镀覆粘附性和耐腐蚀性优异的镀锌钢板及其制造方法与流程

文档序号:26100825发布日期:2021-07-30 18:11阅读:130来源:国知局
镀覆粘附性和耐腐蚀性优异的镀锌钢板及其制造方法与流程

本发明涉及一种镀锌钢板,更详细地,涉及一种镀覆粘附性和耐腐蚀性优异的镀锌钢板及其制造方法。



背景技术:

已知现有的热浸镀锌钢板存在在母材钢板和镀层之间(界面)形成的fe-al抑制层(inhibitionlayer),这种抑制层在母材钢板和镀层的界面确保镀覆粘附力,并且抑制浓度梯度引起的fe从母材扩散到镀层中。

在母材和镀层的界面不能连续生成抑制层时,母材中的fe溶出到镀层中,存在随着镀覆粘附力降低而镀层剥离的问题。因此,为了确保一定水平以上的镀覆粘附力,需要连续生成抑制层。

另外,母材中的fe扩散到镀层时,可以获得诸如镀层的粗糙度和表面粗糙度的提高等关于摩擦特性的效果。

但是,在母材和镀层的界面连续生成抑制层时,抑制fe的扩散,因此在利用关于所述摩擦特性的效果方面受到许多限制。

因此,目前需要开发一种能够在保持镀覆粘附力的同时获得fe扩散效果的方法的技术。

[现有技术文献]

[专利文献]

(专利文献1)韩国公开专利公报第10-2015-0074882号



技术实现要素:

要解决的技术问题

本发明的一个方面的目的在于提供一种镀锌钢板及其制造方法,所述镀锌钢板不仅镀覆粘附性优异,而且通过溶出一定水平的fe,提高镀层的摩擦特性,并且具有优异的耐腐蚀性。

本发明要解决的技术问题并不限于上述内容。本发明所属技术领域的普通技术人员可以从本发明说明书的整个内容不难理解本发明的附加技术问题。

技术方案

本发明的一个方面提供一种镀覆粘附性和耐腐蚀性优异的镀锌钢板,所述镀锌钢板包括基础钢板和形成在所述基础钢板的至少一面的镀锌层,以重量%计,所述镀锌层包含:铝(al):5.1-35.0%、镁(mg):4.0-25.0%、余量的锌(zn)和其它不可避免的杂质,在所述基础钢板和所述镀锌层的界面包括厚度为0.01-15μm的al-fe抑制层。

本发明的另一个方面提供一种制造镀覆粘附性和耐腐蚀性优异的镀锌钢板的方法,其特征在于,包括以下步骤:准备锌镀浴,以重量%计,所述锌镀浴包含:铝(al):5.1-35.0%、镁(mg):4.0-25.0%、余量的锌(zn)和其它不可避免的杂质;将基础钢板浸入所述锌镀浴中并进行镀覆,以制造镀锌钢板;以及对所述镀锌钢板进行冷却,其中,所述锌镀浴的温度为超过555℃且低于600℃,所述基础钢板的引入温度为超过565℃且低于600℃。

有益效果

根据本发明,可以提供一种即使fe从基材铁溶出到镀层中也具有优异的粘附性的镀锌钢板。

此外,本发明的镀锌钢板不仅耐腐蚀性优异,而且随着镀层的摩擦特性提高,具有诱导加工性的提高的效果。

附图说明

图1是示出观察本发明的一个实施例的发明例1和比较例5的截面的照片。

图2是示出本发明的一个实施例的发明例1和比较例5的密封剂弯曲试验(sealer-bendingtest)的结果(其中,基准尺(scalebar)为2mm)。

图3是示出观察本发明的一个实施例的发明例1和比较例5的弯曲试验后的外圈部裂纹的形状的照片。

图4是示出本发明的一个实施例的发明例1和比较例5的表面的三维(3d)粗糙度扫描的结果。

图5是示出拍摄本发明的一个实施例的发明例1和比较例5的盐雾试验后的表面的照片。

最佳实施方式

本发明人对在保持镀锌钢板的镀覆粘附性的同时提高镀层的摩擦特性和耐腐蚀性的方法进行了深入研究。

其结果,确认了通过优化镀浴中的合金组成和镀覆条件来形成镀层,以使从基材铁扩散的fe在镀层中具有浓度梯度(不同于现有的在基础钢板(基材铁)和镀层的界面形成fe-al合金层),因此可以提供具有期望的物理性能的镀锌钢板,从而完成了本发明。

