无方向性电磁钢板的制作方法

文档序号:26003908发布日期:2021-07-23 21:21阅读:82来源:国知局
无方向性电磁钢板的制作方法

本发明涉及无方向性电磁钢板,具体来说,涉及适于电机的转子铁芯使用的无方向性电磁钢板。



背景技术:

对于电动汽车、空调的电机而言,由于要求高效率,因此通常使用内置磁铁式电机(ipm电机)。ipm电机的转子铁芯中,在狭缝(slot)部中埋入有永久磁铁,在高速旋转时,因离心力而会在桥部施加很大应力。从确保转子强度的观点出发使桥部的宽度增宽即可,但在该情况下,永久磁铁的漏磁通增多而使得电机效率下降,因而,桥宽在能够确保转子强度的范围内设计得尽可能窄。因此,电机铁芯中使用的电磁钢板需要能够耐受高速旋转时的离心力的拉伸强度及应对反复负荷的疲劳强度。另外,在集中绕组的电机中,由于在转子铁芯表面产生由高次谐波引起的铁损,因此,转子铁芯中使用的电磁钢板还需要高频铁损低。

作为满足以上要求的转子铁芯用材料,例如,专利文献1中公开了具有si:0.2~3.5质量%、al:2.50质量%以下、nb:0.05~8.0质量%的成分组成的高强度电磁钢板。另外,专利文献2中公开了一种高强度电磁钢板,其具有si:2.0~3.5质量%、al:0.02~3.0质量%、n:0.005~0.020质量%的成分组成,从制品板表面到深度为10μm的平均晶体粒径为10μm以下。

现有技术文献

专利文献

专利文献1:日本特开2010-159494号公报

专利文献2:日本特开2005-113252号公报



技术实现要素:

发明要解决的课题

但是,上述专利文献1中公开的技术由于利用了nb的析出强化,因此虽然强度高,但存在铁损增加的问题。另外,上述专利文献2中公开的技术中,也由于含氮量高而存在铁损增加的问题。此外,作为谋求提高电磁钢板的拉伸强度及疲劳强度的手段,减少c、s、n等杂质元素并实现细粒化是有效的,但存在强度不均大的问题。

本发明是鉴于现有技术存在的上述问题提出的,其目的在于,提供低铁损且拉伸强度及疲劳强度优异的无方向性电磁钢板。

用于解决课题的手段

本申请的发明人为了解决上述课题而反复进行深入研究。其结果发现,通过减少钢中夹杂物并减少作为杂质含有的zn,从而能够在保持低铁损的同时,提高拉伸强度和疲劳强度、且能够减少强度不均,进而提出了本发明。

即,本发明的无方向性电磁钢板具有下述成分组成,上述成分组成含有c:0.005质量%以下、si:3~5质量%、mn:5质量%以下、p:0.1质量%以下、s:0.01质量%以下、al:3质量%以下、n:0.005质量%以下及zn:0.0005~0.003质量%,余量为fe及不可避免的杂质,平均晶体粒径为40μm以下,直径为5μm以上的夹杂物为5个/mm2以下,拉伸强度为600mpa以上且疲劳强度为450mpa以上。

本发明的无方向性电磁钢板的特征在于,在前述成分组成的基础上,还含有0.1~5质量%的cr。

另外,本发明的无方向性电磁钢板的特征在于,在前述成分组成的基础上,还含有0.001~0.005质量%的ca。

另外,本发明的无方向性电磁钢板的特征在于,在前述成分组成的基础上,还含有从sn:0.001~0.1质量%及sb:0.001~0.1质量%中选择的1种或2种。

另外,本发明的无方向性电磁钢板的特征在于,在前述成分组成的基础上,还含有从ni:0.1~2质量%、mo:0.001~0.05质量%、cu:0.01~0.2质量%、mg:0.001~0.005质量%、rem:0.001~0.005质量%及(ti+v):0.005~0.05质量%中选择的至少1种成分。

