声波清洗仪中各清洗10min。在本发明的一种优选方案中,所述步骤(2)中采用离子源对工件表面和靶材进行清洗的时间为30min。

在本发明的一种优选方案中,所述步骤(2)中cr涂层制备具体包括以下步骤:开启cr靶,继续通入氩气,调整工艺参数,在锆工件表面沉积cr涂层,沉积cr涂层的工艺参数为:基体偏压250-750v、沉积时间0.5h、沉积温度150-200℃、氩气流量100-200sccm;所述步骤(2)中tialn涂层制备具体包括以下步骤:关闭cr靶,开启tial靶并同时通入氮气,调整工艺参数,在锆工件表面沉积tialn涂层,沉积tialn涂层的工艺参数为:基体偏压200-300v、沉积时间2.5h、沉积温度180-400℃、氩气流量50-100sccm、氮气流量100-300sccm。

在本发明的一种优选方案中,tial靶中ti的重量含量为80%,al的重量含量为20%。

在本发明的一种优选方案中,所述步骤(2)中制备所得的cr涂层的厚度为1~2μm,tialn涂层的厚度为2~4μm。

与现有技术相比,本发明具有如下有益效果:

1、本发明通过多弧离子镀技术在zr-4和zr702合金表面制备一定厚度的高硬耐磨cr/tialn复合涂层,涂层厚度可以通过调整涂层制备参数进行精确调整。高硬耐磨cr/tialn复合涂层需严格按照锆合金表面+cr涂层+tialn涂层的位置关系进行制备,cr涂层与tialn涂层两者相互依存,不可或缺。首先,在锆合金表面制备一层金属cr涂层,cr涂层作为锆合金与tialn涂层之间的中间过渡层至关重要,表现在一方面cr涂层能够有效改善锆合金表面的膜基结合力,使得最外层tialn涂层能够有效地结合在锆合金表面,摩擦时tialn涂层不宜脱落,对tialn涂层的摩擦磨损性能的提高起到了一定的作用;另一方面,cr能够弥补tialn涂层的疏松和孔洞,同时cr向锆合金基体扩散形成过渡层,增强膜基结合力的同时也一定程度上提升了锆合金抗氧化能力;其次,通过多弧离子镀技术将定制的tial靶(ti(80%)+al(20%))与氮气反应并在cr涂层表面生成tialn涂层。与tin涂层不同,原子半径较小的al元素的加入能够取代tin面心立方结构中部分ti原子,造成晶格发生畸变、晶面间距减小,使得位错数量增加,不易于移动,因此tialn涂层的硬度显著高于tin涂层。此外,制备在cr涂层表面的tialn涂层具有较好的膜基结合力、高硬度以及耐摩擦磨损性能,al元素形成al2o3也有助于提升锆合金的抗氧化能力。本发明通过多弧离子镀在zr-4和zr702合金表面制备一定厚度的高硬耐磨cr/tialn复合涂层,是严格按照先在锆合金表面制备金属cr,然后再进行氮化物tialn涂层的制备顺序进行复合而来的。cr/tialn复合涂层具有较好的耐摩擦磨损性能,得到的zr-4表面cr/tialn复合涂层的平均摩擦因数较基体由0.558降低至0.296;得到的zr702表面cr/tialn复合涂层的平均摩擦因数较基体由0.543降低至0.368。cr/tialn复合涂层硬度有所提高,表面具有高硬耐磨cr/tialn复合涂层zr-4样品的硬度(~320hv)较zr-4合金基体的硬度(~208.18hv)提升了53.7%;表现在表面具有高硬耐磨cr/tialn复合涂层zr702样品的硬度(~286.9hv)较zr702合金基体的硬度(~193.6hv)提升了48.2%。另外,高硬耐磨cr/tialn复合涂层致密且孔隙率低,低孔隙率能有效抑制氧元素通过孔洞扩散到基体表面。先在两种锆合金表面制备cr涂层,能够弥补单一涂层的孔洞,促使al元素选择性氧化,提高了涂层的自修复能力,同时cr2o3也有效的提高了两种锆合金的抗氧化能力。测试结果表明,通过多弧离子镀在zr-4和zr702合金表面制备一定厚度的高硬耐磨cr/tialn复合涂层,可有效的增强两种锆合金表面耐摩擦磨损性能以及硬度的提升,同时也可以提升其抗氧化能力。