以下,对本发明进行详细的说明。

本发明的一个方面的镀覆粘附性和耐腐蚀性优异的镀锌钢板可以包括基础钢板和形成在所述基础钢板的至少一面的镀锌层。

在本发明中,对所述基础钢板的种类不作特别限制,例如,所述基础钢板可以是用作通常的镀锌钢板的基材的fe系基础钢板,即热轧钢板或冷轧钢板。但是,在热轧钢板的情况下,在其表面具有大量的氧化皮,这种氧化皮具有降低镀覆粘附性而使镀覆质量变差的问题,因此更优选地将预先用酸溶液去除氧化皮的热轧钢板用作基材。作为一个实例,可以列举用作汽车用材料的碳钢、超低碳钢、高锰钢等。

另外,所述镀锌层可以形成在所述基础钢板的一面或两面。

以重量%计,所述镀锌层可以包含:铝(al):5.1-35.0%、镁(mg):4.0-25.0%、余量的锌(zn)和其它不可避免的杂质,所述镀锌层可以通过以上述含量包含al、mg、余量的zn和其它不可避免的杂质的镀浴形成。

所述镀锌层中的mg是对提高镀层的耐蚀性起到非常主要的作用的元素,镀层内部包含的mg抑制在苛刻的腐蚀环境中耐蚀性的提高效果少的锌氧化物系腐蚀产物的生长,并在镀层表面使致密且耐蚀性的提高效果大的锌氢氧化物系腐蚀产物稳定。

当所述mg的含量小于4.0%时,不能充分获得由zn-mg系化合物的生成引起的耐蚀性的提高效果,另一方面,当所述mg的含量超过25.0%时,耐蚀性的提高效果饱和,并且存在镀浴的浴面过度生成mg氧化性浮渣的问题。

因此,在本发明中,在所述镀锌层中优选包含4.0-25.0%的mg。更优选地,可以包含5.1%以上的所述mg,进一步优选地,可以包含9.0%以下的所述mg。

在所述镀锌层中添加al的目的在于,为了减少添加mg的锌合金热浸镀浴中由于mg的氧化反应而产生的浮渣,al与zn和mg的组合在提高镀覆钢板的耐蚀性方面也是有利的。

当所述al的含量小于5.1%时,防止由于添加mg而引起的镀浴表层部氧化的效果不足,并且不能充分获得耐蚀性的提高效果。另一方面,当所述al的含量超过35.0%时,浸入镀浴中的钢板的fe溶出量剧增,形成fe合金系浮渣,并且在镀层中形成zn/al二元共析相,因此降低mg对于截面部和涂装部的耐蚀性的提高效果。

因此,在本发明中,在所述镀锌层中优选包含5.1-35.0%的al,更优选地,可以包含11-15%的al。

如上所述,本发明中镀锌层中包含预定量的al、mg和作为余量的zn和不可避免的杂质,因此可以称为zn-al-mg系合金镀层,并且所述镀锌层可以具有20-40μm的厚度,优选可以具有20-35μm的厚度。

本发明的镀锌钢板可以在所述基础钢板和镀锌层界面包括厚度为0.01-15μm的al-fe抑制层,所述al-fe系抑制层优选为feal3合金相。

具体地,所述al-fe系抑制层夹杂在基材铁和镀层之间,并且可以起到赋予基材铁和合金镀层之间的粘附力的作用。特别地,加工镀锌钢板时所述al-fe系抑制层预防镀层的剥离,因此还可以获得进一步提高加工性的效果。

