高纯度硬质金合金及其制造方法

文档序号:3396186阅读:282来源:国知局
专利名称:高纯度硬质金合金及其制造方法
技术领域
本发明涉及电子元件、齿科构件和装饰构件。
电子元件是指连接半导体元件上的电极和外部导线的耐热性良好的高纯度金合金元件,更具体是不论金合金变得如何细小,都能够维持与以前同样,甚至更好的电特性和接合特性。本发明的高纯度金合金的电特性良好,特别是具有较高的机械强度和置于热中的破坏强度。
齿科构件几乎都使用金合金。金的纯度为Au 42-95质量%(mass%),较低。本发明以高纯度金合金的成分组成提高机械特性,并保留金特有的耐腐蚀性和色泽,可作为齿科用高纯度金合金使用。
金合金因是很纯的金黄色,所以色泽很鲜艳。利用本发明的硬化方法能够获得纯金色高纯度金合金。
背景技术
半导体元件上的电极和外部导线间的连接主要使用金合金细线作为接合线。接合(焊接)技术采用的是热压法。合金细线的端部通过电焊枪加热熔融,形成球状,然后在150~300℃的温度下,将该球状部分压着粘接在经过加热的半导体元件的电极上。最后通过超声波压合与外部导线侧接合。
随着半导体元件的高集成化,要求电极间距离短间隔化、球径小型化、长通化等,所以,希望导线能够更细。由于传统高纯度金合金的细线化会造成机械强度的破坏特性降低,所以,很难进行细线化。希望能获得具有较强机械强度和耐热性的金合金细线。
传统高纯度金合金中,为了达到细线化目的而添加了过量的合金元素,在形成球状时由于所添加元素的氧化,会在球体表面形成氧化物层,这样在与电极进行热压时就不能够充分接合,使接合强度降低。而且,使球部的硬度增加,压合时的变形率降低,共用强度降低,严重时甚至会破坏半导体元件。由于球体端部易生成收缩孔而使接合面积减少,这样就会使热压后的接合强度降低。
齿科用金合金分为铸造用和加工用两种。根据用途的不同有适当条件,其硬度和拉伸强度也可有高有低。金合金用一般家庭使用的煤气就可熔化,很容易铸造,且适应性很好,所以是一种理想的材料。然而,虽然使用了高价的金合金,但不能够以高纯度获得足够的强度,而且也不能充分具备金所具有的耐腐蚀性和色泽特性。
在机械性硬度为80~280Hv、拉伸强度为350~1100MPa的范围内分别使用,合金的添加材料主要是使用体积%较大、可改变色泽的材料。但需要的是体积%较小、显现鲜艳的纯金色的添加材料。
传统金合金中为了利用标准的时效硬化提高硬度添加了Cu,为使结晶粒子微细化添加了铟和铼,为提高耐腐蚀性添加了钯,获得了各自均衡的特性。
发明的揭示通过在接合用高纯度金中添加钆Gd或复合添加极微量的硼B,显著提高了机械性质、硬度和破坏强度,使形成球体时的重结晶区域扩大。由于微量的硼B和钆Gd,以及第二周期和第三周期元素共存,所以获得了很好的效果(参考表1)。
获得了适合细线化的球颈部和结粒较小的接合高纯度金合金细线。
为了弥补高纯度金线的缺陷,提出了添加微量Ca、Be和B等的金合金线(日本专利公开公报昭53-105968号、日本专利公开公报昭53-112059、日本专利公开公报昭59-65440号)。今后,为了制造极细的金线,还有许多需要解决的问题。
本发明的接合高纯度金合金(Au 99.985%以上)中钆含量以重量%计在1ppm~49.9ppm或1ppm~99.9ppm的范围内,累计添加量是前者在300ppm范围内,后者在199ppm范围内。任何范围都比国际申请号为PCT/JP96/00510的权利要求范围大。
硼B在金中的固溶度虽小,但提高了机械强度。通过添加微量的硼,虽然能够提高加工硬度和拉伸强度,但不能够提高耐热性。通过添加钆Gd,则能够改善耐热性,并使时效硬化性、加工硬化性和破坏强度显著提高,获得协同效果(参考表1)。
如果大量添加硼B,则合金变硬,球体的组成变形量减少,难以获得充分的接合强度,在半导体上生成微细的裂缝。而且,具有难以形成新球体的缺点。如果添加少量硼B,则金中的硼分布不均匀,机械强度也不均,所以,接合强度不稳定,所得的合金制品存在缺陷。
钆Gd的添加量如果较少,则热处理效果不佳。即使添加大量钆,如果不配合添加其他元素,也不能够明显显现可获得充分平衡的强度。
如果大量添加钙Ca,则在球体端部生成收缩孔,使球体不能够真正形成,导致熔接的接合力下降。如果添加量少,则不能够充分体现协同效果和复合效果。如果添加铍Be、铝Al、锑Sb、硅Si和钐Sm也显现出与钙同样的倾向。
