煤氧熔融还原炼铁方法及装置的制作方法

文档序号:3398299阅读:277来源:国知局
专利名称:煤氧熔融还原炼铁方法及装置的制作方法
技术领域
本发明属于直接还原法冶炼铁水领域。主要适用于用铁矿粉和煤粉直接冶炼铁水。
熔融还原作为冶金领域的一项重大新工艺,其主要特点是可用非焦煤作为一次能源和还原剂,而且是将氧化铁在熔融状态下还原,具有以煤代焦,流程短,显著改善环境污染,降低基本建投资和生产成本等优点。它是未来炼铁工业发展的方向,被誉为21世纪新兴的炼铁工艺,也是目前各国钢铁工业竞相研究开发的重要领域。
在现有技术中,较著名的熔融还原工艺主要有COREX工艺(CN1042185A)、DIOS工艺(CN1054446)、Hismelt工艺(CN07102252)、AISI工艺(CN1071202)和PJV工艺(CN86100138)等,只有CPREX工艺实现了工业化生产。其它工艺还处在工业试验或间试验阶段。
多数熔融还原炼铁工艺均采用预还原+终还原“二步法”还原工艺。即上部预还原以间接还原反应为主,下部终还原以直接还原为主的还原工艺。根据预还原的程度,目前世界上开发的各种熔融还原煤铁工艺可分为以下两大类型(1)高预还原度低二次燃率的工艺其典型代表为COREX工艺。COREX工艺上部采用竖炉进行预还原,利用终还原炉产生的高浓度(CO+H2≥95%)煤气将块矿或球团、烧结矿还原到金属化率≥90%以后进入终还原炉熔化还原成铁水。
(2)低预还原度高二次燃烧率的工艺,DIOS工艺、AISI工艺、Hismelt工艺等方法均属于这一类型。其基本特点是在终还原炉采用具有混匀特点的铁浴(或渣浴)炉作为反应器,利用C直接还原FeO,将通过二次燃烧的热量直接还原所需求的热量。因此,本工艺上部矿石预还原的程度较低,一般为30%左右,只是将Fe3O4或Fe2O3还原为FeO;然后进入终还原炉熔化还原为铁水。为了保证终还原所需的热量,要求炉气的二次燃烧率(即CO+H2O/CO+CO2+H2+H2O≥50-60%,才能获得较低的煤耗。
由于COREX工艺以气---固相间间接还原反应为主完成铁矿石的还原,还原气体的消耗量大,造成能耗偏高;并受到气固反应传热、传质速率较低的限制致使生产效率低,投资成本高。
以DIOS工艺为代表的采用高二次燃烧率和低预还原度工艺路线的各种熔融还原工艺,由于要求终还原炉内上部气相具有较高的氧化势(高的二次燃烧率),很难控制下部熔池渣、铁相保护很高的还原势。因而无法避免高温高FeO炉渣对炉衬的强烈浸蚀。目前,尚未有任何工艺能达到工业化生产条件。
中国专利ZL94115073.9提供了一种熔融还原炼铁方法及其装置,该专利以冷固结含碳球团为原料,以非焦煤作为燃料和还原剂;熔融还原采用预还原和终还原二步法,预还原在分带的竖炉中进行,终还原在立式铁浴炉中进行。采用该方法能够获得性能较好的铁水,而且生产率高,还可降低成本。该专利的不足之处是预还原温度高达1250℃,因此,在如此高的温度下,在预还原阶段就进行了碳直接参予的直接还原过程,需吸收大量的热量,煤气温度下降,故需增加煤气供给量,故能耗上升,另外,在高温下,球团中的碳参予直接还原反应,使球团间易发生粘结,使炉料运行不顺,造成软熔事故。
本发明的目的在于提供一种能耗低、生产效率高和投资少的煤氧熔融还原炼铁方法及其装置。
针对上述目的,本发明所述的煤氧熔融还原炼铁方法以含铁物料为原料,以煤为能源和还原剂,采用预还原和终还原二步法进行熔融还原,预还原在预还原竖炉中进行,终还原在终还原铁浴炉中进行,在终还原过程中,向终还原铁浴炉内喷吹煤粉和氧气,预还原采用中等预还原度,即预还原矿的金属化率为50-80%。使整个还原过程中,间接还原和直接还原的金属化率比值接近理论最佳值7∶3。
预还原反应温度为750-900℃,预还原只在煤气与含铁物料之间发生间接还原反应,其还原反应如下
预还原所需煤气由终还原铁浴炉中所发生的煤氧燃烧、氧化物还原和煤的分解等产生的气体提供。终还原铁浴炉产生的煤气经煤气输送管道及除尘器再进入预还原竖炉中,进行了预还原反应。