2、本发明所提供的高硬耐磨cr/tialn复合涂层制备过程操作方便、设备简单、经济实用、技术可靠、质量稳定,并且起到非常好的提高了锆合金材料使用性能的作用。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

图1示出了本发明涂覆有复合涂层的zr-4工件与未涂覆的zr-4工件的硬度测试对比结果。

图2示出了本发明涂覆有复合涂层的zr702工件与未涂覆的zr702工件的硬度测试对比结果。

图3示出了本发明涂覆有复合涂层的zr-4工件与未涂覆的zr-4工件的摩擦磨损测试对比结果。

图4示出了本发明涂覆有复合涂层的zr702工件与未涂覆的zr702工件的摩擦磨损测试对比结果。

具体实施方式

下面结合实施例对本发明作进一步说明,但并不因此而限制本发明。

下述实施例中的实验方法,如无特别说明,均为常规方法。其中,tial靶为定制的tial靶材(ti(80%)+al(20%))。

实施例1

选取制备的20×15mm的zr702试样和12×10mm的zr-4试样,首先依次选用800#、1000#、1200#、2000#和3000#砂纸将样品打磨至光亮。样品打磨完成后用无水乙醇进行第一次清洗,最后吹干其表面。随后将试样分别采用无水乙醇和丙酮在超声波清洗仪中进行再次清洗,清洗时间各为10min,吹干后,放置多弧离子镀腔体物品架上,并用铁丝加以固定。关闭腔体,使用机械泵抽至3pa后,开启分子泵将腔体抽至真空(3×10-3pa)后,通入氩气(流量200sccm)使得腔体内气压达到1pa左右,接着打开离子源阀门,开启偏压电源(电压300v),采用离子源对样品表面和靶材清洗30min,然后引弧cr靶,设置多弧离子镀参数进行cr涂层制备,随后关闭cr靶,开启tial靶并同时通入氮气,进行tialn涂层的制备,其中多弧离子镀cr涂层的工艺参数为:基体偏压250v、沉积时间0.5h、沉积温度200℃、氩气流量200sccm;多弧离子镀tialn涂层的工艺参数为:基体偏压200v、沉积时间2.5h、沉积温度400℃、氩气流量100sccm、氮气流量100sccm。

复合涂层制备完成后,等待腔体内温度下降至100℃以下,取出表面制备有cr/tialn复合涂层的工件,最终在zr-4和zr702表面获得高硬耐磨cr/tialn复合涂层。

实施例2

选取制备的20×15mm的zr702试样和12×10mm的zr-4试样,首先依次选用800#、1000#、1200#、2000#和3000#砂纸将样品打磨至光亮。样品打磨完成后用无水乙醇清洗,最后吹干其表面。随后将试样分别采用无水乙醇和丙酮在超声波清洗仪中各清洗10min,吹干后,放置多弧离子镀腔体物品架上,并用铁丝加以固定。关闭腔体,使用机械泵抽至3pa后,开启分子泵将腔体抽至真空(3×10-3pa)后,通入氩气(流量200sccm)使得腔体内气压达到1pa左右,接着打开离子源阀门,开启偏压电源(电压300v),采用离子源对样品表面和靶材清洗30min,然后引弧cr靶,设置多弧离子镀参数进行cr涂层制备,随后关闭cr靶,开启tial靶并同时通入氮气,改变多弧离子镀参数进行tialn涂层的制备,其中多弧离子镀cr涂层的工艺参数为:基体偏压350v、沉积时间0.5h、沉积温度150℃、氩气流量100sccm;多弧离子镀tialn涂层的工艺参数为:基体偏压300v、沉积时间2.5h、沉积温度300℃、氩气流量100sccm、氮气流量300sccm。

实施例3

选取制备的20×15mm的zr702试样和12×10mm的zr-4试样,首先依次选用800#、1000#、1200#、2000#和3000#砂纸将样品打磨至光亮。样品打磨完成后用无水乙醇清洗,最后吹干其表面。随后将试样分别采用无水乙醇和丙酮在超声波清洗仪中各清洗10min,吹干后,放置多弧离子镀腔体物品架上,并用铁丝加以固定。关闭腔体,使用机械泵抽至3pa后,开启分子泵将腔体抽至真空(3×10-3pa)后,通入氩气(流量200sccm)使得腔体内气压达到1pa左右,接着打开离子源阀门,开启偏压电源(电压300v),采用离子源对样品表面和靶材清洗30min,然后引弧cr靶,设置多弧离子镀参数进行cr涂层制备,随后关闭cr靶,开启tial靶并同时通入氮气,改变多弧离子镀参数进行tialn涂层的制备,其中多弧离子镀cr涂层的工艺参数为:基体偏压750v、沉积时间0.5h、沉积温度200℃、氩气流量100sccm;多弧离子镀tialn涂层的工艺参数为:基体偏压300v、沉积时间2.5h、沉积温度180℃、氩气流量50sccm、氮气流量200sccm。