发明的效果

根据本发明,能够提供低铁损且拉伸强度及疲劳强度优异的无方向性电磁钢板。并且,通过使用上述无方向性电磁钢板,从而能够稳定地提供高频铁损特性优异的高速旋转电机的转子铁芯材料。

附图说明

图1是示出平均晶体粒径与疲劳强度的关系的曲线图。

图2是示出圆当量直径为5μm以上的夹杂物个数与疲劳强度的关系的曲线图。

图3是示出zn含量与拉伸强度ts的标准偏差σ的关系的曲线图。

具体实施方式

说明作为开发本发明的契机的实验。

<实验1>

首先,为了调查晶体粒径对疲劳强度的影响,将含有c:0.0018质量%、si:3.4质量%、mn:0.6质量%、p:0.01质量%、s:0.002质量%、al:0.9质量%、n:0.0013质量%、zn:0.0012质量%及o:0.0020质量%的钢在实验室中熔解、在铸造以制成钢锭后,进行热轧以制成板厚2mm的热轧板。接下来,在100体积%的n2气氛下实施1000℃×30s的热轧板退火后进行酸洗,并进行冷轧以制成板厚0.25mm的冷轧板,在20体积%h2-80体积%的n2气氛下,将均热时间设为10s,使均热温度在650~1000℃的范围各种变化,并实施最终退火。

接下来,将轧制方向设为长度方向,从上述最终退火板采集具有宽度为5mm、长度为150mm的平行部的疲劳试验片,供于疲劳试验。此时,针对平行部实施3.2s的精加工(基于jisb0601(1970)。以下相同),沿长度方向使用800号的砂纸实施研磨。疲劳试验在拉伸-拉伸、应力比0.1、频率20hz的条件下进行,将107次重复中也未发生断裂的应力振幅设为疲劳极限。另外,关于试验片的平均晶体粒径,在对轧制方向剖面进行研磨并使用硝酸乙醇进行蚀刻后,基于jisg0551进行测定。

图1中示出平均晶体粒径与疲劳极限的关系。从该图可知,通过使平均晶体粒径微细化,疲劳极限提高,具体来说,通过使平均晶体粒径为40μm以下,疲劳极限达到450mpa以上。另外,通过使平均晶体粒径为40μm以下,还能够确保拉伸强度为600mpa以上的强度。根据该结果可知,在本发明中,将制品板的平均晶体粒径规定为40μm以下。优选为30μm以下。在此,上述疲劳极限450mpa为hev/ev电机的转子用材料所需要的避免转子的桥部的因重复使用而破坏的下限值。需要说明的是,优选的疲劳极限为470mpa以上、拉伸强度为650mpa以上。

<实验2>

接下来,为了调查制造性,在将含有c:0.0020质量%、si:3.5质量%、mn:0.4质量%、p:0.01质量%、s:0.001质量%、al:0.7质量%、n:0.0016质量%及zn:0.0011质量%的钢在实验室中以10次装载进行熔解、铸造以制成钢锭后,进行热轧以制成板厚2mm的热轧板。接下来,对该热轧板在100体积%的n2气氛下实施1000℃×30s的热轧板退火后进行酸洗,并进行冷轧以制成板厚0.25mm的冷轧板,在20体积%h2-80体积%的n2气氛下,实施800℃×10s的最终退火。

针对由上述10次装载得到的各最终退火板评价疲劳特性,在由部分的装载得到的最终退火板中确认到疲劳极限显著低。为了调查其原因,对钢板表面进行50μm研磨,使用sem(扫描型电子显微镜)观察研磨后的表面,在疲劳极限低的材料中观察到粗大的夹杂物。根据该结果,认为粗大的夹杂物作为疲劳试验时的龟裂的起点起作用,使疲劳极限降低。

因而,为了调查影响疲劳极限的夹杂物的影响,在研磨后的表面中,调查在0.1mm2的观察视野内观察到的夹杂物的大小(圆当量直径)和产生数量。需要说明的是,上述圆当量直径是指面积与观察到的夹杂物的面积相同的圆的直径。

