一种多加热区温度解耦主从控制方法

文档序号:9258242阅读:806来源:国知局
一种多加热区温度解耦主从控制方法
【技术领域】
[0001]本发明属于自动控制技术中的温度解耦控制领域,具体涉及一种多加热区温度解耦主从控制方法。
【背景技术】
[0002]目前随着科技的进步,热处理设备越来越多,特别是大型热处理设备,如真空炉、气氛炉、空气循环电炉等。但大多数该类设备通常采多温区控制,每个控温区至少配置一只控温仪表,每个仪表通过设定相同的设定值,予以单独控制各区域温度。
[0003]如图1所示:B0—第O号分区的控温仪表,BI—第I号分区的控温仪表,B2—第2号分区的控温仪表,Bn—第η号温区的控温仪表。ZO—第O加热区的加热器,Zl—第I加热区的加热器,Ζ2—第2加热区的加热器,Zn—第η加热区的加热器,SO—第O加热区的实际温度传感器,SI—第I加热区的实际温度传感器,S2—第2加热区的实际温度传感器,Sn—第η加热区的实际温度传感器,SV—为所有控温仪表的设定温度,PV0—0号仪表温度反馈温度,PVl-1号仪表反馈温度,PV2—2号仪表反馈温度,PVn-η号仪表反馈温度,TG0—0号功率调节器,TGl — I号功率调节器,TG2—2号功率调节器,TGn—η号功率调节器。其中:一般η多2。该系统各环为单一 PID调节控制环,不具备解耦控制功能,其控制框图如图2所示。图2中,SV—设定温度,PV—反馈温度,ΔΕ—SV与PV间的误差,比例增益(P) -Kp,积分时间(I) —Ti,微分时间(D) —Td, MV-PID控制器运算输出。
[0004]如专利号为:CN201110043242.5,专利名称为:基于热平衡的陶瓷辊道窑炉温度解耦控制方法,摘要为:本发明提供的基于热平衡的陶瓷辊道窑炉温度解耦控制方法,是利用一种由多个PID控制器和I个解耦补偿器及窑炉炉体组成的控制系统对陶瓷辊道窑炉温度进行解耦控制,具体是:第一步,在窑炉开始升温阶段,先根据产品烧成曲线确定窑炉内每个烧嘴对应温区的目标控制温度,然后整定PID控制器的参数;第二步,当实际检测到的温度升至目标控制温度附近时,计算各烧嘴之间温度耦合系数,得到温度解耦补偿器输出解耦量,通过解耦量对各自回路的PID控制器输出量进行补偿;第三步,得到补偿之后的控制量通过执行器实时调整对应烧嘴的燃气量。
[0005]该控温方法存在如下缺点:1、各控温仪表独立控制,在加热过程中会相互热耦合,对相邻加热区域会产生扰动。2、硬件仪表多,成本高。3、系统总的抗扰动能力较差。4.该控制方法还导致仪表太多,操作繁琐。