另外,所述al-fe抑制层的厚度偏差优选满足0.01-3μm。当al-fe抑制层的厚度偏差超过3μm时,不连续地形成抑制层,因此不能充分获得由抑制层引起的镀覆粘附性效果。所述al-fe抑制层的厚度偏差最优选为0,但如下所述,在本发明中fe从基材铁扩散到镀层中,考虑到这种情况,可以将所述厚度偏差的下限限制为0.01μm。

本发明的镀锌层在内部包括fe含量为40-95%的第一区域和fe含量为0.01%以上且小于40%的第二区域,所述fe主要包括从基材铁扩散(溶出)到镀层中的fe。

所述第一区域和所述第二区域形成在所述al-fe抑制层上部,其中,所述第一区域在所述镀锌层中主要以邻接基材铁的方式存在,所述第二区域主要以邻接所述镀锌层的表面的方式存在。由此,所述第二区域可以以0.01-40%的面积分数形成在所述镀锌层的表层部。

参照图1进行说明,在示出发明例的附图中,在基材铁和镀层的界面处连续地显示出暗的部分为第一区域,除此之外的直至镀层表层的其余区域为第二区域。

本发明中,在所述镀锌层中,可以在镀层的整个厚度上形成所述第一区域和所述第二区域,但对其尺寸、形状、分数(在镀层截面或表面中所占的分数)等不作特别限定,需要明确的是,在本发明中提出的镀覆条件下,如上所述,区分形成根据fe含量的区域。

如上所述,本发明的镀锌层尽管fe从基材铁扩散到镀层中,但在基材铁和镀层的界面连续生成al-fe抑制层,因此不仅镀覆粘附性优异,而且通过fe的扩散(溶出),镀层的表面特性得到改善,因此可以具有3-4μm的表面粗糙度(ra)。

即,与现有的镀锌材料相比,具有高的表面粗糙度(ra),从而摩擦和润滑特性得到提高,因此具有在后续加工时有利于提高加工性的效果。

以下,对本发明的另一个方面的制造镀覆粘附性和耐腐蚀性优异的镀锌钢板的方法进行详细说明。

本发明的镀锌钢板可以通过以下步骤制造,所述步骤包括:准备基础钢板和锌镀浴;将所述基础钢板浸入所述锌镀浴中并进行镀覆,以制造镀锌钢板;以及对所述镀锌钢板进行冷却。

此时,所述镀锌层可以形成在所述基础钢板的一面或两面。

所述基础钢板为如上所述,为了获得本发明中所期望的镀锌层,以重量%计,所述锌镀浴优选包含:铝(al):5.1-35.0%、镁(mg):4.0-25.0%、余量的锌(zn)和其它不可避免的杂质。更优选地,可以包含11-15%的所述al。此外,更优选地,可以包含5.1%以上且9.0%以下的mg。

本发明的特征在于,在将基础钢板浸入具有上述合金组成的锌镀浴中并进行镀覆时,所述锌镀浴的温度为超过555℃且低于600℃,所述基础钢板的引入温度为超过565℃且低于600℃。

通常,制造镀锌钢板时,将镀浴的温度控制在熔点以上,并且控制在最高不超过500℃的温度,然而,在本发明中,通过将锌镀浴的温度控制得相对高,从而可以形成期望的镀层。

具体地,在本发明中在将基础钢板浸入锌镀浴中并进行镀覆时,在基材铁和镀层的界面形成al-fe抑制层的同时,需要提供充足的热能,以使基材铁中的fe可以扩散到镀层中,当将所述锌镀浴的温度控制在555℃以下或将基础钢板的引入温度控制在565℃以下时,不能实现这一点。即,由于不连续地形成al-fe抑制层或者fe没有充分扩散到镀层中,因此不能获得具有期望的物理性能的镀锌层。