图2示出圆当量直径为5μm以上的夹杂物的个数与疲劳极限的关系。从该图可知,若圆当量直径为5μm以上的夹杂物超过5个/mm2,则疲劳极限急剧降低。在低强度的电磁钢板中,夹杂物对疲劳极限的影响小,但在高强度的电磁钢板中,龟裂敏感性高,因此认为粗大夹杂物对疲劳极限的影响变得显著。根据上述结果,在本发明中,将圆当量直径为5μm以上的夹杂物的个数限制为5个/mm2以下。优选为3个/mm2以下。

另外,针对上述实验2中使用的钢板测定氧(o)含量,均在0.0010~0.0100质量%(10~100质量ppm)的范围内。虽然认为夹杂物量因氧量减少而减少,但圆当量直径为5μm以上的夹杂物个数与含氧量并非一定相关。由此可知,为了减少圆当量直径为5μm以上的夹杂物个数、减少疲劳强度的不均,仅限制钢中的含氧量是不充分的,在精炼阶段进行减少圆当量直径超过5μm的夹杂物量的后述控制很重要。

<实验3>

接下来,进行调查zn对拉伸强度ts不均的影响的实验。

zn由于蒸气压高而为通常不会混入钢中的元素,但在精炼工序中存在为了进行温度调节等而向脱氧后的钢液中添加碎屑(scrap)时混入的情况。在通常的低强度的电磁钢板中,由于使晶粒充分生长,因此即使zn混入也不会对强度特性造成很大影响,但在像本发明作为对象的高强度电磁钢板这样晶粒微细的材料中,认为会成为强度不均的原因。

在上述实验中,将含有c:0.0025质量%、si:3.6质量%、mn:0.8质量%、p:0.01质量%、s:0.001质量%、al:0.6质量%、n:0.0015质量%及o:0.0015质量%、使zn含量在0.0003~0.0060质量%的范围各种变化的钢在实验室中熔解、铸造以制成钢锭后,进行热轧以制成板厚2mm的热轧板。接下来,在100体积%的n2气氛下实施1000℃×30s的热轧板退火后进行酸洗,并进行冷轧以制成板厚0.25mm的冷轧板,在20体积%h2-80体积%的n2气氛下实施800℃×10s的最终退火,制得制品板。

接下来,从各上述制品板采集20片以轧制方向为拉伸方向的jis5号试验片,基于jisz2241进行拉伸试验,测定拉伸强度ts,求出20片的拉伸强度ts的标准偏差σ。将其结果示于图3,可知若zn含量超过0.003质量%,则拉伸强度ts的不均变大,标准偏差σ为15mpa以上。

其原因被认为是,若zn混入钢中,则最终退火中的再结晶行为变得不稳定、晶体粒径变化。因而,在本发明中,将作为不可避免的杂质混入的zn含量限制为0.003质量%以下。

本发明是基于上述新的见解做出的。

接下来,说明本发明的无方向性电磁钢板的成分组成的限定理由。

c:0.005质量%以下

c为形成碳化物并析出、使铁损增大的有害元素,因此限制为0.005质量%以下。优选为0.003质量%以下。

si:3~5质量%

si为对于提高钢板的固有电阻以减少铁损有效的元素,因此含有3质量%以上。另一方面,若超过5质量%,则随着饱和磁通密度降低,磁通密度也降低,因此上限为5质量%。优选为3.5~4.5质量%的范围。

mn:5质量%以下

mn为对于提高钢板的固有电阻有效的元素,但若超过5质量%,则磁通密度降低,因此使上限为5质量%。优选为2质量%以下。mn的下限没有特别规定,但从改善热加工性及铁损的观点出发,优选含有0.1质量%以上。

p:0.1质量%以下

p为对于提高钢的强度以改善冲裁性有效的元素,但若添加超过0.1质量%,则钢脆化、变得难以冷轧,因此限制为0.1质量%以下。优选为0.002~0.01质量%的范围。

s:0.01质量%以下

s为与mn形成mns并析出、使铁损增大的有害元素,特别是,若超过0.01质量%,则上述弊端变得显著。由此,s限制为0.01质量%以下。优选为0.005质量%以下。