预还原竖炉向终还原铁浴炉排料时的预还原矿温度为800-850℃,终还原在终还原铁浴炉中进行,在该炉的上部为经预还原的固体物料,下部为固液混合物,在终还原铁浴炉的上部仍是经预还原的预还原矿继续进行间接还原反应,在该炉下部进行直接还原反应,其反应式如下
终还原熔化过程中所需的还原剂和热量,除球团中的碳外,主要由向终还原铁浴炉喷入的煤粉供给。同时向终还原炉中喷入氧气,由于氧气的输入,产生二次燃烧,二次燃烧的热量传入熔池。
终还原采用较低的二次燃烧率,CO+H2/CO+H2+CO2+H2O≥85%;终还原温度控制在1100-1600℃范围。
本发明预还原的原料包括冷固结含碳球团、铁块矿、普通烧结矿、球团矿。
现结合附图对本发明作详细说明。


图1为本发明煤氧熔融还原炼铁装置的系统示意图。
由附图1看出,本发明煤氧熔融还原炼铁装置包括原料仓1、上料系统2和3、预还原竖炉4、终还原铁浴炉5、下料管6、锁气阀7、煤气管道8、旋风除尘器9和14、出铁口10、出渣口11、煤氧喷枪12、压缩机23和24、氮气输送管道17、终还原煤气检测及温度调节装置13、煤气洗涤塔15、调压阀20、螺旋给料器21和22。预还原竖炉4通过下料管6和锁气阀7与终还原铁浴炉5相连;煤氧喷枪12装配在终还原铁浴炉5的下部炉壁上,旋风除尘器9和14、煤气洗涤塔15、调压阀20以及终还原煤气检测与温度调节装置13均配置在煤气输送管道上;螺旋给料器22设置在预还原竖炉4的底部,螺旋给料器21与终还原铁浴炉5相连,氮气输送管通17设置在终还原铁浴炉5的炉底。
包括预还原竖炉4、终还原铁浴炉5、上料系统2、3、出渣系统、出铁系统及煤气运行系统在内的整个煤氧熔融还原炼铁系统都处于封闭状态。
下料管6中设置的锁气阀7使预还原竖炉4与终还原铁浴炉5之间为密封连接。
本发明煤氧熔融还原炼铁方法的工作过程如下当原料使用含碳球团时,预热至250-300℃的含碳球团,通过上料系统2和3至高位料仓26,经竖炉顶部的布料机均匀地加入炉内,进行预还原。预还原温度为750-900℃,经过4-6小时的还原,使其金属化率达到50-80%,残碳含量5-7%,并沉降至预还原炉底部,经水冷螺旋给料机22连续排入终还原铁浴炉,排料温度为750-850℃。进入终还原铁浴炉的预还原含碳球团与按比例配加的块煤、造渣辅料被上升炉气迅速加热到1100℃左右,球团开始发生自还原反应。由于碳直接还原FeO,大量吸热,使球团的温度基本保持不变,而金属化率在20-25min内迅速提高到85-90%。同时,加入的煤块升温汽化,形成碎焦。在液体渣---焦流化层表面,已经充分还原的含碳球团在高温炉渣(约1400℃)的搅劝下迅速熔化流入渣---焦层进行终还原成为铁水。
在终还原下部通过水冷煤氧喷枪12将煤粉与氧气连续喷入炉内并使反应区温度达到1550-1600℃。从炉膛下部上升的炉气通过气---固---液三相间的换热,温度降低到1500℃左右进入固体填充床与下降的固体炉料进行逆流换热,维持含碳球团的自还原反应,并使本身的温度逐渐下降到1000-1100℃逸出料层。进一步与连续加入的炉料间换热,降温至950-1000℃排出炉外。经过除尘和调温,控制煤气温度为900-950℃,喷入竖炉进行预还原。经过预还原,炉气温度降低至350-400℃,炉气中CO+H2的浓度为45-50%排出。排出煤气经除尘、洗涤后,含尘量≤30mg/Nm3,温度降为室温,送入炉气储缺罐,吨铁消耗的煤气量约为1100-1300Nm3。
在终还原铁浴炉5内,被终还原而成的铁水,与炉渣在炉子底部的静止渣铁层分离,通过出铁口10和出渣口11排出。
与现有技术相比,本发明具有如下优点(1)采用合理的直接还原—间接还原比例,降低了吨铁能耗。
(2)在终还原铁浴炉上部采用短床层的固体充填层,可充分利用煤气的物理热,提高矿石的预还原度,节约了能量。也降低了炉渣的氧化性。