【发明内容】

[0006]本发明的目的主要是针对传统多加热区多仪表独立控制方法,给系统带来的温度均匀性差,抗扰动能力弱,成本高,操作不方便缺点,提供了去掉硬件仪表,采用软件代替仪表,并植入数字解耦控制器,温度均匀性好,抗扰动能力强,低成本,柔性好,操作方便的控制方法。
[0007]本发明实现上述目的技术解决方案可以通过以下方案来达到。
[0008]一种多加热区温度解耦主从控制方法,包括如下步骤:
第一步,通过常规的多环控温方法,从最低加工零件炉温温度点和最高温度点间均匀选取的m个温度点,测量m个不同温度点(即SVso, SVso…、SVsm^1)的温度均匀性,并作出各测温点的均匀性曲线,记录下相应测温点下η个加热区的稳态时的实际温度(即PV.、
PV0S1、...1PVc1sm-UPV1sc^PV1sP …、PLaj-u …;PVn_lscl、PVn_lsl、…、PVn-uu-u );
第二步,将m个不同测温点确定为各温区的典型温度耦合点,以耦合点温度均匀性为依据,设置η个2 Xm维解耦数组(VC),其中每一个解耦数组第一列m个元素分别为m个测温点温度(即SVstl、SVsl、…、SVsnri),第二列分别对应为相应温区的m个测温点时该温区稳态时的实际温度(即PVS(1、PVS1、…、PVsnriX有η个温区,就设定η个解耦数组,但是如果将某一温区作为主控温区,那么相应的解耦数组的第二列元素与第一列数组设置相同,其余η-1个温区为从控制区。
[0009]第三步,根据η个2Xm维解耦数组(VC),以耦合点温度(即解耦数组VC的第一列元素)为横坐标,各区在耦合点的实际温度(即解耦数组VC的第二列元素)为纵坐标,由nXm个点构成的η条耦合曲线,对于主控区则为一条45°直线,其余各区由m个点拟合成该区的耦合曲线;
第四步,将主控区的耦合曲线减去其余各温区耦合曲线得到的偏差(PVB),再与设定值(SV)相加得到新的设定值(SVl ),再将此新的设定值(SVl)和温区实际温度(PV)送到的PID调节器中参与控制计算,然后输出到功率调节器调节加热器功率,从而达到温度均匀性调节的目的;
第五步,按照图5所示控制框图编写控制软件,调整PID控制器的P、1、D参数和适度修正解耦向量(VC)可以实现该控制方法,构成带解耦运算的控制系统如图6所示,可实现多加热区系统的温度解耦控制,其均匀性指标和稳态误差都有非常大的提高。
[0010]本发明相比于现有技术具有如下有益效果:
根据本发明提供的上述方案,本发明的技术方案和上述对比文件的技术方案最大的不同在于:是本发明采用的技术方案是先解耦然后进行PID调节输出,而对比文件是先PID调节后解耦,因此本发明所提供的方案涉及的多加热区温度控制系统控制性能好,成本低,系统柔性好,操作方便的特点,同时有益效果主要体现在:
1.控制性能大幅提高。该控制器植入了关键的软件解耦器,可大大提高各加热区的温度均匀性和调节性能;
2.节约硬件成本。本数字化多加热区主从温度控制器,取消了仪表硬件,特别是加热区越多硬件仪表的成本节省就越明显;
3.系统配置灵活。该控制器可根据加热区的个数n,相应建立η个解耦器、PID调节器的调用,很方便的实现η个加热区的温度控制环进行解耦控制。当然,加热区的个数η因系统布局不同可灵活配置和改变;
4.便于集中监控。该控制器由于采用软件实现,参数给定与调节可通过软件设置,简化了操作人员对多仪表操作的强度,而且很方便与计算机接口进行可视化(或组态型)操作。
[0011]5.响应速度块、控制精度高。该控制器应用现代计算机控制技术,可采用13位或更多位数的模数转换模块(AD模块)和数模转换模块(DA模块)提高数据采集和输出精度,同时通过32位或64为双精度数学运算指令来提高系统数据计算精度,从而保证控制器的控制精度。
【附图说明】
[0012]图1不带解耦运算多温区控制结构图;
图2不带解耦控制的PID控制器控制框图;
图3多加热区某测温点温度均匀性曲线图;
图4耦合曲线;
图5带解耦运算的PID控制框图;
图6带解耦器的多加热区控制框图。
【具体实施方式】
[0013]实施例1:
一种多加热区温度解耦主从控制方法,其特征在于包括如下步骤:
第一步,通过常规的多环控温方法,从最低加工零件炉温温度点和最高温度点间均匀选取的m个温度点,测量m个不同温度点(即SVso, SVso…、SVsm^1)的温度均匀性,并作出各测温点的均匀性曲线,记录下相应测温点下η个加热区的稳态时的实际温度(即PV.、
PV0S1、...1PVc1sm-UPV1sc^PV1sP …、PLaj-u …;PVn_lscl、PVn_lsl、…、PVn-uu-u );
第二步,将m个不同测温点确定为各温区的典型温度耦合点,以耦合点温度均匀性为依据,设置η个2 Xm维解耦数组(VC),其中每一个解耦数组第一列m个元素分别为m个测温点温度(即SVstl、SVsl、…、SVsnri),第二列分别对应为相应温区的m个测温点时该温区稳态时的实际温度(即PVS(1、PVS1、…、PVsnriX有η个温区,就设定η个解耦数组,但是如果将某一温区作为主控温区,那么相应的解耦数组的第二列元素与第一列数组设置相同,其余η-1个温区为从控制区;
第三步,根据η个2 Xm维解耦数组(VC),以耦合点温度(即解耦数组VC的第一列元素)为横坐标,各区在耦合点的实际温度(即解耦数组VC的第二列元素)为纵坐标,由nXm个点构成的η条耦合曲线,对于主控区则为一条45°直线,其余各区由m个点拟合成该区的耦合曲线;
第四步,将主控区的耦合曲线减去其余各温区耦合曲线得到的偏差(PVB),再与设定值(SV)相加得到新的设定值(SVl),再将此新的设定值(SVl)和温区实际温度(PV)送到的PID调节器中参与控制计算,然后输出到功率调节器调节加热器功率。
[0014]实施例2:
下面结合附图和实施例进一步说明本发明,本实施例主要用3温区系统(即n=3)和温度均匀性检测点为8个(即m=8)予以说明,并以第O加热区为主控温区,第I加热区为从控制区,第2加热区为从控制区,但并不因此将本发明限制在所述的实施例范围之中。
[0015]参见图3、图4、图5和图6
在图5中SV—设定温度,PVB—为解耦输出值,SVl —解耦后的设定温度,VC-解耦向量,解耦向量(VC)为2X8维实数组,第I列存储8个测温点温度,第2列存储对应于测温点的8个稳态温度,这样由两列数组就构成了温度耦合曲线,如图4所示。当在设定温度SV输入到解耦器后,解耦器根据解耦向量(VC)产生的耦合曲线,经过数学计算确定耦合修正量输出到PVB,再与设定值(SV)相
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1