经测试利用本发明通过多弧离子镀在两种锆合金表面制备一定厚度的高硬耐磨cr/tialn复合涂层,其中,所得cr涂层的厚度为1~2μm,tialn涂层的厚度为2~4μm。

实施例4

对实施例3制备的涂覆有复合涂层的两种锆合金(zr-4,zr702)工件与未涂覆涂层的两种锆合金基体工件的硬度进行对比测试。

首先,制备对比例样品:对未涂覆涂层的两种锆合金基体工件进行预处理。具体地,选取制备的20×15mm的zr702试样和12×10mm的zr-4试样,依次选用800#、1000#、1200#、2000#和3000#砂纸将样品打磨至光亮。对比例的两种样品打磨完成后用无水乙醇清洗,最后吹干其表面,得到未涂覆涂层的对比例样品。

分别将对比例的两种样品,与实施例3制备表面具有高硬耐磨cr/tialn复合涂层实施例样品,通过buehler-omnimet维氏硬度计进行测量显微硬度,其中维氏硬度计的参数为:载荷100n,保荷10s。每个样品测试12-15个点,取其平均值。

经测试利用本发明通过多弧离子镀在两种锆合金表面制备一定厚度的高硬耐磨cr/tialn复合涂层,具备更优异的硬度性能。图1为实施例3制备的具有复合涂层的zr-4工件与未涂覆的zr-4对比例工件的硬度测试对比结果。从图1可以看到表面具有高硬耐磨cr/tialn复合涂层zr-4样品的硬度(~320hv)较zr-4合金基体的硬度(208.18hv)提升了53.7%。图2为实施例3制备的具有复合涂层的zr702工件与未涂覆的zr702对比例工件的硬度测试对比结果。从图2可以看到表面具有高硬耐磨cr/tialn复合涂层zr702样品的硬度(~286.9hv)较zr702合金基体的硬度(193.6hv)提升了48.2%。

实施例5

对实施例3制备的涂覆有复合涂层的两种锆合金(zr-4,zr702)工件与未涂覆涂层的两种锆合金基体工件的摩擦因数进行对比测试。

首先,制备对比例样品:对未涂覆涂层的两种锆合金基体工件进行预处理。具体地,选取制备的20×15mm的zr702试样和12×10mm的zr-4试样,依次选用800#、1000#、1200#、2000#和3000#砂纸将样品打磨至光亮。对比例的两种样品打磨完成后用无水乙醇清洗,最后吹干其表面,得到未涂覆涂层的对比例样品。

分别将对比例的两种样品,与实施例3制备表面具有高硬耐磨cr/tialn复合涂层的样品,通过mft-r4000型摩擦实验机测试摩擦磨损性能,其中摩擦实验机参数为:载荷2n,频率2hz,长度5mm,时间为10min。每个样品测试2-3次。

经测试利用本发明通过多弧离子镀在两种锆合金表面制备一定厚度的高硬耐磨cr/tialn复合涂层,具备更优异的耐摩擦性能。图3为实施例3涂覆有复合涂层的zr-4工件与未涂覆的zr-4基体工件的摩擦磨损测试对比结果,图中曲线a表示zr-4基体工件的摩擦因数,曲线b表示具有复合涂层的zr-4工件的摩擦因数。从图3中可以得出,表面具有高硬耐磨cr/tialn复合涂层zr-4样品的平均摩擦因数相比于基体工件zr-4样品,由0.558降低至0.296。图4为实施例3涂覆有复合涂层的zr702工件与未涂覆的zr702基体工件的摩擦磨损测试对比结果,图中曲线a表示zr702基体工件的摩擦因数,曲线b表示具有复合涂层的zr702工件的摩擦因数。从图4中可以得出,表面具有高硬耐磨cr/tialn复合涂层zr702样品的平均摩擦因数相比于基体工件zr702样品,由0.543降低至0.368。

尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1