添加铍的效果和添加钙的效果相似,添加钇的效果与添加钐的效果相似。
钆Gd如果和稀土类、碱土类金属一起添加,则能够获得明显的添加效果。
作为齿科用金合金,通过添加钆Gd,并将热处理作为时效处理,能够显著提高机械强度、硬度、拉伸强度和耐热性。钆添加物所占的体积小,且成色接近纯金色。
添加钆Gd后,如果进行时效处理,则可提高硬度、拉伸强度和耐性。如果复合添加上述各种元素,就能够显现添加钆Gd和其他元素后的协同效果。
微量添加硼B,虽然能够显著提高加工硬化性,但固溶度较低。
如果添加钙Ca、铍Be、钇Y、钐Sm,就可通过加工硬化提高硬度和耐热性。
如果添加硅Si,就可提高铸造坯料的硬度和加工硬度。
如果添加铝Al,则可使拉伸强度显著提高,加工硬度也会有所提高。添加锑Sb,则可提高加工硬度。如果添加碱土类金属和稀土类元素,则可提高上述特性。
对附图的简单说明

图1表示本发明的高纯度金合金通过添加钆Gd、硼B和铝Al改善软化程度的曲线图。
图2表示试用作高纯度金合金导线的拉伸强度、维氏硬度和球体形状。
图3表示试用作齿科用金合金的机械特性(拉伸强度、维氏硬度)。
实施发明的最佳状态作为接合导线的高纯度金合金通过在金纯度为99.995重量%的可电解金中添加上述元素,熔融后制得。分别在高频真空熔解装置中熔融铸造,获得20mm×20mm×150mm的坯料(锭)。
首先,对具有表1所示化学成分的铸块状高纯度金合金进行压延,然后用带槽轧辊对其进行加工,最后在常温下进行拉丝加工,直至直径为20微米。热处理最初在800℃进行熔融处理,然后在250℃进行3小时时效硬化处理。
观测常温下拉伸试验的破坏强度、维氏硬度和熔接时的球体形状进行评估,其结果如表1所示。
添加了钆Gd、硼B和铝Al的金合金细线(直径为0.8mm)的软化曲线如图1所示。
利用高速自动接合器,通过电焊枪的电弧放电制得金合金球体,然后用扫描型显微镜观察球体形状,如果以良好形状接合则用“○”表示,如果接合情况不好则用“×”表示。
高速接合后,将引线框架和用于测定的半导体元件固定在金属模具中,然后拉伸接合后的金合金细线中央部分,测定细线断裂时的拉伸强度作为接合强度。
对本发明的高纯度金合金细线进行极细化处理过程中,由于破坏强度、硬度和耐热性都比传统的高纯度金合金细线有所提高,所以不均匀的地方和断线很少,能够进行极细线的稳定接合。其电特性也很好。特别是由于提高了常温下的机械强度、硬度和耐热性,所以,高温下的拉伸强度也很好,还可降低接合环的高度,对高速自动接合也很适应。球体形状也很好,并可减小球的体积,这样就能够提高原料利用率并降低成本。
齿科用金合金是在金纯度为99.99重量%的4N纯金中添加上述元素,然后熔融母合金而制得的。分别逐一通过高频真空熔融进行铸造,获得坯料(20mm×20mm×150mm)。首先,在800℃进行1小时熔融,然后在水中骤冷。接着,进行加工硬化处理和时效硬化处理,加工处理直至加工率为99.5%为止,时效处理是在250℃的温度下进行3小时。
通过维氏硬度和拉伸强度对机械特性进行评估。其结果如表2所示。
由于本发明是含金量在98.5重量%以上的金合金,所以,机械性质中的硬度和拉伸强度有了进一步的提高,而且其耐热性和色泽也有所改善。作为齿科用构件已具备充分的强度。
齿科用构件除了机械性质之外,还存在生物学方面的安全性等重要问题。由于高纯度金合金的添加元素较少,所以在量上可以说保证了较高的安全性。通过选择不同的添加元素,能够获得既可满足机械要求,又可满足生物学要求的齿科用构件。关于生物学上的安全性,各个国家都制定了不同的认可制度,在日本就需要根据药事法得到厚生省的认可。
添加1000ppm稀土类元素和碱土类金属,制得金纯度为99.9重量%的高纯度金合金,对纯金色进行测试的结果是,Gd、La、Ce、Sm和Yb都显现出金色,但其中钆Gd的纯金色最鲜艳。
产业上利用的可能性如上所述,本发明的高纯度硬质金合金部件作为项链、钟表等的装饰部件、接合导线、引线框架、薄膜等电子元件以及齿科用构件很有用。
权利要求
1.一种高纯度金合金的硬化方法,其特征在于,使用了在纯度为99.98重量%以上的Au中含有1ppm~49.9ppm Gd的高纯度金合金,首先,在高于溶解度曲线的温度下使元素均匀分散,然后进行骤冷的熔体化处理,接着,进行加工处理获得所希望的线形或形状,并在该步骤前后或在不进行加工处理的情况下进行时效硬化处理。