另一方面,当所述锌镀浴的温度为600℃以上时,基础钢板和镀浴内部设备被侵蚀,引起设备寿命缩短的可能性增加。此外,当所述锌镀浴的温度过高或所述基础钢板的引入温度为600℃以上时,增加fe合金浮渣,因此存在镀覆材料的表面变差的问题。

更优选地,所述基础钢板的引入温度可以控制为比所述锌镀浴温度高5-20℃。

如上所述进行镀覆时,本发明可以以130-180g/m2的镀覆附着量进行,由此可以获得厚度为20-40μm的镀锌层。

可以对如上所述在锌镀浴中完成镀覆后获得的镀覆材料进行冷却,在本发明中可以分阶段进行冷却以获得具有上述第一区域和第二区域的镀锌层。

具体地,所述冷却可以包括以下步骤:第一冷却,以0.01-5℃/秒的冷却速度冷却至230-270℃;以及第二冷却,以0.05-20℃/秒的冷却速度冷却至常温。

在本发明中,通过第一冷却工艺充分进行单相的凝固并适当地形成固-液相,然后在第二冷却时使冷却速度相对高于第一冷却时的冷却速度,从而可以使其完全固化。

在本发明中,在所述冷却时排除通过包含水分来进行冷却的方法,优选可以通过喷射气体来进行冷却。

此时,在镀覆材料的前面和背面均喷射气体,并且通过调节所述气体的压力,可以确保期望的冷却速度。作为一个实例,所述气体可以使用诸如氮气、氩气等的惰性气体。

另外,在进行所述冷却之前,还可以包括对形成镀层的镀覆材料进行气体擦拭处理的步骤。所述气体擦拭是用于调整镀覆附着量的工艺,对其方法不作特别限定。

此时,所使用的气体可以利用空气或氮气,其中,更优选利用氮气。这是因为使用空气时在镀层表面优先发生mg的氧化,因此可能会引发镀层的表面缺陷。

通过完成上述一系列工艺,可以获得本发明的一个方面的镀锌钢板,所述镀锌钢板包括在基材铁和镀层的界面连续形成的al-fe抑制层,并且在镀层中形成包括上述第一区域和第二区域的镀锌层。

本发明的镀锌钢板不仅具有优异的镀覆粘附性和耐腐蚀性,而且随着镀层表面的摩擦特性的改善,可以获得在后续加工时提高加工性的效果。

具体实施方式

以下,通过实施例对本发明进行更具体的说明。但是,需要注意的是,以下实施例仅用于例示本发明以进行更详细的说明,并不用于限制本发明的权利范围。这是因为本发明的权利范围由权利要求书中记载的内容和由此合理推导出的内容决定。

(实施例)

作为用于镀覆的试片,准备厚度为1.0mm、宽度为110mm、长度为200mm的冷轧钢板(0.0016%的c-0.081%的mn-0.002%的si-0.0091%的p-0.0043%的s-0.036%的酸溶铝(sol.al))作为基础钢板,然后以下表1的条件进行镀覆,从而制造各个镀锌钢板。此时,镀覆后的冷却是通过向钢板的前面和背面喷射氮气来进行,在250℃下终止第一冷却,第二冷却进行至常温。

[表1]

(表1的镀浴组成中余量为zn和不可避免的杂质。)

对如上所述制造的各个镀锌钢板的镀覆粘附性、表面特性和耐腐蚀性进行评价。

首先,在镀浴的组成和镀覆钢板的制造工艺条件满足本发明的范围的发明例1至发明例3的情况下,均可以在基材铁和镀层的界面连续地形成fe-al抑制层,随着粗糙度的上升,可以保持摩擦/润滑特性,从而加工时可以有效地抑制镀层的脱落,因此耐腐蚀性优异。

另外,在镀浴组成在本发明的范围内但镀覆钢板的制造工艺条件不在本发明的范围的比较例1至比较例2的情况下,由于低的镀浴温度和引入温度,基础钢板的fe扩散所需的热能低,因此难以连续地形成fe-al抑制层。因此,由于粗糙度降低而引起的镀层的摩擦/润滑特性降低,从而加工后的镀层中产生分枝状裂纹,并且由于镀层脱落,耐蚀性降低。