al:3质量%以下

al与si同样地,为对于提高固有电阻以减少铁损有效的元素,但若超过3质量%,则与饱和磁通密度降低相伴,磁通密度也降低,因此限制为3质量%以下。优选为2质量%以下。需要说明的是,al的下限没有特别规定,但从改善铁损的观点出发,优选0.3质量%以上,更加优选0.5质量%以上。

n:0.005质量%以下

n为形成氮化物并析出、使铁损增大的有害元素,特别是,若超过0.005质量%,则上述弊端变得显著。由此,n限制为0.005质量%以下。优选为0.002质量%以下。

zn:0.0005~0.003质量%

如前所述,zn为通过再结晶行为的变化而使拉伸强度不均增大的有害元素,从减少拉伸强度不均的观点出发,在本发明中限制为0.003质量%以下。优选为0.002质量%以下。需要说明的是,就上述观点而言,zn含量越少越好,但添加微量zn也有抑制氮化以改善铁损的效果。另外,过度减少需要严格选择所使用的原料、碎屑而成本升高,因此zn的下限为0.0005质量%左右。

本发明的无方向性电磁钢板在上述成分的基础上进一步优选含有下述成分。

cr:0.1~5质量%

cr与si同样地,为对于提高固有电阻以减少铁损有效的元素,因此优选含有0.1质量%以上。但是,在添加超过5质量%时,与饱和磁通密度降低相伴,磁通密度也降低,因此优选添加5质量%以下。

ca:0.001~0.005质量%

ca为形成cas而将s固定并有助于减少铁损的元素,因此优选含有0.001质量%以上。但是,若超过0.005质量%,则上述效果饱和,只会导致制造成本升高,因此上限为0.005质量%。

sn:0.001~0.1质量%、sb:0.001~0.1质量%

sn及sb为对于改善织构以提高磁通密度有效的元素,因此分别优选含有0.001质量%以上。另一方面,若超过0.1质量%,则上述效果饱和,只会导致制造成本升高,因此上限为0.1质量%。

ni:0.1~2质量%

ni为对于提高磁通密度有效的元素。为了获得上述效果,优选添加0.1质量%以上。另一方面,添加超过2质量%时,上述效果饱和,只会导致原料成本升高,因此优选上限为2质量%。

mo:0.001~0.05质量%

mo为成为微细碳化物并析出以提高钢的强度的元素。为了获得上述效果,优选添加0.001质量%以上。另一方面,若添加量超过0.05质量%,则铁损显著增加,因此优选上限为0.05质量%。

cu:0.01~0.2质量%

cu为改善织构并提高磁通密度的元素。为了获得该效果,优选添加0.01质量%以上。另一方面,若超过0.2质量%,则上述效果饱和,只会导致原料成本升高,因此优选上限为0.2质量%。

mg:0.001~0.005质量%

mg为使夹杂物粗大化以有助于减少铁损的元素。为了获得上述效果,优选添加0.001质量%以上。另一方面,若添加量超过0.005质量%,则上述效果饱和,只会导致原料成本升高,因此优选上限为0.005质量%。

rem:0.001~0.005质量%

rem为使硫化物类夹杂物粗大化以有助于减少铁损的元素。为了获得上述效果,优选添加0.001质量%以上。另一方面,若添加量超过0.005质量%,则上述效果饱和,只会导致原料成本升高,因此优选上限为0.005质量%。

(ti+v):0.005~0.05质量%

ti及v为形成微细碳氮化物并析出以提高钢的强度的元素。为了获得该效果,优选添加单独为0.005质量%以上的ti或v或添加合计为0.005质量%以上的ti及v。另一方面,若ti或v的单独添加量或ti及v的合计添加量超过0.05质量%,则铁损显著增加,因此优选单独或合计的上限为0.05质量%。

在本发明的无方向性电磁钢板中,上述成分以外的余量为fe及不可避免的杂质。需要说明的是,o为形成氧化物类夹杂物以使铁损增大的有害元素,因此尽力减少,更加优选限制为0.005质量%以下。