2.一种金合金部件的硬化方法,其特征在于,使用金Au含量为98.50~99.86重量%、钆Gd含量为50~14999ppm的金合金,首先,在高于溶解度曲线的温度下使元素均匀分散,然后进行骤冷的熔体化处理,接着,进行加工处理获得所希望的线形或形状,并在该步骤前后或在不进行加工处理的情况下以热处理进行时效硬化处理。
3.如权利要求1、2和11所述的高纯度金合金硬化方法,其特征在于,在权利要求1、2和11的成分组成中复合添加了0.1~150ppm的硼B。
4.一种高纯度金合金的硬化方法,其特征在于,在600-2800℃的温度下,对上述铸造高纯度金合金加热处理后骤冷,然后在150~350℃的温度下进行时效处理。
5.如权利要求1、2、3和4所述的高纯度金合金硬化方法,其特征还在于,熔体化处理后,交替反复进行加工硬化处理和时效处理。
6.一种高纯度金合金的硬化方法,其特征在于,使用在高纯度金Au含量为99.98重量%以上的添加了权利要求1的钆Gd的成分组成,或添加了权利要求2的钆Gd和硼B的成分组成中添加一种以上累计添加量在1~199ppm的范围内的选自铍Be、铝Al、硅Si、钙Ca、钐Sm、钇Y和锑Sb的元素而构成的高纯度金合金,然后进行权利要求1、3、4和5的熔体化处理和时效处理。
7.一种高纯度金合金的硬化方法,其特征在于,使用在高纯度金Au含量为99.98重量%以上的添加了权利要求1的钆Gd和硼B的组成中添加一种以上累计添加量在1~199ppm的范围内的稀土类或碱土类金属而构成的高纯度金合金,然后进行权利要求1、3、4、5和6的熔体化处理和时效处理。
8.一种高纯度金合金的硬化方法,其特征在于,上述权利要求1、3、4、5、6和7中钆Gd的添加量为5~99ppm,累计添加量为1-99ppm。
9.一种金合金的硬化方法,其特征在于,在金Au含量在98.5~99.69重量%范围内的添加了权利要求2的钆Gd的成分组成或添加了权利要求3的钆Gd和硼B的成分组成中添加一种以上累计添加量在3001~14999ppm的范围内的选自铝Al、硅Si、钙Ca、铍Be、钇Y、钐Sm和锑Sb的元素而构成的金合金,然后进行权利要求2、4、5和6的熔体化处理和时效处理。
10.一种金合金的硬化方法,其特征在于,在金Au含量在98.5~99.69重量%范围内的添加了权利要求2的钆Gd的成分组成或添加了权利要求3的钆Gd和硼B的成分组成中添加一种以上累计添加量在3001~14999ppm的范围内的稀土类或碱土类金属而构成的金合金,然后进行权利要求2~5的熔体化处理和时效处理。
11.一种高纯色高纯度硬化金合金部件,其特征在于,在纯度为99.7重量%以上的Au中添加50ppm以上Gd元素,再添加一种以上其他元素,累计含量为3000ppm。
12.一种高纯色高纯度硬化金合金部件,其特征在于,在纯度为99.0重量%以上的Au中添加100ppm以上Gd、Lu、Ce、La、Yb,再添加一种以上其他元素,累计含量为10,000ppm。
13.一种高纯色高纯度硬质金合金的制造方法,其特征在于,在铸造权利要求11和12的金合金后,在600~2800℃的温度下进行熔体化处理,然后在100-400℃的温度下进行时效处理或只进行时效处理。
全文摘要
电子用元件在对高纯度金合金线进行极细化过程中,能够使破坏强度、硬度和耐热性等比传统金合金线进一步提高,并能够进行很少出现不均匀和断线的稳定接合。还能够提高微细添加材料的分散率,使导电性和热传导性有所提高,接合环高度降低,进行高速自动接合。这样的高纯度金合金适用于引线框架等电子用元件。齿科用构件提供了使高纯度金合金的重要的机械性质中的硬度和拉伸强度有所提高,耐热性和色泽也有所改善,并可取得平衡的齿科用高纯度金合金部件。获得具备高纯度金色的装饰用部件、电子用元件和齿科用构件等高纯度金合金。
文档编号C22C5/02GK1221459SQ97195394
公开日1999年6月30日 申请日期1997年6月11日 优先权日1996年6月12日
发明者小笠和男 申请人:小笠和男
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1