(3)利用含碳球团高温下快速自还原的特点,可充分利用炉气的物理热,提高预还原球团的金属化率。
(4)采用较低的竖炉预还原度(和COREX比),提高了上部竖炉生产效率,降低了输出煤气的产生量。
(5)采用含碳球团高温下快速自还原工艺和充分搅动的液体渣---焦流化床进行终还原反应,提高了球团的熔化速率和终还原铁浴炉的生产速率。和DIOS工艺相比,终还原的生产效率可提高1倍。
(6)采用煤、氧喷吹工艺在液体渣---焦流化床内进行浸没燃烧造气,降低了气体含尘量,并能保证煤气品质。可适用于不同煤种,尤其是高挥发分煤造气。
实施例采用本发明所述的煤氧熔融还原炼铁装置及其方法,进行了三次小型熔融还原炼铁热模拟试验。试验所用终还原炉内径φ=1.6m,高H=4.5m,预还原炉内径φ=1.5m,高H=5.5m。设计小时产铁量2T。试验所用原料为含碳冷固结球团,球团所采用的铁精矿粉的化学成分如表1所示。该球团配碳量为8%。所采用的还原剂为煤粉,煤粉的化学成分如表2所示。含碳球团经预热后,进入预还原炉,经一定时间预还原的含碳球团再进入终还原炉进行终还原。含碳球团预热温度、预还原温度和终还原温度如表3所述。试验所耗能源与相应指标如表4所示。表5列举了终还原所得铁水的化学成分。
表1实施例含碳球团铁精矿粉的化学成分(wt%)
表2实施例所采用的原煤成分(wt%)
表3实施例预还原和终还原工艺参数
表4实施例能耗及相应指标
注为了对比,将CDERX工艺的相应指标也列入表4中。
表5实施例最终铁水的化学成分(wt%)
权利要求
1.一种煤氧熔融还原炼铁方法,以含铁物料为原料,以煤为能源和还原剂,采用预还原和终还原二步法进行熔融还原,预还原在预还原竖炉中进行,终还原在终还原铁浴炉中进行,在终还原过程中,向终还原铁浴炉内喷吹煤粉,其特征在于(1)预还原采用中等预还原度,即预还原矿的金属化率为50-80%;(2)预还原反应温度为750-900℃,预还原只发生煤气与含铁物料之间的间接还原反应,(3)预还原竖炉向终还原铁浴炉排料时的预还原矿温度为800-850℃,(4)在终还原铁浴炉的上部为经预还原的固体物料,下部为固液混合物,在终还原铁浴炉的上部仍是预还原矿继续进行间接还原反应,下部则是直接还原反应(5)终还原采用较低的二次燃烧率,CO+H2/CO+H2+CO2+H2O≥85%;(6)终还原温度控制在1100-1600℃范围。
2.一种煤氧熔融还原炼铁装置,包括预还原竖炉(4)、终还原铁浴炉(5)、原料仓(1)、上料系统(2、3)、煤气除尘器(9、14)、下料管(6)以及煤气输送管路(8),其特征在于[1]、包括预还原竖炉(4)、终还原铁浴炉(5)、上料系统(2、3)、出铁系统、出渣铁系统及煤气运行系统在内的整个煤氧熔融还原炼铁系统都处封闭状态;[2]、在预还原竖炉(4)向终还原铁浴炉(5)输送物料的下料管(6)中设置了锁气阀(7),即预还原竖炉(4)与终还原铁浴炉采用密封连接;[3]、在终还原铁浴炉(5)的下部炉壁上安装2支以上的水冷煤氧喷枪;[4]、在预还原竖炉(4)的炉顶煤气的运行管道上设有煤气洗涤塔(15)和调压阀(20)。
全文摘要
本发明涉及直接还原法冶炼铁水的领域。本发明煤氧熔融还原炼铁在预还原竖炉和终还原铁浴炉中进行。以含铁物料为原料,以煤为能源和还原剂。预还原采用中等还原度,预还原矿的金属化率为50—80%;终还原采用低的二次燃烧率,CO+H
文档编号C21B11/00GK1248632SQ99122119
公开日2000年3月29日 申请日期1999年10月27日 优先权日1999年10月27日
发明者殷瑞钰, 杨天钧, 刘浏, 吴启常, 干勇, 杨树德, 齐渊洪, 苗治民, 李尚诣, 肖兴国, 许志宏, 佟溥翘, 王久训 申请人:冶金工业部钢铁研究总院, 北京科技大学, 冶金工业部北京钢铁设计研究总院, 东北大学, 中国科学院化工冶金研究所, 承德钢铁集团有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1