接下来,说明本发明的无方向性电磁钢板的制造方法。

在本发明的无方向性电磁钢板的制造方法中,若为本发明中规定的上述成分组成的范围内,则其他制造条件按照常规进行即可。即,能够使用下述方法制造:将在转炉中吹炼的钢液通过真空脱气处理等进行二次精炼,在调节为上述规定的成分组成后,使用连续铸造法或铸锭-开坯轧制法制成钢原料(钢坯),进行热轧并根据需要进行热轧板退火、冷轧以制成最终板厚的冷轧板,进行最终退火。

在此,为了使钢板中的圆当量直径为5μm以上的夹杂物的个数减少为5个/mm2以下,优选确保二次精炼的真空脱气处理中的脱氧剂添加后的回流时间为10分钟以上。另外,为了使从碎屑、合金铁混入的zn蒸发以将其除去,优选确保碎屑、合金铁投入后的回流时间为5分钟以上。需要说明的是,上述真空脱气处理中使用的设备也可以是rh法、dh法中的任意。

另外,热轧中的精轧结束温度fdt、卷取温度ct按照常规即可,没有特别限定。也可以进行热轧后的热轧板退火,但非必需。另外,冷轧进行1次或夹着中间退火的2次以上即可,没有特别限制。为了使晶粒微细化,关于接续于冷轧的最终退火,优选将均热温度设为850℃以下来进行,优选将均热时间设为5~120s进行。

上述最终退火后的钢板根据需要涂布绝缘被膜以制成制品板。在此,上述绝缘被膜优选对应于目的从无机、有机及无机/有机混合被膜中适当选择。

实施例

将在转炉中吹炼的钢液进行真空脱气处理,对具有表1中示出的no.1~62的成分组成的钢进行熔炼,连续铸造以制得钢原料(钢坯)。此时,使真空脱气处理的脱氧后的回流时间按照表2所示的方式变化。接下来,将上述钢坯再加热至1140℃的温度,在保持1小时(hr)后,进行使精轧结束温度为800℃的热轧以制成热轧板,然后于610℃的温度卷取为卷材。接下来,上述热轧板在100体积%的n2气氛下、在950℃×30s的条件下实施热轧板退火,并在酸洗后进行冷轧以制成板厚为0.25mm的冷轧板,然后,在20体积%h2-80体积%的n2气氛下,在表2中示出的条件下实施最终退火,制得制品板。

从按照这种方式制得的制品板沿轧制方向及垂直于轧制的方向采集爱普斯坦试验片,使用爱普斯坦法测定磁通密度b50及高频铁损w5/3k。

另外,从上述制品板采集组织观察用样品,在对轧制方向剖面进行研磨并使用硝酸乙醇蚀刻后,基于jisg0551进行测定,测定平均晶体粒径,并且,将钢板表面研磨50μm,使用sem观察10个视野的0.1mm2的范围,求出每1mm2中圆当量直径为5μm以上的夹杂物的个数。

另外,从上述制品板采集20根将轧制方向设为拉伸方向的jis5号试验片,基于jisz2241进行拉伸试验,测定拉伸强度ts,求出20根拉伸试验的平均值及标准偏差σ。

此外,从上述制品板采集以轧制方向为长度方向的平行部的宽度为5mm、长度为150mm的疲劳试验片,在拉伸-拉伸、应力比0.1、频率20hz的条件下进行疲劳试验,测定107次重复也未发生断裂的应力振幅(疲劳极限)。需要说明的是,对上述疲劳试验片的平行部进行精加工,进一步沿长度方向使用800号的砂纸进行研磨。将上述测定的结果一并示于表2。根据该结果可知,对于使用具有符合本发明的成分组成的钢原料制造的无方向性电磁钢板而言,不仅磁特性优异,而且拉伸强度和疲劳强度也优异。

[表1-1]

[表1-2]

[表2-1]

[表2-2]

产业上的可利用性

本发明的技术不仅能够应用于hev/ev电机、高效率空调电机,也能够应用于工作机械的主轴电机、铁道电机等高速电机的转子用材料等。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1