此外,与发明例相比,比较例3至比较例4的mg含量低,因此表面和截面部的耐蚀性不优异。

并且,在镀浴的组成成分和制造工艺条件均不在本发明的范围的比较例6的情况下,由于基础钢板的fe扩散所需的热能低,因此难以连续地形成fe-al抑制层。因此,由于粗糙度降低而引起镀层的摩擦/润滑特性降低,从而加工后的镀层中产生分枝状裂纹,并且由于镀层脱落,耐蚀性降低。此外,mg-zn的共析相的形成量少,因此镀层表面和截面部的耐蚀性降低。

另外,为了观察镀锌钢板的截面,在垂直于轧制方向的方向(厚度方向)上进行切割,然后利用扫描电子显微镜(scanningelectronmicroscope,sem)进行观察。图1是示出观察本发明的实施例中发明例1和比较例5的镀层截面的照片。

如图1所示,可以确认发明例1和比较例5均在基材铁和镀层之间存在fe-al抑制层,并且fe扩散到镀层中。但是,在所述比较例5的情况下,发生fe的扩散的同时不连续地形成fe-al抑制层,因此预测镀覆粘附力会降低。

另外,在观察镀锌钢板的截面时,用fib对截面进行加工,并且为了保护加工部,向平板部涂覆铂、金或碳。图1示出一同观察的涂覆在平板部的区域的一部分。

此外,为了评价镀锌钢板的镀覆粘附力,进行密封剂弯曲试验,并将其结果示于图2中。图2是示出本发明的实施例的发明例1和比较例5的密封剂弯曲试验的结果(其中,基准尺为2mm)。在所述密封剂弯曲试验是如下评价,即向密封胶泥(masticsealer)(紫色)和平板的镀层涂覆粘合剂并彼此粘附,然后以90度弯曲(bending)平板部,由此评价在其弯曲部位的密封胶泥部分所沾的镀层的程度。此时,用光学显微镜拍摄所述密封胶泥部分的照片示于图2中。

如图2所示,可以确认,在发明例1的情况下,未发生镀层剥离,而在比较例5中发生镀层剥离。

并且,在镀锌钢板的弯曲试验后,观察是否产生外圈部的裂纹,并将其结果示于图3中。图3是示出观察本发明的实施例中发明例1和比较例5的弯曲试验后的外圈部裂纹的形状的照片。此时,在所述弯曲试验中,将镀覆材料本身弯曲180度,然后用扫描电子显微镜拍摄外圈部的照片并示于图3中。

如图3所示,在发明例1中裂纹的形状向一个方向上平行地形成,而在比较例5中可以观察到在一个方向上平行地形成的行为中变为分枝状(branch-type)的破坏和裂纹传播行为。这种结果预测将会影响加工部位的耐蚀性。

此外,为了确认镀锌钢板的表面特性,对镀锌钢板进行3d粗糙度扫描,并将其结果示于图4中。图4是示出本发明的实施例的发明例1和比较例5的表面的3d粗糙度扫描的结果。

如图4所示,可以确认,fe扩散至整个镀层,在这种镀层中根据fe的浓度梯度被分层的发明例1的情况下,与比较例5相比,粗糙度和表面粗糙度大幅提高。

此外,图5是示出拍摄对本发明的实施例的发明例1和比较例5的镀覆钢板进行盐雾试验1200小时后的表面的照片。此时,腔室内放置5体积%(vol.%)的nacl盐水(35℃),以1.55ml/小时将所述盐水喷雾到各镀覆材料(尺寸为150×70(mm2)的试片),并通过产生红锈的时间评价耐腐蚀性。

如图5所示,可以确认,在发明例1中在腐蚀环境中保持1200小时的耐腐蚀性,而在比较例5的情况下发生严重的腐蚀。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1